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Nuclear binding energies from a Bogomol’nyi-Prasad-Sommerfield Skyrme model
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Recently, within the space of generalized Skyrme models, a submodel with a Bogomol’nyi-Prasad-Sommerfield
(BPS) bound was identified that reproduces some bulk properties of nuclear matter already on a classical level
and, as such, constitutes a promising field theory candidate for the detailed and reliable description of nuclei
and hadrons. Here we extend and further develop these investigations by applying the model to the calculation
of nuclear binding energies. Concretely, we calculate these binding energies by including the classical soliton
energies, the excitation energies from the collective coordinate quantization of spin and isospin, the electrostatic
Coulomb energies, and a small explicit isospin symmetry breaking, which accounts for the mass difference
between proton and neutron. The integrability properties of the BPS Skyrme model allow, in fact, for an analytical
calculation of all contributions, which may then be compared with the semi-empirical mass formula. We find that
for heavier nuclei, where the model is expected to be more accurate on theoretical grounds, the resulting binding
energies are already in excellent agreement with their physical values. This result provides further strong evidence
for the viability of the BPS Skyrme model as a distinguished starting point and lowest-order approximation for
the detailed quantitative investigation of nuclear and hadron physics.
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I. INTRODUCTION

The Skyrme model [1,2] was introduced by Skyrme as a
field theoretic realization of his concept of a “mesonic fluid”
model for nuclei, motivated by the substantially homogeneous
nature of nuclear matter. The nucleons were supposed to result
from a kind of local twist or “vorticity” in this mesonic fluid,
that is, to be described by topological solitons in a more
modern language. This original idea received further support
and general acceptance once it was found, about two decades
later, that an effective theory of mesons may be derived from
QCD in the limit of a large number of colors [3]. So, the
Skyrme model is a nonlinear field theory that is supposed to
describe the low-energy limit of strong interaction physics in
terms of hadrons. The primary fields of the Skyrme model
are mesons, whereas baryons appear as collective excitations,
that is, topological solitons (skyrmions). These solitons have
the characteristic feature that they can be classified by an
integer-valued topological degree or winding number. One
important insight of Skyrme has been the proposal that this
topological degree should be identified with the baryon number
B, explaining in this way its conservation.

For the specific case of two flavors, the field of the Skyrme
model takes values in the group SU(2) (isospin). And as
anticipated by Skyrme, one natural area of applications of the
resulting theory is nuclear physics, providing in this manner a
possible basis for a unified field theoretic description of nuclei
and their properties. Indeed, shortly after the description of
the nucleons (proton and neutron) in terms of the simplest
skyrmion (the hedgehog solution) [4], the Skyrme model
was used to describe the deuteron [5] and some additional
light nuclei [6]. More recently, nuclear excitation spectra have
been studied within the Skyrme model, e.g., in Ref. [7], with
reasonable success. One common problem in the application

of the standard version of the Skyrme model to nuclei is that
the resulting nuclear binding energies are too large. Concretely,
although there exists a lower-energy bound linear in the baryon
number found originally by Skyrme [1] (the Skyrme bound,
see also Refs. [8,9]), skyrmion solutions do not saturate this
bound. The energy (mass) of the simplest B = 1 skyrmion
(hedgehog) is about 23% above the bound, whereas for higher
B this deviation is lowered, to less than 4% in the limit of very
large B (see, e.g., Ref. [9]). As a consequence, the binding
energies per baryon number of higher skyrmions (i.e., the
energies needed to disintegrate higher skyrmions into their
B = 1 constituents) are quite high, on the level of 10%, which
is in striking contrast to the low binding energies of physical
nuclei. A way of dealing with this problem in the standard
Skyrme model is by a different renormalization of the coupling
constants of the model for different nuclei.

Recently, some of us found [10] that there exists a certain
Skyrme submodel [Bogomol’nyi-Prasad-Sommerfield (BPS)
Skyrme model] which not only allows for a Bogomol’nyi-type
energy bound, but also contains infinitely many BPS soliton
solutions [that is, soliton solutions that solve a first-order (BPS)
equation] which saturate the bound. As already suggested by
the authors of Ref. [10] (see also Ref. [11]), this observation
leads to the rather natural proposal to treat the solitons
of the BPS submodel as the leading-order contributions to
nuclear masses. This proposal receives further support from
the observation that the submodel has the symmetries of
an incompressible ideal liquid [10,12] and, therefore, serves
as a field theoretic realization of the liquid drop model of
nuclei. Relatively small corrections to the nuclear masses
(and, therefore, small but nonzero binding energies) may
be produced by further small contributions, which may be
incorporated within the model in a completely natural fashion,
that is, they are integral parts of the Skyrme theory itself.
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One should extend the theory by including additional terms
into the classical energy functional. Further, in any case,
one has to go beyond the classical solitons (e.g., via the
usual collective coordinate quantization and by including the
electrostatic Coulomb energy, etc.) for an accurate description
of nuclei. It is the purpose of the present article to advance
in this second direction and to determine the resulting nuclear
binding energies. Consequently, we shall include the effects
of the collective coordinate quantization of spin and isospin,
the Coulomb energy, and an explicit small breaking of the
isospin symmetry. We will find that the resulting nuclear
binding energies are already in very good agreement with the
experimental values for heavy nuclei, demonstrating that the
BPS Skyrme model together with standard Skyrme technology
provide an excellent starting point for a detailed quantitative
investigation of nuclear and low-energy strong interaction
physics. An additional virtue of the BPS Skyrme model
is that, due to its BPS nature, almost all calculations can
be done analytically, which should be contrasted with the
challenging numerical calculations required to find the solitons
of the standard Skyrme model. We remark that an alternative
proposal for a BPS Skyrme model was developed by the
authors of Ref. [13]. It was based on the inclusion of an infinite
tower of vector mesons that induces a flow to a conformal
theory (see also Ref. [14]).

II. BPS SKYRME MODEL

The Lagrangian of the standard Skyrme model consists
of two terms, a term quadratic in first derivatives (the sigma
model term L2) providing the kinetic energy of the pions and
the Skyrme term L4 which is quartic in first derivatives. The
Skyrme term is needed to balance the scaling instability (avoid
the Derrick theorem) such that soliton solutions may exist.
The Skyrme model is meant to be a low-energy effective field
theory for hadrons and nuclei, and, as such, in principle allows
(and requires) the addition of many more terms, essentially
all possible terms compatible with the basic symmetries
of strong interactions. This is precisely what is done in a
perturbative approach (chiral perturbation theory [15]). For a
nonperturbative framework like the Skyrme model, however,
some selection principle must be found that highlights the
relevant physical effects and degrees of freedom and, further,
reduces the number of possible terms, rendering calculations
feasible. Consequently, we shall require that the Lagrangian
is no more than quadratic in time derivatives such that a
standard Hamiltonian exists, which clearly is a desirable
property for a theory supporting solitons. Together with the
obvious requirement of Poincaré invariance, this severely
restricts the possible terms in the Lagrangian. Essentially,
only a potential term L0 and a certain term L6 sextic in
derivatives may be added to the two standard terms L2

and L4. It should be noted that both of these terms have
already been considered in generalizations of the original
Skyrme model, where their inclusion was based on physical
(phenomenological) arguments. The potential is obviously
related to an explicit breaking of chiral symmetry and to the
pion masses, whereas the sextic term may be related to vector
meson exchange [16].

So we are led to the Lagrangian [our Minkowski metric
conventions are diag(gμν) = (+,−,−,−)]

L = L0 + L2 + L4 + L6, (1)

where

L2 = λ2tr ∂μU∂μU † ≡ −λ2tr LμLμ ,
(2)

L4 = λ4tr ([Lμ,Lν])2,

and

L0 = −λ0V (U ) ,
(3)

L6 = −λ6(εμνρσ tr LνLρLσ )2 ≡ −(24π2)2λ6BμBμ.

Here U : R3 × R → SU(2) is the Skyrme field and Lμ =
U †∂μU is the left-invariant Maurer-Cartan current. Further,
the λn are nonnegative coupling constants and Bμ is the
topological or baryon number current giving rise to the
topological degree (baryon number) B ∈ Z,

Bμ = 1

24π2
εμνρσ tr LνLρLσ , B =

∫
d3xB0. (4)

The terms L2, L4, and L6 are invariant under the chiral
transformations U → WUW ′, W,W ′ ∈ SU(2). The potential
term, however, breaks this chiral symmetry. We shall assume
from now on that the potential only depends on tr U , i.e.,
V (U ) = v(tr U ), then it is still invariant under the diagonal
(isospin) subgroup U → WUW †. Further, we assume that
the potential is nonnegative, V (U ) � 0 and has one unique
vacuum at U = 1, i.e., V (U = 1) = 0.

Our BPS Skyrme model is the limit λ2 = λ4 = 0 of the
above theory, with the Lagrangian [where, for convenience,
we introduce the new coupling constants λ6 = λ2/(24)2 and
λ0 = μ2]

L06 = −π4λ2BμBμ − μ2V (U ). (5)

Clearly, this simple model by itself cannot provide a detailed
description of all strong interaction physics. Due to the absence
of the sigma model term L2 there is no perturbative pion
dynamics. The model is based on two terms that are related
to collective, nonperturbative properties of strong interactions
(chiral symmetry breaking for the potential and Skyrme field
topology for the sextic term), so it might be expected to be rele-
vant whenever nonperturbative properties should be important
like, for instance, in regions of not too small baryon density
(as is the case, e.g., inside nuclei). Further, the model may
provide a good starting point (lowest-order approximation)
in these cases, where a more detailed investigation then will
require the inclusion of further effects. This proposition is
bolstered by the crucial observation that the energy functional
of the theory for static configurations

E =
∫

d3x
[
π4λ2B2

0 + μ2V (U )
]

(6)

has both a Bogomol’nyi bound and infinitely many BPS
solutions saturating this bound [10,12,17]. To derive the bound
it is useful to recall that the target space SU(2) as a manifold
is just the three-sphere S3 and, further, the topological charge
density three-form B0d

3x is (up to a constant) the pullback
(under the map U : R3 → S3) of the volume form d	 on S3,
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i.e., B0d
3x = [1/(2π )]U ∗(d	). Then it is not difficult to find

the Bogomol’nyi bound [10,12,18]

E � 2π2λμ|B|〈
√

V 〉S3 ,
(7)

〈
√

V 〉S3 ≡ 1

2π2

∫
S3

d	
√

V

(where 〈√V 〉S3 is the average value of
√

V on the target space
S3) and the BPS equation

π2λB0 ± μ
√

V = 0. (8)

Another important property of the energy functional (6) is
its infinite-dimensional group of symmetries [10,12], among
which there are the volume-preserving diffeomorphisms
(VPDs) on base space (i.e., the symmetries of an incompress-
ible ideal liquid).

At this point, we have to make several choices. First of all,
for simplicity we choose the standard Skyrme potential

V = 1
2 tr (1 − U ) = 1 − cos ξ, (9)

where

U = cos ξ + i sin ξ 
n · 
τ , 
n2 = 1, (10)

and 
τ are the Pauli matrices (in this article we use the roman
letter i for the imaginary unit to avoid confusion with the
isospin quantum number i). We remark that without the term
L2 there is no direct relation between the standard Skyrme
potential and the pion mass so other choices are possible [19].
Second, we have to choose the shapes (symmetries) of our
skyrmion solutions. Here we shall choose an axially symmetric
ansatz, but due to the many symmetries of the energy functional
(6), there exist solutions with rather arbitrary shapes. Indeed,
introducing spherical polar coordinates (r, θ, φ) in base space,
and 
n = (sin χ cos �, sin χ sin �, cos χ ), the BPS equation
may be written as [12]

− λ

2μ

sin2 ξ√
V

sin χdξdχd� = ∓r2 sin θdrdθdφ. (11)

The obvious ansatz

χ = θ, � = nφ, ξ = ξ (r) (12)

then leads to B = n and to the first-order ordinary differential
equation for ξ (r)

nλ

2μ

sin2 ξ√
V

dξ

dr
= −r2. (13)

This ansatz reduces to the well-known spherically symmetric
hedgehog ansatz for n = 1 and is axially symmetric for general
n. We remark that a slightly different higher n generalization
of the hedgehog ansatz, the so-called rational map ansatz (see,
e.g., Ref. [9]), is frequently used in applications of the Skyrme
model. The rational map ansatz is the ansatz ξ = ξ (r) and
u(z) = R(z), where u is the stereographic projection of 
n,
z is the stereographic projection of r̂ = r/r , and R(z) is a
rational function of its argument. The rational map ansatz
cannot provide exact solutions of the Skyrme model for
n = B > 1, but it approximates skyrmion solutions quite well
after an appropriate minimization of the rational function R(z).

For our purposes, the use of rational maps is not adequate
because we shall use only Skyrme field configurations which
are solutions of the BPS Skyrme model, and rational maps
are never solutions of the BPS submodel for n > 1. For the
standard Skyrme potential (9), the solution of Eq. (13) obeying
the right boundary conditions ξ (0) = π , ξ (∞) = 0 is [10]

ξ =
{

2 arccos r
Rn

r ∈ [0, Rn],
0 r � Rn,

Rn ≡
(

2
√

2λ|n|
μ

) 1
3

,

(14)

that is, the skyrmion for baryon number n is a compacton with
radius Rn. We remark that the compacton radius grows like the
third root of the baryon number, which exactly reproduces the
experimental behavior of the radii of physical nuclei. For later
use we also want to display the following expression, valid
inside the compacton radius,

sin2 ξ ξr = −8
r2

R3
n

√
1 −

(
r

Rn

)2

. (15)

Next, we have to decide which effects (contributions)
to include in our binding energy calculations. We shall, at
present, not include (small) contributions from the terms L2

and L4. The reason is as follows. As they are small by
assumption, the main contributions of these terms would just
slightly increase the classical soliton energies. For large baryon
number, where our model is most reliable, the full soliton
energies and, therefore, also these contributions must grow
linearly in the baryon charge (they cannot grow faster because
the “soliton” then would be unstable and they cannot grow
slower because of the Skyrme bound). But they can then be
taken into account effectively by a slight renormalization of
the coupling constants of the restricted (BPS) model. As we
have to fit the coupling constants to experimental values in any
case, the leading effect of these terms is therefore immaterial.
We remark that in Ref. [20], where similar calculations were
performed, the terms L2 and L4 were, nevertheless, taken into
account perturbatively. We shall comment on this issue in the
conclusion.

III. NUCLEAR BINDING ENERGIES

For the static energy (mass) E of a nucleus, we shall take
into account the following contributions

E = E0 + Erot + EC + EI , (16)

where E0 is the classical soliton energy, which for the standard
Skyrme potential is [10]

E0 = 64
√

2π

15
μλ|n|. (17)

Erot comes from the collective coordinate quantization of
rotations and isorotations, giving rise to spin and isospin of the
nuclei. EC is the electrostatic Coulomb energy of the nucleus,
whereas EI is a contribution from a small, explicit isospin
breaking, taking into account the mass difference between
proton and neutron.
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A. Spin and isospin contributions

The (semiclassical) quantization of rotations and isoro-
tations is obviously required for a consistent description of
nuclei because both spin (angular momentum) and the third
component of the isospin i3 = (1/2)(Z − N ) are relevant
quantum numbers of nuclei (here Z is the number of protons
and N the number of neutrons). As usual, the rigid rotor
quantization of spin and isospin proceeds by introducing the
rotational and isorotational degrees of freedom about a static
soliton via

U (t, 
x) = A(t)U0(RB(t)
x)A†(t) (18)

(A, B ∈ SU(2), RB ∈ SO(3), U0, . . . , soliton), where the
variables an(t) and bn(t) paramterizing A and B are treated
as time-dependent mechanical coordinates. This expression is
then inserted into the Lagrangian L = ∫

d3xL, where only
time derivatives provide additional terms (after all rotations
and isorotations are symmetries). In a next step, one transforms
from the generalized velocities ȧn, ḃn to the canonical mo-
menta and from the mechanical Lagrangian L(an, bn, ȧn, ḃn)
to the Hamiltonian. In a last step, the coordinates and canonical
momenta are then interpreted as quantum mechanical variables
and momenta fulfilling the corresponding commutation rela-
tions. The result is the standard quantized rigid rotor both for
spin and for isospin, and different nuclei are identified with
different eigenstates of the rigid rotor, i.e.,

|X〉 = |jj3l3〉|ii3k3〉, (19)

where X is a nucleus, 
J ( 
L) is the space-fixed (body-fixed)
angular momentum, 
I ( 
K) is the space-fixed (body-fixed)
isospin angular momentum, and j, j3, l, l3 and i, i3, k, k3 are
the corresponding eigenvalues. Finally, |jj3l3〉 and |ii3k3〉 are
the eigenstates of the rigid rotor (Wigner D functions) for spin
and isospion, respectively.

A slight complication in this rigid rotor quantization is
related to the symmetries of the skyrmion U0. Indeed, for
soliton solutions U0 with some symmetries, certain combi-
nations of the transformations A and B will act trivially
on U0. If these combinations correspond to (one or several)
continuous one-parameter families, then the corresponding
combinations of collective coordinates do not show up at all in
the quantum mechanical Hamiltonian Ĥrot and, further, these
transformations should act trivially on the nuclei described
by the soliton U0, (that is, the infinitesimal generators acting
on |X〉 should be zero). If these symmetries of U0 are just
discrete transformations, then they do not reduce the number
of collective coordinates, but they still imply some nontrivial
constraints on the nuclear wave functions |X〉, the so-called
Finkelstein-Rubinstein constraints [21] [in general, these
imply that only certain linear combinations of the product
states (19) are possible, although for the axially symmetric
ansatz considered here the allowed wave functions may always
be written as product states]. A detailed discussion of the
Finkelstein-Rubinstein constraints for the standard Skyrme
model may be found in Ref. [22].

For the ansatz (12) used here, with its corresponding sym-
metries, the quantization of the spin and isospin collective co-
ordinates and the resulting moments of inertia are well known

(see Ref. [4] for the B = 1 hedgehog and Refs. [5,23,24] for
axially symmetric skyrmions). Concretely, for n = B = 1, the
resulting skyrmion (hedgehog) is spherically symmetric, i.e.,
an arbitrary rotation can be undone by an isorotation (and
vice versa). As a consequence, only three of the six collective
coordinates (either spin or isospin) appear, where we choose
spin for concreteness. Further, the body-fixed moments of
inertia tensor is proportional to the identity

Jij = δijJ ,
(20)

J = 4π

3
λ2

∫
dr sin4 ξ ξ 2

r = 28
√

2π

15 · 7
λμ

(
λ

μ

) 2
3

and the resulting quantum mechanical Hamiltonian is the one
of a spherical top Hrot = (1/(2J )) 
L2 = (1/(2J )) 
J 2 leading
to the energy

Erot = 1

2J h̄2j (j + 1). (21)

For the axially symmetric ansatz (12) for n = B > 1, the
quantum mechanical Hamiltonian essentially consists of two
copies (spin and isospin) of a symmetric top (rigid rotor with
Jij = Jiδij , and generically J1 = J2 = J3) with

Hsym−top = L2
1 + L2

2

2J1
+ L2

3

2J3
=


J 2

2J1
+

(
1

2J3
− 1

2J1

)
L2

3.

(22)

The axial symmetry implies that a rotation about the three-axis
(by an angle ϕ) can be undone by an isospin rotation (by an
angle nϕ), so the corresponding generator (L3 or K3) should
be taken into account only once (concretely we choose K3).
The resulting energy is

Erot = h̄2

2

(
j (j + 1)

J1
+ i(i + 1)

I1
+

(
1

I3
− 1

I1
− n2

J1

)
k2

3

)
,

(23)

where Iij = Iiδij , I1 = I2 = I3 is the isospin moments of
inertia tensor, and

I3 = 4π

3
λ2

∫
dr sin4 ξ ξ 2

r = |n|− 1
3 J , (24)

I1 = 3n2 + 1

4
I3 , J1 = J3 = n2I3, (25)

and J is defined in Eq. (20). We were able to guess the
energy expression (23) with the help of the standard rigid
rotor quantization and the axial symmetry of the skyrmion,
but for later use it is still useful to sketch the explicit
calculation. Indeed, inserting Eq. (18) into the Lagrangian,
the resulting quantum mechanical Lagrangian (which is equal
to the Hamiltonian Hrot because we ignore the constant soliton
mass) may be expressed as a quadratic form in the spin (ωk)
and isospin (	k) angular velocities

Hrot = 1
2	jIjk	k − 	jKjkωk + 1

2ωjJjkωk, (26)

where

A†Ȧ = i 
	 · 
τ
2
, (27)
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and

(ṘB)ikR
−1
B kj = −εijkωk. (28)

Further, Kjk = Kj δjk , K1 = K2 = 0, and K3 = nI3 is the
“mixed” moments of inertia tensor. Now, the transformation
to body-fixed spin and isospin angular momenta proceeds as
usual


K = ∂Hrot

∂ 
	 = [I1	1, I1	2, I3(	3 − nω3)], (29)


L = ∂Hrot

∂ 
ω = [J1ω1,J1ω2,−nI3(	3 − nω3)]. (30)

Resolving these expressions for 
ω and 
	, inserting them into
Eq. (26) and replacing the angular momentum operators by
their eigenvalues, we precisely recover Eq. (23). We remark
that here we use the angular velocity and body-fixed angular
momentum sign conventions of Ref. [5]. This implies that the
body-fixed angular momenta obey the normal commutation
relations [K1,K2] = iK3 and so on. However, the body-fixed
angular momenta are then related to the space-fixed ones by
minus the corresponding rotation.

Finally, the axial symmetry implies

(L3 + nK3)|X〉 = 0 ⇒ l3 + nk3 = 0. (31)

This constraint, together with the obvious inequality j � |l3|,
leads to unacceptably large angular momenta for physical
nuclei for k3 = 0. We, therefore, assume k3 = 0 in what
follows. But this assumption implies that the axially symmetric
ansatz cannot be used for nuclei with odd baryon number B
because such nuclei are fermions with half-odd integer values
of k3. We shall, therefore, restrict our discussion for the axially
symmetric solitons to nuclei with even B = n. We remark that
we differ in this respect from the discussion in Ref. [20].
Further, from now on we assume i = |i3|, for the following
reason. We want to compare our calculated excitation energies
to the binding energies of the most abundant nuclei with the
same quantum numbers B, j , and i3. But these nuclei typically
correspond to the most tightly bound ones, so their excitation
energies should take on the minimum possible values, i.e.,
obey the condition i = |i3|. Assuming this, we get for (even)
B = n > 1

Erot = 105

512
√

2π

h̄2

λ2
(

μ
λn

)1/3

(
j (j + 1)

n2
+ 4|i3|(|i3| + 1)

3n2 + 1

)
.

(32)

For B = n = 1 (where j = 1
2 ), the well-known result is

Erot = 105

512
√

2π

3

4

h̄2

λ2
(

μ
λ

)1/3 . (33)

B. Coulomb energies

The Coulomb energy contribution is

EC = 1

2ε0

∫
d3xd3x ′ ρ(
r)ρ(
r ′)

4π |
r − 
r ′| , (34)

where ρ is the electric charge density of the nucleus. This
charge density is the expectation value with regard to (w.r.t.)

nuclear wave functions |X〉 of the corresponding electric
charge density operator [25] (which, in the underlying QCD
description, incorporates not only the minimal coupling, but
also the effects of the chiral anomaly)

ρ̂ = 1
2B0 + J 0

3 , (35)

where B0 is the topological charge density and J 0
3 is the time

component of the third isospin current density operator Jμ
a .

Again, ρ̂ is calculated by inserting the spin- and isospin-rotated
soliton (18) into the above expression and by interpreting the
collective spin and isospin coordinates as quantum mechanical
variables. The first term (1/2)B0 is, in fact, proportional to the
identity operator

B0 = − n

2π2r2
sin2 ξ ξr (36)

because the topological charge density is invariant under
spin and isospin rotations (contains no time derivatives). For
the second term a complication arises due to the fact that,
with the term L6 present, J 0

3 = J 0
3 ( 
	, 
ω, an) depends not only

on the spin and isospin angular velocities, but also explicitly
on the corresponding isospin collective coordinates, so a Weyl
ordering is required (see Ref. [26] for details; we remark that
here we differ from the authors of Ref. [20]). Indeed,

Jμ
3 = − iλ2π2

4
εμναβBνTr

[
τ3

2
(∂αUU †∂βUU †

− ∂αU †U∂βU †U )

]
, (37)

so

J 0
3 = − iλ2π2

4
ε0imnBiTr

[
τ3

2
(∂mUU †∂nUU †

− ∂mU †U∂nU
†U )

]
. (38)

Here, the first factor Bi contains a time derivative and will
therefore depend on 
	 and 
ω, whereas the second term,
Tr(τ3, . . . , ) is noninvariant under isospin transformations and
depends, therefore, on the corresponding collective coordi-
nates. A long but straight-forward calculation leads to the
explicitly Weyl-ordered expression

J 0
3 = − λ2

4r2
ξ 2
r sin4 ξ [(Ri	j + 	jRi)Aij

+ (Riωj + ωjRi)Bij ], (39)

where 
R is a unit vector constructed from the isospin collective
coordinates a0, 
a,

A†τ3A = Riτi , A = a0 + i
a
τ , a2
0 + 
a2 = 1 (40)

⇒ R1 = 2(a0a2 + a1a3), R2 = 2(a2a3 − a0a1),

R3 = a2
0 − a2

1 − a2
2 + a2

3 . (41)

For later use we remark that, at the same time, Ri is the third
component of the rotation matrix from the body-fixed to the
space-fixed coordinates (w.r.t. the isospin rotation), i.e., Ri ≡
(RA)3i , where

(RA)jk = 1
2 Tr(τj A†τkA), (42)
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which implies the useful relation

I3 = −
∑

i

RiKi (43)

(with the minus sign due to our conventions) between body-
fixed and space-fixed isospin angular momenta. Further, Aij

and Bij are matrices that depend on the angles θ and φ of
the spherical polar coordinates. As the explicit expressions are
rather lengthy, we relegate them to Appendix A.

Now we have to evaluate the nuclear matrix elements
〈X|J 0

3 |X〉, where several simplifications occur. We replace
the angular velocities by the angular momentum operators
using Eqs. (29) and (30) and use that the matrix elements
〈X|RiKj |X〉 and so on are zero for i = j , see Appendix B. For
i = j , however, the operators commute and the Weyl ordering
may be ignored. Further, the matrix elements 〈X|L1|X〉 and
〈X|L2|X〉 are zero (the presence of the operators Ri does not
change this because 
L and 
R act in different spaces). Using
B33 = −nA33, we therefore get for the matrix element

〈X|J 0
3 |X〉 = − λ2

2r2
ξ 2
r sin4 ξ

1

I3
〈X|

(
4

3n2 + 1
(R1K1A11

+R2K2A22) + R3K3A33

)
|X〉. (44)

In a next step, we use that as a consequence of the symmetries
of the nuclear wave functions |X〉 it holds that 〈X|R1K1|X〉 =
〈X|R2K2|X〉 so that we may replace both of them by
(1/2)(〈X|R1K1|X〉 + 〈X|R2K2|X〉. Adding and subtracting,
in addition, R3K3 to complete for I3 [see Eq. (43)], we arrive
at

〈X|J 0
3 |X〉 = λ2

2r2
ξ 2
r sin4 ξ

1

I3
〈X|

(
2(n2 + cos2 θ )

3n2 + 1
I3

− (n2 + 1)(1 − 3 cos2 θ )

3n2 + 1
R3K3

)
|X〉

= λ2

2r2
ξ 2
r sin4 ξ

1

I3

(
2(n2 + cos2 θ )

3n2 + 1
i3

− (n2 + 1)(1 − 3 cos2 θ )

3n2 + 1
〈X|R3K3|X〉

)
. (45)

It may be checked easily that the contribution to the electric
charge is just i3, i.e.,

∫
d3x〈X|J 0

3 |X〉 = i3. The matrix element
〈X|R3K3|X〉 does not contribute even for nuclei with k3 = 0
because its prefactor integrates to zero. For n = B > 1, we
may ignore this term even for the electric charge densities
because the corresponding nuclear wave functions we consider
obey K3|X〉 = 0. So, the electric charge density for n > 1 is

ρ = 1

2
B0 + 〈X|J 0

3 |X〉

= − n

4π2r2
sin2 ξ ξr + λ2i3

r2I3
sin4 ξ ξ 2

r

n2 + cos2 θ

3n2 + 1
(46)

= 2n

π2R3
n

√
1 − r2

R2
n

+ 105 i3

8πR3
n

n2 + cos2 θ

3n2 + 1

r2

R2
n

(
1 − r2

R2
n

)
.

(47)

For the calculation of the Coulomb energy one now has
to perform the usual multipole expansion of the Coulomb
potential [20]

1

4π |
r − 
r ′| =
∞∑
l=0

l∑
m=−l

1

2l + 1

rl
<

rl+1
>

Y ∗
lm(θ ′, φ′)Ylm(θ, φ)

(48)

[r< = min(r, r ′), r> = max(r, r ′)] and expand the charge
density into spherical harmonics

ρ(
r) =
∑
l,m

ρlm(r)Y ∗
lm(θ, φ), (49)

then the Coulomb energy can be expressed as

EC =
∞∑
l=0

l∑
m=−l

Ulm, (50)

where

Ulm = 1

2ε0

∫ ∞

0
drr−2l−2|Qlm(r)|2, (51)

and

Qlm(r) =
∫ r

0
dr ′r ′l+2ρlm(r ′), (52)

as may be checked easily. In our case, only two spherical
harmonics contribute

ρ(
r) = ρ00(r)Y00 + ρ20(r)Y20,
(53)

ρ00(r) = 4n

π
3
2 R3

n

√
1 − r2

R2
n

+ 35 i3

4
√

πR3
n

r2

R2
n

(
1 − r2

R2
n

)
,

ρ20(r) = 7
√

5

2
√

πR3
n

i3

3n2 + 1

r2

R2
n

(
1 − r2

R2
n

)
. (54)

So, finally, the Coulomb energy is EC = U00 + U20 and, after
performing the integrations, the explicit expression reads, for
n = B > 1

EC = 1√
2πε0

(
μ

λn

)1/3( 128

315π2
n2 + 245

1536
n i3

+ 805

5148
i2
3 + 7

429

i2
3

(1 + 3n2)2

)
. (55)

For the hedgehog skyrmion solution n = 1, the electric charge
density has already been calculated by the authors of Ref. [10]

ρ(
r) = 2

π2R3
1

√
1 − r2

R2
1

± 35

16πR3
1

r2

R2
1

(
1 − r2

R2
1

)
(56)

(the plus sign is for the proton and the minus sign for the
neutron). The resulting Coulomb energies are

proton : E
p
C = 1√

2πε0

(
μ

λ

)1/3( 128

315π2
+ 156625

1317888

)
,

(57)

neutron : En
C = 1√

2πε0

(
μ

λ

)1/3( 128

315π2
− 53585

1317888

)
.

(58)
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C. Isospin breaking

The Coulomb energy results of the last section would
imply that the proton is heavier than the neutron, in striking
contrast to reality. This contradiction is resolved by the fact
that isospin is not an exact symmetry of strong interactions.
On a microscopic level this follows from the mass difference
between up and down quark, but within the Skyrme model
it should result from isospin-breaking terms in the effective
pion Lagrangian, like, e.g., mass terms which lead to slightly
different masses for the charged and uncharged pions. The
collective coordinate quantization then has to be done for
this new Skyrme Lagrangian with the isospin-breaking terms
included. A detailed discussion of this issue is beyond the
scope of the present article and will be given elsewhere (for
related discussions see, e.g., Ref. [27]). Here we just take
into account the leading-order effect of the isospin breaking,
which is obvious for physical reasons. Indeed, in leading order
the isospin breaking part of the quantum Hamiltonian of the
collective coordinate quantization should just give a slightly
higher mass to each neutron (a slightly smaller mass to each
proton) and still commute with I3 (which remains a good
quantum number). The Hamiltonian obviously is HI = aII3

with the resulting energy contribution

EI = aIi3 where aI < 0. (59)

In principle, it should be possible to calculate the constant aI

from the microscopic theory, but here we shall treat it as a free
parameter.

IV. EXPLICIT BINDING ENERGY CALCULATIONS

The idea now is to calculate explicit numerical values for
the masses of nuclei from our model and to compare to the
known experimental values. For this purpose, first of all we
have to determine numerical values for the three parameters
λ, μ, and aI. Thus, we fit to the nuclear masses of the proton,
neutron, and the nucleus with magical numbers 138

56Ba, with
masses

Mp = 938.272 MeV, (60)

Mn − Mp = 1.29333 MeV, (61)

M
(138

56Ba
) = 137.894 u where u = 931.494 MeV. (62)

Further, we need the numerical values of some universal
constants,

h̄ = 197.327 MeVfm, (63)

ε0 = 1

e
8.8542 · 10−21 1

MeVfm
, (64)

e = 1.60218 · 10−19. (65)

The fit then leads to the parameter values

λμ = 48.9902 MeV,

(
μ

λ

) 1
3

= 0.604327 fm−1,

(66)
aI = −1.68593 MeV.

With these values, we now may determine the masses (energies
EX) of many more nuclei where

EX = Esol + Erot + EC + EI. (67)

The main contribution to nuclear masses, however, is well
known to stem from the masses of the constituent protons
and neutrons, so it is more instructive to determine (and plot),
instead, the nuclear binding energies

EB,X = ZEp + NEn − EX, (68)

i.e., the differences between the masses of the constituents and
the actual nuclei. We remark that the isospin-breaking term
aIi3 does not contribute directly to the binding energies (it
cancels out). It contributes, of course, indirectly because the
fitted values of the parameters λ and μ depend on it.

Now we slightly change notation to

i3 = 1
2 (Z − N ) , n = B ≡ A = Z + N, (69)

where A is the atomic weight number of nuclear physics, then
the binding energy for a given proton number Z, atomic weight
number A, and spin j may be expressed as

EB,X(A,Z, j )

= a1A + a2Z − a3A
5/3 − a4A

2/3Z − a5A
−1/3Z2

− a6
A1/3

1 + 3A2
(A − 2Z) − a7

A1/3

1 + 3A2
(A − 2Z)2

− a8
A−1/3

(1 + 3A2)2
(A − 2Z)2 − a9A

−5/3j (j + 1), (70)

where

a1 = 10.0503 MeV, a2 = 0.400307 MeV,

a3 = 1.26027 · 10−3 MeV, a4 = 0.100077 MeV,

a5 = 0.384881 MeV, a6 = 26.7974 MeV, (71)

a7 = 13.3987 MeV, a8 = 0.0100404 MeV,

a9 = 13.3987 MeV.

Here, a1 receives contributions from the classical soliton
energy of the nucleus and from the masses of protons and
neutrons, a2 is nonzero because of the different Coulomb
energies of proton and neutron, whereas a3–a5 and a8 stem
from the Coulomb energy of the nucleus. Further, a6 and
a7 come from the isorotational excitation, whereas a9 stems
from the spin excitation. We remind that this expression is
derived under the assumption that the isospin excitation takes
its minimum possible value, i.e., i = |i3|, therefore it should be
compared to the nucleus of the lowest-energy (highest binding
energy) compatible with the quantum numbers A, Z, and j .

For a comparison to the experimental values we now follow
the strategy of the authors of Ref. [20]. That is to say, for
each fixed value of the atomic weight number A we choose
the values of Z and j corresponding to the most abundant
nucleus. For the resulting nuclei we then compare the binding
energy per atomic weight number EB/A to its experimental
value [28]. The result is shown in Fig. 1.

We find an excellent agreement for sufficiently large nuclei,
whereas for small nuclei our model overestimates the binding
energies.
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FIG. 1. (Color online) Binding energies per nucleon in MeV.
The experimental values are described by the solid line whereas the
diamonds represent the results from our model.

Finally, we want to compare our results with the ones from
the semi-empirical mass formula (Weizsäcker formula) [29]

EW
B (A,Z) = aVA − aSA

2/3 − aCZ(Z − 1)A−1/3

− aA
(A − 2Z)2

A
+ δ(A,Z), (72)

where

δ(n,Z) =
⎧⎨⎩

aPA
−3/4 N and Z even,

0 A odd,

−aPA
−3/4 N and Z odd,

aV = 15.5 MeV, aS = 16.8 MeV, aC = 0.72 MeV,

aA = 23 MeV, aP = 34 MeV.

Here, the parameters aV, and so on are empirical constants,
and the corresponding terms have the following meaning. aV

is the volume term; aS is the surface term. These two terms are
motivated by the liquid drop model (binding energy contribu-
tions for a classical liquid drop). aC is the Coulomb energy.
It is assumed that only the protons contribute to the Coulomb
energy. aA is the asymmetry term. This term is motivated by
the Pauli principle, taking into account that the addition of
further fermions of the same species requires them to have
higher (kinetic) energy because the lowest-energy states are
already occupied. aP is the pairing term. When comparing the
Weizsäcker formula to our binding energy expression (70),
we find two terms with a direct correspondence, namely the
volume term aV ∼ a1, and the Coulomb term aC ∼ a5. The
term a7 has some similarity with the asymmetry term aA in that
both are proportional to (A − 2Z)2, but the term a7 is much
smaller for large baryon number A = B, ∼A−5/3(A − 2Z)2

than the asymmetry term ∼A−1(A − 2Z)2. This behavior
stems from the isospin moment of inertia I1 ∼ (3B2 + 1)B1/3

and is related to the axially symmetric ansatz (12) for the
BPS skyrmions. It should be possible to improve this result
by using other solitons of the BPS Skyrme model with
different symmetries, which have to result from and improved
variational problem. We also comment on this issue in the

0 50 100 150 200
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2

4

6

8

10
EB A

FIG. 2. (Color online) Binding energy per nucleon in MeV
from our model (diamonds) and Weizsäcker’s formula (triangles)
compared to the experimental values (solid line).

conclusion. We remark that the relation between the isospin
dependent quantum corrections of the Skyrme model and
the asymmetry term of the semi-empirical mass formula has
already been investigated by the authors of Ref. [30] for
nuclei with atomic weight numbers up to about A ∼ 30. The
remaining terms in our expression for the binding energies
have no obvious counterpart in the Weizsäcker formula, and
their dependence on A and Z is different.

The result of a comparison of both Weizsäcker and our bind-
ing energies with the experimental values is shown in Fig. 2.
We may appreciate the following main differences between the
results of the BPS Skyrme model and the Weizsäcker formula.
First of all, the Weizsäcker formula describes very well also the
binding energies of small nuclei. The main term responsible
for this good behavior is the surface term, which contributes
to the binding energy per baryon number like −aSA

− 1
3 with

the appreciable value aS ∼ 17 MeV, significantly reducing the
binding energies per A for small values of A. Second, the BPS
Skyrme model result shows some wiggles, i.e., rather sudden
jumps for nearby nuclei even for large A, see Fig. 3. It is easy
to understand the origin of these wiggles, which stem from

150 155 160 165 170
A7.0

7.5

8.0

8.5

9.0
EB A

FIG. 3. (Color online) Zoom of Fig. 2 for baryon numbers from
148 to 170.
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the Coulomb energy contribution. Indeed, if we add a neutron
to a given nucleus, then this has two effects on the Coulomb
contribution to the binding energy. The Coulomb energy goes
up because the neutron has a (small) nonzero charge density,
and the Coulomb energy goes down because the radius of
the nucleus increases. It turns out that the second effect is
much stronger, so the Coulomb energy decreases (the binding
energy increases) when a neutron is added. So, if we go from
a nucleus with atomic weight number A to another nucleus
with A + 2 by adding two neutrons, the binding energy goes
up. However, if we go from A to A + 2 by adding a proton
and a neutron, the binding energy goes down. Interestingly,
this effect is not seen in the Weizsäcker formula, although
the contribution from the Coulomb term alone is even more
pronounced (the Coulomb energy of the neutron is zero). The
reason is that the Coulomb contribution to these jumps is
balanced by the asymmetry term. Indeed, adding a neutron
to a nucleus with neutron excess (i.e., any heavy nucleus)
increases the asymmetry energy, compensating the decrease
in Coulomb energy.

V. DISCUSSION

In this article we studied the possibility to describe nuclear
binding energies within our BPS Skyrme model. Let us
emphasize, again, that there are strong theoretical arguments in
favor of the assumption that this model is a good starting point
for the description of some properties of nuclei. First of all,
the classical Lagrangian of the BPS Skyrme model consists of
two terms which both incorporate some collective properties
of the underlying theory of strong interactions. The sextic
term is just the square of the baryon current density with an
obvious relation to the collective topological excitations of the
underlying microscopic fields. The potential term, however,
is supposed to describe the chiral symmetry breaking in the
(pionic) effective field theory description. This point of view is
further strengthened by the BPS property of the BPS Skyrme
model, which provides a natural explanation of the small
binding energies of physical nuclei, and by the symmetries of
the model, which are just the symmetries of an incompressible
ideal liquid, explaining the viability of the nuclear liquid drop
model. To keep calculations transparent, we just introduced the
necessary minimum amount of structure in our investigations.
Thus, we started from the classical BPS soliton solutions
of a certain (axially symmetric) ansatz and then included
the following additional features. (i) The first of these is
the collective coordinate quantization of spin and isospin.
This is absolutely necessary because both spin and isospin
are relevant quantum numbers of nuclei and nucleons and,
therefore, indispensable for their description. (ii) Second, the
Coulomb energies of the solitons are discussed. The Coulomb
energy is expected to contribute significantly to the binding
energies of higher nuclei because of its fast growth with the
nuclear charge Z. (iii) Third is an explicit breaking of the
isospin symmetry that takes into account the mass difference
between proton and neutron. The result of our investigation
is that this natural, “minimal” version of the BPS Skyrme
model already provides very good results for the description of
nuclear binding energies for higher nuclei. Let us emphasize

that the model contains just three fit parameters, and all of
them are completely natural elements of the same underlying
field theoretical description. The result that the model provides
more accurate results for large A is, in fact, to be expected
because a collective description in terms of a field theoretic
version of the “nuclear liquid droplet” will be more adequate
for higher nuclei. For small nuclei, single-particle properties
or propagating pionic degrees of freedom should be more
important, and their treatment will require an extension of the
model, i.e., the inclusion of more terms into the Lagrangian
and the study of additional effects.

We remind that in the course of our calculations we had
to make certain choices at the beginning, in that we chose
the standard Skyrme potential and fixed the symmetries of
our soliton solutions to the axially symmetric ansatz (12).
These choices do not influence the classical soliton energies
(these are fitted to nucelar masses in any case), but they
obviously do influence the spin and isospin excitations (the
moments of inertia) and the Coulomb energies. Here our
point of view is that for the rather generic investigations on
the viability of the BPS Skyrme model for the description
of nuclear binding energies presented in this article, these
differences are not too important. That is to say, even if
physical nuclei do not correspond to the axially symmetric
field configurations assumed here, the resulting excitation and
Coulomb energies will not be too different as long as the
deviation from the axial symmetry (i.e., from a spherically
symmetric baryonic density) is not too pronounced. For
more detailed investigations on nuclear spectroscopy (i.e.,
on possible excitated states of a given nucleus), however,
the knowledge of the true symmetries of the corresponding
skyrmion is important. We briefly comment on this issue
below.

Before continuing our general discussion, we want to
explain how our results relate to the ones of the authors
of Ref. [20], where similar detailed computations were first
performed. Indeed, the authors of Ref. [20] also started from
the BPS Skyrme model and their calculations were in many
respects similar to ours. For example, the multipole treatment
of the Coulomb energy or the explicit isospin breaking are
equivalent. There exist, however, several important differ-
ences. First of all, their expression for the isospin current
density operator is completely different from our expression
(39) in that it depends only on the body-fixed isospin angular
momenta and not on the collective coordinates that, we believe,
is not correct. As a consequence, their results for the Coulomb
energies are different. A second difference is that the authors
of Ref. [20] also included contributions from the terms L2

(sigma model term) and L4 (Skyrme term) to the classical
soliton energies. While we completely agree that an improved
treatment requires the inclusion of these terms, we do not
agree with the specific way this was done in Ref. [20]. The
authors included these contributions in a perturbative fashion
by inserting the soliton solutions of the L06 model into the
additional terms L2 and L4. A first subtlety of this procedure
is related to the choice of potential. The standard (pion
mass) quadratic Skyrme potential (9) leads to compact soliton
solutions, and these solutions produce singular expressions
when inserted into the energy functional corresponding to L2.
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The standard Skyrme potential is, therefore, not adequate for
this perturbative calculation. The authors of Ref. [20] were,
of course, fully aware of this problem and choose different
potentials which lead to noncompact solitons. Now their
procedure simply consisted in inserting the soliton solutions of
the restricted model L06 resulting from the axially symmetric
ansatz (12) into the energy functionals corresponding to L2

and L4. The problem is that the resulting perturbative energy
contributions grow quite fast with the atomic weight number
n = B = A. Specifically, a contribution from L2 grows like
A

7
3 . For the authors of Ref. [20], this was, in fact, a welcome

result for the following reason. As is obvious from Fig. 1,
the binding energy per atomic weight number A should go
down for large values of A. The physical expectation is that
this decrease is largely due to an increase of the Coulomb
energy per atomic weight number for large nuclei and this
is precisely what we find in our calculations. The authors of
Ref. [20] with their different results for the Coulomb energies,
however, found that only about one-half of this decrease
comes from the Coulomb energy, whereas the other half comes
from the increase of the perturbative energy contributions per
atomic weight number A for large A. This fast growth of the
perturbative energies with the baryon number is, however, not
acceptable from a theoretical point of view. Indeed, although
perturbative, these contributions are part of the classical soliton
energies, and soliton energies can never grow faster than linear
in the topological degree because otherwise the “solitons”
would be completely unstable already at the classical level.
This does not imply that the perturbative treatment per se is
not viable, it just means that the axially symmetric ansatz
(12) is not the right choice for a perturbative calculation. We
remind that due to the large (in fact, infinite-dimensional)
symmetry group of the BPS Skyrme model, there exist
infinitely many more BPS solutions with the same energy
with rather arbitrary shapes. The proper procedure then should
consist in minimizing the perturbative energy contributions
over all these infinitely many BPS solutions and in choosing
the corresponding minimizer in each topological sector [31].
Third, we restrict our discussion to nuclei with even baryon
number because, in our opinion, the Finkelstein-Rubinstein
constraints for skyrmions with axial symmetry require this
restriction, whereas there was no such restriction in Ref. [20].

Altogether, we find that already a rather “minimal” ver-
sion of the BPS Skyrme model allows for a very accurate
description of nuclear binding energies. Still, these results
just constitute some first steps of what might quite probably
become a rather extended field of investigation. One first gen-
eralization simply consists in considering different potentials
and in studying their influence on the physical properties of the
resulting “nuclei.” As emphasized already, without the sigma-
model term, there is no direct relation of the standard Skyrme
potential to pion masses and, therefore, no obvious reason
to prefer it over other potentials. In addition, as mentioned
in the previous paragraph, there exists the problem that with
the standard Skyrme potential a perturbative inclusion of the
sigma-model term is not possible. This seems to constitute
a kind of contradiction because with the sigma-model term
present, the standard Skyrme potential does have the pion
mass interpretation and its presence is required on physical

grounds. A possible resolution is provided by the following
proposal. One starts with a BPS submodel

LBPS = L6 + L̃0, (73)

where the potential L̃0 is different from the standard Skyrme
potential and should be motivated by some physical or
phenomenological requirements (e.g., reproducing the rather
flat baryon density profiles of physical nuclei). Then one
includes both the sigma-model term L2 and the standard
Skyrme potential (9) at the same level (e.g., perturbatively)

L = LBPS + ε(L2 + L0). (74)

This has the additional advantage that the relative strengths of
the sigma model and Skyrme potential terms may be fixed to
their physical value (i.e., reproducing the physical pion mass)
without interfering with the BPS property of the remaining
terms. The results of the present article correspond in a certain
sense to the limit ε → 0, however, with the choice L̃0 = L0.
Going beyond this limit in a perturbative fashion requires, as
already briefly mentioned, the determination of the minimizers
of the sigma model term among all possible solutions (i.e.,
among all VPD orbits of a given solution) of the BPS submodel
in each topological sector [31]. Due to the infinitely many
symmetries of the BPS Skyrme model and the complicated
geometry of the VPDs, this minimization constitutes a rather
nontrivial and interesting variational problem on its own,
which will require a dedicated research program and the exper-
tise of mathematicians. The semiclassical quantization of spin
and isospin and the inclusion of both the Coulomb energy and
the explicit isospin breaking should then be done equivalently
to the present article, but using the new classical solutions
(the minimizers of the sigma model term). Physically, the
inclusion of the quadratic (sigma model) term and the use of its
minimizer as the correct classical soliton solution will have the
following effects. First of all, it will lead to a small change in
the total classical soliton energy but, as explained already in the
last paragraph of Sec. II, in leading order these contributions to
the classical soliton energies are equivalent to a slight change
in the (fitted) values of the coupling constants and, therefore,
immaterial. Second, and much more importantly, these mini-
mizing solutions will lead to new results for the moments of
inertia and for the corresponding isospin-dependent contribu-
tions to the nuclear binding energies. They might, for instance,
allow to reproduce the correct form of the asymmetry term
in the semi-empirical mass formula. Further, these solutions
allow to determine the correct symmetries of the corresponding
solitons. The symmetries are so important because they, in
turn, determine the Finkelstein-Rubinstein constraints that the
corresponding nuclear wave functions have to obey, and the
Finkelstein-Rubinstein constraints determine the allowed and
forbidden spin and isospin excitations and are, therefore, of
utmost importance for the application of skyrmions to nuclear
spectroscopy [7]. This problem of a correct inclusion of the
sigma-model term into the BPS Skyrme model for an adequate
description of physical nuclei is under current investigation.

A further research direction is related to the possibility to
quantize additional degrees of freedom in the BPS Skyrme
model. Some first steps in this direction have been performed
by the authors of Ref. [32], in the context of low-energy hadron
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physics rather than nuclear physics, but a much more detailed
investigation is certainly required.

We conclude that we found strong evidence for the claim
that our restricted BPS Skyrme model is a most adequate
starting point to fully implement the original program of
Skyrme of a unified field theoretic description, including
geometrical and topological elements, of low-energy strong
interaction physics. We believe it a worthwhile enterprise to
reanalyze physical systems where Skyrme theory has already
been used successfully, departing from this new starting point,
along the lines indicated in the previous paragraph. Such a new
analysis might both complement existing calculations and lead
to a significant quantitative improvement of existing results in
nuclear and hadron physics. Besides the gratifying conceptual
aspects of the proposal, which explain in a simple way the
symmetries and dynamics, it offers promising progress due
to the analytical and exact results it enables, both in basic
understanding and useful phenomenology.
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APPENDIX A

The auxiliary matrices for the Weyl-ordered isospin current
density operator (39) are

Aij =

⎛⎜⎝ n2 cos2(nφ) + cos2 θ sin2(nφ) 1
4 [1 − 2n2 + cos(2θ )] sin(2nφ) sin θ cos θ sin(nφ)

1
4 [1 − 2n2 + cos(2θ )] sin(2nφ) cos2 θ cos2(nφ) + n2 sin2(nφ) sin θ cos θ cos(nφ)

cos θ sin θ sin(nφ) sin θ cos θ cos(nφ) sin2 θ

⎞⎟⎠ . (A1)

Bij = n

⎛⎜⎝ −n cos φ cos(nφ) − cos2 θ sin φ sin(nφ) n cos(nφ) sin φ − cos2 θ cos φ sin(nφ) − sin θ cos θ sin(nφ)

− cos2 θ sin φ cos(nφ) + n cos φ sin(nφ) − cos2 θ cos φ cos(nφ) − n sin φ sin(nφ) · · · − sin θ cos θ cos(nφ)

− sin θ cos θ sin φ − sin θ cos θ cos φ − sin2 θ

⎞⎟⎠
(A2)

APPENDIX B

Here we demonstrate that the nondiagonal matrix elements
of the electric charge density vanish. We prefer to work with
Euler angles, where

K1 = −i

(
cos γ

sin β

∂

∂α
− sin γ

∂

∂β
− cot β cos γ

∂

∂γ

)
,

K2 = −i

(
− sin γ

sin β

∂

∂α
− cos γ

∂

∂β
+ cot β sin γ

∂

∂γ

)
, (B1)

K3 = i
∂

∂γ
,

for the body-fixed isospin operator. Further,

R1 = − cos γ sin β, R2 = sin γ sin β, R3 = cos β,

(B2)

and, as a consequence,

[Ki,Rj ] = iεijkRk. (B3)

Both the spin and the isospin factors of the nuclear wave
functions are related to the (complex conjugates of the) Wigner
D matrices. We are interested only in the isospin part, where

Wigner’s D matrices are given by

D
(i)
i3k3

(α, β, γ ) = e−ii3αd
(i)
i3k3

(β)e−ik3γ (B4)

(see Ref. [33] for details, and for the definition of the d
(i)
i3k3

). If
we make the following choice for the (isospin) nuclear wave
functions

|ii3k3〉 = (−1)k3D
(i)∗
i3,−k3

, (B5)

then the action of 
K on the wave functions is exactly
equivalent to the action for the standard representation of
angular momentum

K3|ii3k3〉 = k3|ii3k3〉 ,
(B6)

(K1 ± iK2)|ii3k3〉 =
√

i(i + 1) − k3(k3 ± 1)|ii3k3 ± 1〉

(remember that 
K in our conventions obeys the standard
angular momentum algebra and is related to the space-fixed
isospin by minus a rotation). Further, in the cases of interest
we always have k3 = 0, where the D matrix simplifies to

D
(i)
i30(α, β, γ ) =

√
4π

2i + 1
Y ∗

ii3
(β, α) (B7)
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and |ii30〉 = D
(i)∗
i30 . For reasons of symmetry, it is sufficient

to check the following three matrix elements (we suppress
k3 = 0) 〈ii3|K1R2 + R2K1|ii3〉, 〈ii3|K1R3 + R3K1|ii3〉, and
〈ii3|K3R1 + R1K3|ii3〉. Here, the first case is the most
difficult one,

〈ii3|K1R2 + R2K1|ii3〉 = 〈ii3|2R2K1 + [K1, R2]|ii3〉. (B8)

Using [K1, R2] = iR3 = i
√

4π/3Y10, we find for the second,
commutator term

〈ii3|[K1, R2]|ii3〉 = (4π )
3
2 i√

3(2i + 1)

∫ 2π

0
dα

∫ 2π

0
dγ

×
∫ π

0
sin βdβY ∗

ii3
Y10Yii3 = 0. (B9)

The operator K1 in the first term contains derivatives w.r.t.
α, β, and γ . Here the γ derivative does not contribute
because Yii3 (β, α) does not depend on it. The α derivative
does not contribute because it is multiplied by sin γ cos γ ,
which integrates to zero. The remaining β derivative

leads to

〈ii3|2R2K1|ii3〉 = −8iπ

2i + 1

∫ 2π

0
dα

∫ 2π

0
dγ

×
∫ π

0
sin βdβ sin2 γ Y ∗

ii3
sin β∂βYii3 = 0.

(B10)

The easiest way to see that this integral is zero, indeed, is
by expressing the Yii3 by the associated Legendre functions
Yii3 (β, α) = cii3e

ii3αPii3 (t) where t = cos β and sin β∂β =
−(1 − t2)∂t , and by using the recurrence formula

(1 − t2)∂tPlm(t) = 1

2l + 1
[(l + 1)(l + m)Pl−1,m(t)

+ l(l − m + 1)Pl+1,m(t)]. (B11)

The result then follows from the orthogonality relations of the
associated Legendre functions.

In the remaining matrix elements 〈ii3|K1R3 + R3K1|ii3〉,
and so on always one operator index is equal to 3, whereas
the other one takes the values 1 or 2. As a consequence, there
always appears precisely one factor of sin γ or cos γ in the
resulting integrand, which integrates to zero.
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