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Background: Coupled-cluster (CC) theory is a widely used many-body method for studying strongly correlated
many-fermion systems. It allows for systematic inclusions of complicated many-body correlations beyond a
mean field. Recent applications to finite nuclei have shown that first-principles approaches like CC theory
can be extended to studies of medium-heavy nuclei, with excellent agreement with experiment. However, CC
calculations of properties of infinite nuclear matter are rather few and date back more than 30 yr.
Purpose: The aim of this work is thus to develop the relevant formalism for performing CC calculations in nuclear
matter and neutron-star matter, including thereby important correlations to infinite order in the interaction and
testing modern nuclear forces based on chiral effective field theory. Our formalism includes also the exact
treatment of the so-called Pauli operator in a partial-wave expansion of the equation of state.
Methods: Nuclear- and neutron-matter calculations are done using a coupled particle-particle and hole-hole
ladder approximation. The coupled ladder equations are derived as an approximation of CC theory, leaving out
particle-hole and nonlinear diagrams from the CC doubles amplitude equation. This study is a first step toward
CC calculations for nuclear and neutron matter.
Results: We present results for both symmetric nuclear matter and pure neutron matter employing state-of-the-
art nucleon-nucleon interactions based on chiral effective field theory. We employ also the newly optimized
chiral interaction [Ekström et al., Phys. Rev. Lett. 110, 192502 (2013)] to study infinite nuclear matter. The
ladder approximation method and corresponding results are compared with conventional Brueckner-Hartree-Fock
theory. The ladder approximation is derived and studied using both exact and angular-averaged Pauli exclusion
operators, with angular-averaged input momenta for the single-particle potentials in all calculations. The inclusion
of an exact treatment of the Pauli operators in a partial-wave expansion yields corrections of the order of 1.7%–2%
of the total energy in symmetric nuclear matter. Similarly, the inclusion of both hole-hole and particle-particle
ladders result in corrections of the order 0.7%–2% compared to the approximation with only particle-particle
ladders. Including these effects, we get at most almost a 6% difference between our CC calculation and the
standard Brueckner-Hartree-Fock approach.
Conclusions: We have performed CC calculations of symmetric nuclear matter and pure neutron matter including
particle-particle and hole-hole diagrams to infinite order using an exact Pauli operator and angular-averaged
single-particle energies. The contributions from hole-hole diagrams and exact Pauli operators add important
changes to the final energies per particle.
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I. INTRODUCTION

Nuclear matter is defined as an isotropic system consisting
of infinitely many nucleons which interact only by nuclear
forces. The Schrödinger equation of this system has been
solved approximately using many different ab initio many-
body methods [1–8]. As an example, diagrammatic partial
summations have been derived from many-body perturbation
theory to calculate the binding energy. One approach belonging
to this family of methods is the Brueckner-Goldstone (BG)
expansion [9], which is a Goldstone expansion where the
interaction has been replaced by a well-behaved reaction
matrix [10]. The Brueckner-Hartree-Fock (BHF) scheme
[9,11], which is one of the standard methods of nuclear-matter
theory [6,12–16], is a first-order approximation in BG theory.

Unfortunately, the BG expansion does not converge very
well when using the number of reaction matrices as the
order parameter [17]. A more appropriate way to include

higher-order correlations is the hole-line expansion [1], where
the perturbation truncation is determined by the number of in-
dependent hole lines in the the BG diagrams. The two-hole-line
approximation is then equivalent to the BHF method. Calcula-
tions including up to three-hole-line diagrams indicate that the
hole-line expansion converges [13,18]. Despite encouraging
results for the hole-line expansion, it would still be desirable
to get a deeper understanding of the accuracy of the many-body
methods applied to nuclear matter. Better knowledge about the
convergence of the many-body methods in nuclear matter is
also necessary to validate the quality of calculations including
three- and many-body interactions [19–25].

An approach that is related to the above-mentioned pertur-
bative techniques is the coupled-cluster (CC) method [26–31].
As perturbation theory, CC theory gives a nonvariational and
size-extensive method. However, in contrast to many-body per-
turbation theory, CC theory sums to infinite order, depending
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on the level of truncation, selected many-body contributions.
It is thus a nonperturbative method. The CC truncation is
physical in the sense that a so-called Tn truncation includes
all possible correlations arising from sets of n-particle-n-hole
clusters [32–34]. During the last one and a half decades, CC
theory has been successfully applied to structure calculations
of finite nuclei [35–43]. Inspired by the success of the CC
approach in finite nuclei, we hope that CC theory could also
provide accurate results for infinite nuclear matter.

Already in the early 1980s, Day and Zabolitzky performed
CC calculations for nuclear matter [2] using the Bochum
truncation [44,45]. The theory of nuclear interactions has
evolved a lot since that time (see for example Ref. [46]),
with the construction of high-precision potentials exhibiting
a χ2 per datum close to one with respect to nucleon-nucleon
scattering data [46]. Later, two- and three-body interactions
have been developed based on effective field theory (EFT),
which is derived using symmetries arising from quantum chro-
modynamics (QCD) [47]. In addition, soft low-momentum
interactions based on renormalization group theory have been
introduced [48]. It seems therefore necessary to perform new
CC calculations for nuclear matter with modern two- and
three-body interactions.

In the Bochum truncation scheme [44], the exact CC
amplitude equations are approximated by setting all so-called
reduced n-particle subsystem amplitudes χn, with n larger
than a chosen truncation level, to zero. The justification for
using this truncation is that all subsystem amplitudes χn

become small inside a radius where the interaction may be
very strong [44]. This truncation scheme therefore ensures
that the contribution from particles interacting strongly at
short distances becomes small. In their CC calculations for
nuclear matter, Day and Zabolitzky included the two- and
three-body subsystem amplitudes χ2 and χ3, and incorporated
also parts of the four-body amplitude χ4 [2,18]. Given the
computing capacity in the early 1980s, it was necessary
to do further approximations in the CC equations. As is
explained in Refs. [2,18], the authors used angular-averaged
Pauli exclusion operators, other averages over angles, and
first-order Taylor expansions to approximate the dependence
of the single-particle potential on the G matrix. In addition,
they replaced some diagrams with estimates, which were
simpler to calculate than the original diagrams [2]. Before
this study, Manzke [49] did CC calculations for nuclear matter
in the two-body subsystem approximation.

Coupled-cluster theory is widely used within the quantum
chemistry community [31]. A commonly used CC truncation
scheme in quantum chemistry is to set all cluster amplitudes
in the exponential CC wave function ansatz beyond a given
excitation level to zero (see Sec. II A and Refs. [32,33]). These
approximations are called, for example, CC doubles (CCD),
CC singles-doubles (CCSD), etc. [31], or, alternatively, SUBn
approximations [50]. This truncation scheme has been applied
in studies of finite nuclei [37,38,40–43], mainly using soft
interactions. Our aim is to apply the same CC method to
studies of the equation of state of symmetric nuclear matter
and neutron matter.

The SUBn approximation includes long-range contribu-
tions, such as the forward and other ring diagrams, already

at the CCD or SUB2 level [50,51]. In contrast, these
correlations are included in the Bochum scheme in the
subsystem amplitudes χ3 and χ4 [44]. Another difference
between the two CC truncation schemes is the treatment
of the single-particle state potentials in the energy denomi-
nator. In the Bochum CC method, the energy denominator
contains single-hole state potentials with summations of
particle-particle ladder diagrams to infinite order, whereas
the single-particle state potentials are zero in the energy
denominator. Instead, the single-particle state potential terms
are part of the χ3 and χ4 subsystem amplitudes [44]. In
contrast, in the SUBn approximation, which we employ in
this work, the energy denominator contains single-particle
potentials at the Hartree-Fock level for both particles and
holes.

Previously, Freeman [52] has studied the two-dimensional
electron gas including particle-particle ladder diagrams from
the CCD approximation. In a similar way, as a first step
toward CC calculations for nuclear matter, we here include
particle-particle and hole-hole correlations at the two-particle-
two-hole, or T2, level. In this scheme, only the linear ladder
diagrams have been included in the CC T2 amplitude equation,
whereas the linear particle-hole diagrams and all nonlinear
diagrams have been neglected. When leaving out certain
diagrams of the T2 amplitude equation, our scheme may be
considered as strictly not a CC approximation. However, the
method shows a proof of principle of an iterative CC numerical
scheme, where particle-particle and hole-hole ladder diagrams
are coupled and summed to infinite order. The coupled
ladder approximation is similar to the Bochum CC method
including only the two-body subsystem amplitude χ2, but
the single-particle potentials are different. It ought also to be
emphasized that the calculations of Day and Zabolitzky [2]
included a larger set of diagrams, and thereby correlations,
than the approximation used in this work.

According to the hole-line expansion calculations by
Song et al., the contribution of particle-particle diagrams is
considerably larger than that of particle-hole diagrams [13].
Still, the contribution of particle-hole diagrams is clearly
non-negligible in the hole-line expansion [13]. The results of
Ref. [53] show that ring (particle-hole) diagrams are significant
for the binding energy of nuclear matter. The aim is therefore
to include all T2 diagrams in a future CC calculation to get a
proper CC approximation at the T2 level.

Summation of particle-particle and hole-hole ladder di-
agrams is also a common approximation in self-consistent
Green’s function (SCGF) theory [4]. The SCGF ladder ap-
proximation has been extensively applied to studies of nuclear
and neutron matter [54–58], lately including either three-
body interactions or density-dependent two-body operators
arising from three-body interactions [8,19]. In the SCGF
ladder approximation, the energy denominator contains self-
consistently solved complete off-shell self-energies including
both particle-particle and hole-hole ladder diagrams. As the
SCGF method, the CC ladder approximation also treats
particle and hole interactions symmetrically, but from the
definition of the CC equations it follows that the single-particle
potentials occur in the energy denominator only up to the
Hartree-Fock level.
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Another similar method is the particle-particle and hole-
hole ring diagram approximation [59–62], where the particle-
particle and hole-hole diagrams are derived from Green’s
function theory, and a momentum model space is used to
avoid poles in the energy denominator. The binding energy
obtained in this approximation depends, however, on the
model space momentum cutoff [61]. In the particle-particle
and hole-hole ring diagram method the authors employed
the standard angular-average approximations to decrease the
computational complexity of the calculations [59].

In the present work, we analyze the partial-wave expansion
of the equation of state using an exact treatment of the inter-
mediate states, avoiding thereby the standard angle-average
approximation of Pauli exclusion operators [12]. Finally, we
perform calculations of the above systems using modern
nucleon-nucleon interactions based on chiral perturbation
theory to next-to-next-to-leading order (NNLO) [63] and
next-to-next-to-next-to-leading order (N3LO) [64].

After these introductory remarks, we present our formalism
in the next three sections, followed subsequently by our results
and discussion thereof in Sec. IV. Concluding remarks and
perspectives are presented in Sec. V.

II. FORMALISM: MANY-BODY METHODS

The general form of the Hamiltonian operator of infinite
nuclear matter is

Ĥ = K̂ + V̂NN + V̂NNN + · · ·

= − h̄2

2M

A∑
i=1

∇2
i +

A∑
i<j

v̂NN (ri , rj )

+
A∑

i<j<k

v̂NNN (ri , rj , rk) + · · · , (1)

where A is the number of nucleons, K̂ is the kinetic energy
operator, V̂NN is a two-particle interaction operator, V̂NNN is
a three-particle interaction operator, M is the nucleon mass,
and rl is the position vector of particle l. In this paper, we
neglect n-body interactions for n larger than two and define
the Hamiltonian operator as

Ĥ = K̂ + V̂ = − h̄2

2M

A∑
i=1

∇2
i +

A∑
i<j

v̂(rij ),

where v̂ is a two-body interaction and rij = |ri − rj |.
In our calculations, we use the nucleon-nucleon interac-

tion of Ref. [64]. This interaction model is given by an
N3LO approximation of chiral perturbation theory. Nuclear
interactions based on EFT have the advantage that two-
and many-body interactions can be derived in a mutually
consistent way [47]. Furthermore, we present also results
obtained with a recent nucleon-nucleon interaction at order
NNLO in chiral perturbation theory. This interaction results
from an optimization-based reparametrization to the available
body of experimental data using the model-based, derivative-
free optimization algorithm POUNDERS developed at Argonne
National Laboratory [65]. The resulting new chiral interaction,

labeled NNLOopt hereafter, exhibits a χ2 per datum close to
one for laboratory scattering energies below approximately
125 MeV in the two-body proton-proton and neutron-proton
channels; see Ref. [63] for further details. In the A = 3 and
A = 4 nucleon systems, this interaction gives binding energies
that differ by 20 and 45 keV from the experimental values,
respectively. Thus, the contributions of three-nucleon forces
appear smaller than for previous parametrizations of chiral
interactions.

We model infinite nuclear matter as a system of A
interacting nucleons confined by a cubic box potential. The
cubic box boundary condition together with the free nucleon
Hamiltonian equation

− h̄2

2M
∇2ϕ(r) = εϕ(r),

gives the plane-wave eigenfunctions ϕk(r) = eik·r/
√

� and
eigenenergies εk = h̄2k2/(2M). Here h̄k is the momentum, r
is the position coordinate, and � is the volume of the box. We
therefore use plane waves as our single-particle basis, from
which the Slater determinants are constructed.

A. Coupled ladder approximation

In this section, the coupled ladder equations are derived as
an approximation of the CC method. The CC formalism is
presented in a momentum basis. In the general expressions,
we omit spin and isospin degrees of freedom.

In CC theory, the A-fermion state vector is expressed using
the exponential ansatz

|�〉 ≡ eT̂ |�0〉 ,

where |�0〉 is the uncorrelated free Fermi vacuum, and the
cluster operator T̂ is defined as the sum

T̂ =
A∑

m=1

T̂m,

of m-particle m-hole excitation operators

T̂m =
(

1

m!

)2 ∑
ki1

,...,kim
ka1 ,...,kam

t
ka1 ,...,kam

ki1 ,...,kim
c
†
ka1

· · · c†kam
ckim

· · · cki1
. (2)

We label single-particle states occupied in the Fermi vacuum
determinant �0 (holes) by i, j, k, . . . and excited states of the
same single-particle basis (particles) by a, b, c, and so on.
Indices p, q, r, . . . are used to label single-particle states that
may be either holes or particles. The operators c† and c are
fermion creation and annihilation operators, respectively.

Given that the single-particle basis is complete, the A-
particle Schrödinger equation can be written equivalently as
the CC energy equation

〈�0|e−T̂ Ĥ eT̂ |�0〉 = E, (3)

where the cluster operator T̂ is obtained from the correspond-
ing set of CC amplitude equations〈

�
ka1 ka2 ...kak

kii
ki2 ...kik

∣∣e−T̂ Ĥ eT̂ |�0〉 = 0 (4)
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for k = 1, 2, 3, . . . , A. Here we have used the notation∣∣�ka1 ka2 ...kak

ki1 ki2 ...kik

〉 ≡ c
†
ka1

c
†
ka2

· · · c†kak
ckik

· · · cki2
cki1

|�0〉, (5)

which means that the bra vector in Eq. (4) is a k-particle k-hole
excitation of the Fermi vacuum state.

In almost all practical calculations, except for some very
simple model systems, it is necessary to do a truncation both in
the cluster operator T̂ and in the single-particle basis. To derive
the ladder expansion, we need only the approximation T̂ ≈ T̂2,
which is commonly called the CCD approximation. In fact, the
T̂1 operator is found to vanish for infinite nuclear and neutron
matter [44]. By symmetry considerations, the total momentum
of the system of nucleons is zero. Both the kinetic energy
operator K̂ and the total Hamiltonian Ĥ are assumed to be
diagonal in total momentum K. Hence, both the reference state
�0 and the correlated ground state � must be eigenfunctions of
the operator K̂ with the corresponding eigenvalue K = 0 [10].

Using abstract vectors and a momentum single-particle
basis, the CC ansatz can be written as

|�CC〉 = |�0〉 +
∑
kika

t
ka

ki

∣∣�ka

ki

〉 + 1

4

∑
kikj kakb

t
kakb

kikj

∣∣�kakb

kikj

〉

+ 1

2

∑
kika

∑
kj kb

t
ka
ki

t
kb

kj

∣∣�kakb

kikj

〉 + · · · , (6)

where km is the momentum of the single-particle state m. From
Eq. (6) and the conditions

K̂|�0〉 = 0|�0〉,
and

K̂|�CC〉 = 0|�CC〉,
it follows that

K̂t
ka

ki

∣∣�ka

ki

〉 = (ka − ki)t
ka

ki

∣∣�ka

ki

〉
,

and

K̂t
kakb

kikj

∣∣�kakb

kikj

〉 = (ka + kb − ki − kj )tkakb

kikj

∣∣�kakb

kikj

〉
.

Because by definition |ka| > |ki |, the CC exponential ansatz
becomes an eigenfunction of the operator K̂ with the eigen-
value 0 only if all coefficients t

ka

ki
are zero and the restriction

ka + kb = ki + kj ,

is fulfilled. This implies that the operator T̂1 is zero. In the
same way, the contribution of T̂1 vanishes in CC calculations
for the three-dimensional electron gas [50].

The CCD T̂2 amplitude equation can be written in laboratory
momentum coordinates as (see, for example, Ref. [33])

0 = 〈kakb|v|kikj 〉 + P (kakb)
∑

kc

〈kb|f |kc〉〈kakc|t |kikj 〉

−P (kikj )
∑

kk

〈kakb|t |kikk〉〈kk|f |kj 〉

+ 1

2

∑
kckd

〈kakb|v|kckd〉〈kckd |t |kikj 〉

+ 1

2

∑
kkkl

〈kakb|t |kkkl〉〈kkkl|v|kikj 〉

+P (kikj )P (kakb)
∑
kkkc

〈kakc|t |kikk〉〈kkkb|v|kckj 〉

+ 1

2
P (kikj )P (kakb)

∑
kkklkckd

〈kkkl|v|kckd〉

× 〈kakc|t |kikk〉〈kdkb|t |klkj 〉
−P (kikj )

1

2

∑
kkklkckd

〈kkkl|v|kckd〉

× 〈kakb|t |kikk〉〈kckd |t |kj kl〉
−P (kakb)

1

2

∑
kkklkckd

〈kkkl|v|kckd〉

× 〈kakc|t |kikj 〉〈kbd|t |kkkl〉
+ 1

4

∑
kkklkckd

〈kkkl|v|kckd〉

× 〈kckd |t |kikj 〉〈kakb|t |kkkl〉, (7)

where all two-body matrix elements are antisymmetrized and
P (pq) is a permutation operator that operates on a general
function y(p, q) according to

P (pq)y(p, q) = y(p, q) − y(q, p).

The Fock operator is defined by

〈kp|f |kq〉 = 〈kp|h0|kq〉 +
∑

i

〈kpki |v|kqki〉,

where the single-particle kinetic energy operator h0 is k2/(2M)
in momentum space. From the fact that the two-particle
interaction conserves the total momentum, it follows that the
Fock operator is diagonal in momentum basis. This also means
that the plane-wave basis is a Hartree-Fock basis for infinite
nuclear matter and, as is well known, the Hartree-Fock energy
for nuclear matter is simply the same as the ground-state energy
in first-order many-body perturbation theory [MBPT(1)] [66].
The CC T̂2 amplitude equation from Eq. (7) is given in
diagrammatic representation in Fig. 1. We use diagrammatic
rules as defined in Ref. [33].

The particle-particle and hole-hole ladder (PPHH-LAD)
approximation is obtained by leaving out from the CCD
amplitude equation all nonlinear terms, as well as the linear
term with summation over one particle and one hole index.
The coupled ladder equations are

0 = 〈kakb|v|kikj 〉 + P (kakb)
∑

kc

〈kb|f |kc〉〈kakc|t |kikj 〉

−P (kikj )
∑

kk

〈kakb|t |kikk〉〈kk|f |kj 〉

+ 1

2

∑
kckd

〈kakb|v|kckd〉〈kckd |t |kikj 〉

+ 1

2

∑
kkkl

〈kakb|t |kkkl〉〈kkkl|v|kikj 〉. (8)
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0 = + +

+ + +

+ +

+ +

FIG. 1. Diagrammatic representation of the T̂2 amplitude equa-
tion in the CCD approximation. The coupled particle-particle and
hole-hole ladder (PPHH-LAD) equations are obtained by leaving
out the sixth diagram, which has summation over one particle and
one hole state, and all the nonlinear diagrams, that is, the four
last diagrams. The particle-particle ladder (PP-LAD) equations are
otherwise equal to the PPHH-LAD equations; apart from that in the
former case also the fifth diagram is neglected. The two-particle
interaction is illustrated by a dashed line and the t amplitude
by a solid line. The dashed line with a cross at one vertex
represents the Fock operator. Lines with arrows pointing upwards
represent particles, whereas lines with arrows pointing downwards
represent holes. The interaction and t amplitude are assumed to be
antisymmetric.

We define the particle-particle ladder (PP-LAD) equations as
Eq. (8), where the last line, the hole-hole ladder diagram,
is removed. In the PPHH-LAD approximation, the five first
diagrams of Fig. 1 are retained. The PP-LAD approximation
uses only the four first diagrams in the same figure.

The CC energy equation (3) becomes in the CCD approxi-
mation

ECCD = EREF + �ECCD,

where the reference energy is written as

EREF =
∑

ki

〈ki |h0|ki〉 + 1

2

∑
kikj

〈kikj |v|kikj 〉, (9)

and the correlation correction term is simply

�ECCD = 1

4

∑
kakbkikj

〈kikj |v|kakb〉〈kakb|t |kikj 〉. (10)

The general expressions for the CC energy are derived in,
for example, Ref. [33]. A diagrammatic representation of the
energy equation is given in Fig. 2. The correlation energy has
more terms in a general case when the T̂1 amplitude does not
vanish.

Let us define T as the amplitude matrix, with the matrix
elements

[T ]α,β = 〈kp(α)kq(α)|t |kr(β)ks(β)〉,
where p, q, r , and s are functions of the two-body configura-
tions α and β. As explained in Ref. [33], the ladder equations

ECCD = + +

FIG. 2. The CCD energy equation, given in terms of diagrams.
The two-particle interaction is given by a dashed line and the t

amplitude by a solid line. The dashed line with a cross at one vertex
represents the kinetic energy operator. Lines with arrows pointing
upwards represent particles, lines with arrows pointing downwards
represent holes, and circles are always hole lines.

can be written as the more convenient matrix equation

T = z(T ), (11)

where the left-hand side consists of only an amplitude matrix
and the rest of the ladder equation, here written as the function
z of the amplitude matrix T , is on the right-hand side. Utilizing
the representation of Eq. (11), the amplitude equation can be
solved by a fixed-point iteration scheme. Algorithm I (see
Table I) is commonly used in CC calculations [33], and this is
the procedure we have employed.

B. Brueckner-Hartree-Fock approximation

In BHF theory [12,67], the total energy is approximated by

EBHF =
∑

ki

〈ki |h0|ki〉 + 1

2

∑
kikj

〈kikj |g|kikj 〉,

where the G matrix is defined as

〈kpkq |g|krks〉 = 〈kpkq |v|krks〉
+ 1

2

∑
kckd

〈kpkq |v|kckd〉〈kckd |g|krks〉
εkp

+ εkq
− εkc

− εkd

(12)

and the single-particle energy is

εkp
= 〈kp|h0|kp〉 +

∑
ki

〈kpki |g|kpki〉. (13)

In the so-called continuous option [68,69], which we use, the
single-particle energy has the form given in Eq. (13) for both
particle and hole states.

Diagrams of the BHF equations are given in Figs. 3 and 4.
From the diagrammatic expressions one can see that the

TABLE I. Algorithm I: Fixed-point iteration scheme for solving
the ladder equations, as explained in Ref. [33]. The amplitude matrix
T and the function z are defined in the text.

1. Initialize Eold to a large number.
2. Initialize the amplitude matrix Told to zero.
3. Loop until convergence.

(a) Calculate Tnew = z(Told).
(b) Calculate a new binding energy

Enew = �ECCD (Tnew).
If |Enew − Eold| is smaller than a given tolerance, stop.
Else, set Eold = Enew and Told = Tnew

and return to 3(a).
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EBHF = +

FIG. 3. The BHF energy equation in terms of diagrams. The
waved line represents the G matrix, and a circle means summation
over hole states.

PP-LAD and BHF equations are similar. In fact, one can
show that the BHF equations become equal to the PP-LAD
equations, provided that the G matrix in the single-particle
energy expression (13) is replaced by the interaction matrix.
We used this similarity to verify our implementation of the
PP-LAD equations as well. In the PPHH-LAD approximation
we have, in addition to particle-particle ladders, hole-hole
ladder contributions, and the two types of ladder diagrams
couple to each other.

III. FURTHER APPROXIMATIONS

Explicit expressions of the nuclear interaction are com-
monly given in relative momentum coordinates, whereas
the CC equations are defined in laboratory coordinates.
Either the interaction may be transformed to laboratory
coordinates, or the many-body equations must be rewritten
to relative coordinates. We chose to transform the ladder
equations from laboratory to relative and center-of-mass
(RCM) coordinates. Details of the transformation are shown in
Appendix A 1.

In addition to transforming the equations from laboratory to
RCM coordinates, we write the equations in a basis of coupled
angular momenta. The basis we use is |k(lS)JmJ MT 〉, where
k is the radial component of the relative momentum, l is the
relative orbital angular momentum, S is the total two-particle
spin, J is the angular momentum sum l + S, mJ is the z
projection of J , and MT is the projection of the two-particle
isospin. The same representation is commonly used in nuclear
structure calculations, such as the BHF method [12], but owing
to angular-average approximations the matrix elements are
normally diagonal in J and mJ .

As can be seen from Eq. (A4), the ladder equations in RCM
coordinates depend on the particle-particle Pauli exclusion
operator

Q(e)
pp(k, K, kF ) = θ (|k + K/2| − kF )θ (|−k + K/2| − kF )

= +

FIG. 4. Definition of the G matrix, expressed using diagrams.
The wavy line represents the G-matrix interaction. All other parts are
defined as in Fig. 1.

and the hole-hole Pauli exclusion operator

Q
(e)
hh(k, K, kF ) = θ (kF − |k + K/2|)θ (kF −| − k + K/2|),

where kF is the Fermi momentum, k and K are relative and CM
momenta, respectively, defined in Eq. (A3), and the superscript
(e) emphasizes that these are the exact Pauli operators. A
common approximation for nuclear-matter calculations is to
replace the exact Pauli operators with an operator averaged
over the angle between the relative and CM momentum vectors
[12,54,67].

In this paper, we use a technique introduced by Suzuki et al.
[15] to expand the exact Pauli operator in partial waves. Using
the exact Pauli operator in a partial-wave expansion, we derive
the CC ladder equations. We also derive the ladder equations
using angular-average approximations of the Pauli operator.
In both cases we use an angular-average approximation of the
single-particle energies.

A. Exact Pauli operator

Expressed in the coupled partial-wave basis, the reference
energy per particle is

EREF/A = 3h̄2k2
F

10m
+ 3C

4k3
F

∑
J Sl

∑
MT

(2J + 1)

×
∫ 2kF

0
dKK2

∫ √
k2
F −K2/4

0
dkk2

×〈k(lS)JMT |v|k(lS)JMT 〉xhh(k,K, kF ), (14)

where A is the number of particles, kF is the Fermi momentum,
k and K are the radial coordinates of the relative and CM
momentum, respectively, and C is 1 for symmetric nuclear
matter and 2 for pure neutron matter. The function xhh is
defined as

xhh =

⎧⎪⎪⎨
⎪⎪⎩

0, if k >

√
k2
F − K2/4,

− k2−k2
F +K2/4
kK

, if kF − K/2 < k <

√
k2
F − K2/4,

1, otherwise,

(15)

and similarly we define a function

xpp =

⎧⎪⎪⎨
⎪⎪⎩

0, if k <

√
k2
F − K2/4,

k2−k2
F +K2/4
kK

, if
√

k2
F − K2/4 < k < kF + K/2,

1, otherwise.

(16)
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FIG. 5. (Color online) Total energy per nucleon of symmetric
nuclear matter in the Hartree-Fock approximation, given as a function
of Fermi momentum kF . The calculation was done with a bare N3LO
two-body interaction, and the total angular momentum truncation was
set to J � 24.

In Sec. III, all interaction and t-amplitude matrix elements
are assumed to be multiplied by the antisymmetrization factor
Al′lSMT given in Eq. (A9). Because the Pauli exclusion operator
is the only factor in the potential energy part of the reference
energy that depends on the angle between k and K, the
expression for the reference energy is the same when using
exact and angular-averaged Pauli operators. As mentioned
above, the reference energy is also the Hartree-Fock energy
when using the plane-wave basis for this particular system.
In the limit of an untruncated basis, the reference energy
expressed in a partial-wave basis, given in Eq. (14), equals
the Hartree-Fock energy. Because we calculate the reference
energy with a high cutoff in angular momentum, we refer
to the reference energy (14) as the Hartree-Fock energy.
However, one should notice that the partial-wave basis is not
a Hartree-Fock basis for infinite nuclear matter. The reference
energy is plotted in Fig. 5.

In the algorithm used to solve the PP-LAD and PPHH-
LAD equations, it is necessary to store all t-amplitude
matrix elements to be able to calculate the binding energy
at each iteration step. When using a sufficient number of
integration grid points and angular momentum partial waves
to reach necessary accuracy, the size of the CC amplitude
matrix would typically exceed standard memory capacities
at most high-performance computing facilities. When the
ladder equations are written in the coupled partial-wave basis
we used, it is possible to calculate the t-amplitude matrix
for only one angular direction of the CM momentum K
and then obtain the other matrix elements by performing
a rotation [15]. This is a major advantage, because the
memory requirements for storing the t amplitude decreases
significantly.

The size of the t-amplitude matrix can be further decreased
by removing the dependency on the angular parts of the relative
momenta, that is, k̂ and k̂′. As can be seen from Eq. (A4), the
only dependency on these vectors in the ladder amplitude equa-
tions that cannot be separated out occurs in the single-particle
energies. In RCM coordinates, the single-particle energies
are functions of |±k + K/2| or |±k′ + K/2|, as shown in
Eq. (A11). To remove the dependency of the t-amplitude
matrix on k̂ and k̂′, we use an angular-average approximation
of the arguments |±k + K/2| in the single-particle energy
[54,67,70]. Because nuclear matter is an isotropic medium,
the single-particle energy must be a symmetric function, and
the single-particle energy can be approximated as a finite
polynomial with only even powers. Following Ramos [54,70],
we replace the input momentum

kp = |±k + K/2|,
with the angular-average approximation

kp =
√

k2 + K2/4 ± kK
√

〈cos2 θkK〉, (17)

where

〈cos2 θkK〉 =
{

x3
hh(k,K)/3, if kp � kF ,

x3
pp(k,K)/3, if kp > kF ,

and θkK is the angle between the relative and CM momentum vectors.
If we use the above-mentioned rotation of the t-amplitude matrix, given explicitly in Eq. (A18), and apply the angular-average

approximation in Eq. (17), we can write the correlation energy per particle as

�ECCD/A = 3C

32k3
F

∑
JmJ

∑
J ′′mJ ′′

∑
J ′′′mJ ′′′

∑
mJ ′

∑
SMT

∑
ll′l′′l′′′

∫ 2kF

0
K2dK

∫ 1

−1
d cos θK

∫ √
k2
F −K2/4

0
k2dk

∫ ∞
√

k2
F −K2/4

k′2dk′

× dJ ′′
mJ ′′ mJ ′ (θK )dJ ′′′

mJ ′′′ mJ ′ (θK )〈k(lS)JMT |v|k′(l′S)JMT 〉〈k′(l′′S)J ′′mJ ′MT |t(K)|k(l′′′S)J ′′′mJ ′MT 〉
×Qhh(l′′′J ′′′mJ ′′′ , lJmJ ; SMT kKθK )Qpp(l′JmJ , l′′J ′′mJ ′′ ; SMT k′KθK ), (18)

where the Wigner D function has been defined through

DJ
MM ′(α, β, γ ) = e−iMαdJ

MM ′ (β)e−iM ′γ , (19)
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and the function dJ
MM ′ (β) is given in Ref. [71]. In Eq. (18), the t-amplitude is independent on the angles k̂ and k̂′, and we have

used the definitions

Qhh(l′′J ′′mJ ′′ , l′′′JmJ ; SMT kKθKφK ) = Al′′l′′′SMT
1

2

∑
ml′′′ ml′′

∑
MS

∫
dk̂Y ∗

l′′ml′′ (k̂)Yl′′′ml′′′ (k̂)〈l′′′ml′′′SMS |JmJ 〉〈l′′ml′′SMS |J ′′mJ ′′ 〉

× θ (kF −|k + K/2|)θ (kF −| − k + K/2|) (20)

and

Qpp(l′′J ′mJ ′ , l′′′J ′′mJ ′′ ; SMT k′KθKφK )

= Al′′l′′′SMT
1

2

∑
ml′′ml′′′

∑
M ′

S

∫
dk̂′Y ∗

l′′ml′′ (k̂
′)Yl′′′ml′′′ (k̂

′)

×〈l′′ml′′SM ′
S |J ′mJ ′ 〉〈l′′′ml′′′SM ′

S |J ′′mJ ′′ 〉θ (|k′ + K/2| − kF )θ (|−k′ + K/2| − kF ) (21)

in a similar way as Suzuki et al. did in their BHF study [15]. In Eqs. (20) and (21), the brackets denote Clebsch-Gordan coefficients
and the functions Ylml

(k̂) are spherical harmonics [71].
In Ref. [15], the authors have derived an expression for Qpp which avoids the complicated integration limits over the space

angle of k [15], namely,

Qpp(l,J ,mJ , l′J ′mJ ′ ; SMT kKθKφK )

= All′SMT
1

2

{
xppδll′δJJ ′δmJ mJ ′ +

∑
L>0;L=even

(−1)S+mJ (4π )1/2 l̂ l̂′Ĵ Ĵ ′

L̂
〈l0l′0|L0〉〈J − mJ J ′mJ ′ |LML〉

×YLML
(θK, φK )W (lJ l′J ′; SL)[PL+1(xpp) − PL−1(xpp)]

⎫⎬
⎭ , (22)

where x̂ ≡ √
2x + 1, PL(x) is the Legendre polynomial, W (lJ l′J ′; SL) denotes the Racah coefficient [71], and xpp is as defined

in Eq. (16). We have used Eq. (22) to evaluate Qpp and a similar expression for evaluating Qhh. The expression for Qhh was
obtained by replacing xpp with the equivalent for hole-hole states, i.e., xhh given in Eq. (15). Observe that the simplified but
exact Pauli operator expression (22) and the corresponding expression for the hole-hole Pauli operator could not have been used
if the t amplitude was not independent on the angular vectors k̂ and k̂′. The reason for this restriction is that the Pauli operator
expressions, when expanded in partial waves, as defined in Eqs. (20) and (21), are integral operators and not just real functions.
The effect of the integral operators Qhh and Qpp can be seen clearly from the correlation energy expression in Eq. (A17). The
angular-average approximation of the single-particle energies therefore simplifies the correlation energy expression significantly.

Because the exact Pauli operator is not diagonal in J and mJ , both the G matrix [15] and the t-amplitude matrix are not
diagonal in the total angular momentumJ and its projection mJ . The fact that the amplitude matrix is not diagonal in total angular
momentum makes the ladder equations more complicated. Writing the PPHH-LAD equations in the basis |k(lS)JmJ MT 〉, we
get

�ε̃(k, k′,K)〈k′(l′S)J ′mJ ′MT |t(K)|k(lS)JmJ MT 〉

= 〈k′(l′S)J ′mJ ′MT |v|k(lS)JmJ MT 〉δJJ ′δmJ mJ ′ + 1

2

∑
J ′′mJ ′′

∑
l′′l′′′

∫ kF

0
h2dh〈k′(l′S)J ′mJ ′MT |t(K)|h(l′′S)J ′′mJ ′′MT 〉

× 〈h(l′′′S)JmJ MT |v|k(lS)JmJ MT 〉Qhh(l′′J ′′mJ ′′ , l′′′JmJ ; SMT hKθKφK )

+ 1

2

∑
J ′′mJ ′′

∑
l′′l′′′

∫ ∞

0
p2dp〈k′(l′S)J ′mJ ′MT |v|p(l′′S)J ′mJ ′MT 〉〈p(l′′′S)J ′′mJ ′′MT |t(K)|k(lS)JmJ MT 〉

×Qpp(l′′J ′mJ ′ , l′′′J ′′mJ ′′ ; SMT pKθKφK ), (23)

where |(lS)JmJ 〉 denotes a vector where l and S are coupled
to J . In Eq. (23) we have used the angular-averaged energy
denominator �ε̃(k, k′,K), which is defined in Eq. (A16).
When using the rotation of the ladder amplitude matrix, given
in Eq. (A18), the amplitude matrix needs to be evaluated only
at a single angular coordinate of the CM momentum. The

amplitude equation (23) is therefore given as a function of
only the radial part of the CM momentum.

In Eq. (22), the restriction that L must be even ensures that
parity is conserved [15]. This follows from the properties of the
first Clebsch-Gordan coefficient in Eq. (22), which vanishes
when (−1)l �= (−1)l

′
, provided that L is even. Because the
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operators Qhh and Qpp conserve parity, one can see from
Eq. (23) that the t-amplitude of the ladder equation also
conserves parity. On the contrary, the exact Pauli operators
(both particle-particle and hole-hole ones) do not conserve
the total angular momentum J . Consequently, the t amplitude
also becomes nondiagonal in the total angular momentum. The
exact Pauli operators become diagonal in the projection mJ in
the special case when the angular part of the CM momentum
is zero. The t-amplitude matrix elements are therefore also
diagonal in mJ when K is parallel with the z axis.

We later refer to the approximation with exact Pauli
operators (both particle-particle and hole-hole ones) and
angular-averaged single-particle energies as “exact.” The
angular-average approximation of the single-particle energies,
given in Eq. (17), is used in all calculations presented in this
work, including both the coupled ladder approximations and
the BHF method.

B. Angular-averaged Pauli operators

The ladder equations can be simplified substantially by
doing an angular-average approximation of the Pauli exclu-
sion operators. The hole-hole and particle-particle exclusion
operators become [15], respectively,

Qhh(lJmJ , l′J ′mJ ′ ; SMT hKθKφK )

→ Qhh

≡ 1

4π

∫
dK̂Qhh(lJmJ , l′J ′mJ ′ ; SMT hKθKφK )

= AllSMT
1

2
xhhδll′δJJ ′δmJ mJ ′ , (24)

and

Qpp(lJmJ , l′J ′mJ ′ ; SMT pKθKφK )

→ Qpp

≡ 1

4π

∫
dK̂Qpp(lJmJ , l′J ′mJ ′ ; SMT pKθKφK )

= AllSMT
1

2
xppδll′δJJ ′δmJ mJ ′ , (25)

where xhh and xpp are as defined in Eqs. (15) and (16). We
note that the angular-averaged Pauli exclusion operators are
diagonal in the total angular momentum J , in contrast to the
exact operators.

When using the angular-average approximation, the PPHH-
LAD equations simplify to

�ε̃(k, k′,K)〈k′(l′S)JMT |t(K)|k(lS)JMT 〉
= 〈k′(l′S)JMT |v|k(lS)JMT 〉

+ 1

2

∑
l′′

∫ kF

0
h2dh〈k′(l′S)JMT |t(K)|h(l′′S)JMT 〉

× 〈h(l′′S)JMT |v|k(lS)JMT 〉Qhh(h,K)

+ 1

2

∑
l′′

∫ ∞

0
p2dp〈k′(l′S)JMT |v|p(l′′S)JMT 〉

× 〈p(l′′S)JMT |t(K)|k(lS)JMT 〉Qpp(p,K), (26)

where �ε̃(k, k′,K) is the energy denominator with angular-
averaged arguments. From the properties of the angular-
averaged Pauli operators, it follows that the t amplitude
is diagonal in J , and independent on mJ and the CM
momentum angles θK and φK . Because of these symmetries,
the CC amplitude matrix is orders of magnitude smaller in the
angular-averaged approximation than when using exact Pauli
exclusion operators.

The CCD correlation energy per particle becomes in the
angular-averaged approximation

�Eave
CCD/A = 3C

16k3
F

∑
J

∑
SMT

∑
ll′

(2J + 1)

×
∫ √

k2
F −K2/4

0
k2dk

∫ ∞
√

k2
F −K2/4

k′2dk′

×
∫ 2kF

0
K2dK〈k(lS)JMT |v|k′(l′S)JMT 〉

× 〈k′(l′S)JMT |t(K)|k(lS)JMT 〉
×Qhh(k,K)Qpp(k′,K). (27)

The approximation using both angular-averaged Pauli oper-
ators and angular-averaged arguments in the single-particle
energies are in the following referred to as “average.”

IV. RESULTS AND DISCUSSION

In the following we present results of numerical calcu-
lations using the above-mentioned ladder approximations.
These approximations are compared with conventional BHF
theory. We investigate also the role of angular-averaged Pauli
exclusion operators and compare this with the exact treatment
discussed above. In addition, we compare results obtained
using the optimized NNLOopt two-body interaction [63] with
calculations done with the N3LO interaction [64]. The different
interaction models and many-body methods are applied to both
symmetric nuclear-matter and neutron-matter systems.

In all our calculations, we have taken into account charge
symmetry breaking and charge independence breaking of the
chiral interactions. The BHF calculations were done using
continuous single-particle energies [72], which here means
that single-particle energies for both particles and holes were
calculated using Eq. (13). The singularities in the G-matrix
equation owing to the continuous single-particle energies were
avoided by calculating the principal value of the integral in the
G-matrix equation. The G-matrix equation (12) was solved in
a coupled angular momentum basis |k(lS)JmJ MT 〉 using the
matrix inversion method of Haftel and Tabakin [12]. Unless
stated explicitly otherwise, the BHF calculations have been
calculated with a truncation of the total angular momentum
at J � 24 in the Born approximation and J � 9 for the
full G matrix. The BHF calculations were done with angular-
averaged Pauli operators, as described in Ref. [12].

The coupled ladder equations were solved with both exact
and angular-averaged Pauli exclusion operators. We refer to
these two approximations as “exact” and “average,” respec-
tively. All calculations were done with an angular-average
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FIG. 6. (Color online) Convergence of the correlation energy of
symmetric nuclear matter, given as a function of maximum total
angular momentum Jmax. The correlation energy was calculated
for the Fermi momentum kF = 1.8 fm−1, using the PPHH-LAD
approximation and exact Pauli exclusion operators.

approximation of the single-particle energies, as was explained
in Sec. III A. The Hartree-Fock energy was calculated with a
cutoff in total angular momentum at J � 24. The correlation
energy was calculated with a truncation at J � 16 in the
average approximation and J � 8 in the exact approximation.
Figure 6 shows the convergence of the correlation energy
as a function of the total angular momentum cutoff Jmax.
Because of the high density, the angular momentum barrier
cannot keep particles far apart from each other, and therefore
the convergence as a function of total angular momentum is
slow in infinite nuclear matter. At high angular momenta, the
interaction is dominated by the one-pion exchange part, and the
convergence behavior as a function of total angular momentum
is therefore similar for different interaction models. Owing to
restrictions in computer memory, we were not able to calculate
with Jmax higher than 8 in the exact approximation.

Let us first consider symmetric nuclear matter using the
N3LO interaction. In Fig. 7, we compare the energy per
nucleon as a function of the Fermi momentum for different
approximations. The Fermi momentum at saturation is equal
for all the three methods, whereas there are differences in the
binding energies. The general form of the equation of state
is very similar for the coupled ladder and BHF methods. As
can be seen from the figure, the PPHH-LAD approximation
gives less binding than the BHF approximation when the
PPHH-LAD calculation is done with both angular-averaged
and exact Pauli operators. The binding energy at saturation
obtained with the BHF method is approximately 0.5 MeV
lower than the corresponding result of Li et al. [6]. There are
several factors that may have contributed to the difference
between our BHF results and those of Li et al. [6]. For
example, in Ref. [6] they used a complex G matrix, whereas
we have used a real G matrix and treated the singularities
by using a principal value integral [12]. It is also possible
that we have used different angular-average approximations in
the single-particle energies. As seen from Fig. 7, an exact
treatment of the Pauli operators gives more binding than
when using an angular-average approximation. This is in
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FIG. 7. (Color online) Total energy per particle as a function of
the Fermi momentum, calculated for symmetric nuclear matter. The
two approximations of the PPHH-LAD equations, average and exact,
are compared with a BHF calculation with angular-averaged Pauli
exclusion operator. These calculations were done with the N3LO [64]
two-body interaction. The box denotes the uncertainty region for
the experimental saturation point of symmetric nuclear matter, as
obtained by extrapolating from observables of finite nuclei.

agreement with the results of Suzuki et al. [15] and Schiller
et al. [14], where an exact treatment of the Pauli operator gave
approximately 0.2–0.5 MeV more binding energy in the BHF
approximation.

Carbone et al. [8] have compared correlation energies
obtained with the the SCGF method at finite temperature with
BHF calculations, using the same N3LO two-body interaction
as we have used. Similarly as in Fig. 7, they got slightly
higher energies with the SCGF method, which contains both
particle-particle and hole-hole ladders, compared to the BHF
results. In previous studies where the SCGF method has been
compared with the BHF approximation [16,55,56] using other
two-body interactions, the saturation energies obtained using
the SCGF method have been located several MeVs higher than
the corresponding BHF result, and the saturation densities
have been shifted towards lower values. As will be shown
systematically in a future publication [73], we find a similar
difference between the PPHH-LAD and BHF methods when
using the hard-core Argonne v18 interaction [74]. In fact,
when using the Argonne v18 potential, the saturation energy
of the PPHH-LAD approximation is found to be only about
1 MeV below the SCGF saturation energy shown in Fig. 3 of
Ref. [16], and the saturation density is almost the same for
both ladder approximations. It is interesting to note that we
observed a larger difference between our CC and BHF results
in systems with a hard interaction compared to systems with
a soft interaction. If we relate these findings with a hard-core
interaction to those obtained with, for example, the Bochum
CC truncation scheme [44] mentioned in the Introduction, it
may be possible that the Bochum scheme will give a faster
convergence than the SUBn truncation scheme when using
hard-core interaction models.

Finally, we ought to mention that the way the CC equations
are solved here, and in most other CC applications as well,
no self-consistent solution of the pairing gap equations is
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TABLE II. Total energy per nucleon at selected Fermi momenta
kF , as obtained with different approximations. For easier comparison,
all these energies were calculated with the same cutoff in total angular
momentum, i.e.,Jmax = 24 for the Hartree-Fock/Born approximation
and Jmax = 8 for the correlation contribution. All results were
obtained with the N3LO interaction [64]. Energies in units of MeV.

kF (fm−1) 1.2 1.4 1.6 1.8 2.0

PPHH exact −16.08 −20.14 −23.26 −24.50 −22.97
PPHH average −15.74 −19.74 −22.84 −24.09 −22.56
PP exact −15.76 −19.83 −22.98 −24.27 −22.82
PP average −15.45 −19.45 −22.57 −23.86 −22.40
PT2 average −15.11 −19.81 −23.35 −24.80 −23.25
BHF average −16.18 −20.25 −23.74 −25.47 −24.42

performed. In practical terms this means that we never face
instabilities in the denominators of the CC expansions owing
to poles arising in the two-hole sector. In CC theory, in contrast
to various SCGF approaches, there is never an explicit energy
dependence in the denominators of the different amplitudes.
The energy differences in the two-particle-two-hole energies
that enter the computation of various denominators are never
zero, by construction. There are no terms in our present
formalism which thus could account for pairing instabilities in
the denominators, as discussed in, for example, Refs. [75,76].
The effects of pairing instabilities and the self-consistent
solution of the gap equation together with the full CCD
equations (including the particle-hole terms as well), await
therefore further investigations.

In Table II, we list the total energies for symmetric nuclear
matter calculated with the N3LO two-body interaction. For
easier comparison, all results are computed with the same
cutoffs in total angular momentum. We find that the difference
between the PPHH-LAD energies with angular-averaged
and exact Pauli operators is approximately 0.4 MeV at the
saturation Fermi momentum. This makes a difference of
roughly 1.7%. At the same Fermi momentum, the PPHH-LAD
method with exact Pauli operators gives approximately 1 MeV
more binding than the BHF method with angular-averaged
Pauli operators. The 1-MeV difference corresponds to 3.8%
of the total energy.

In Fig. 8 we compare the coupled PPHH-LAD with the
particle-particle ladder approximation, PP-LAD. From Fig. 8
one can see that the inclusion of hole-hole ladders gives slightly
more binding compared to the pure particle-particle ladder
approximation. From Table II we find that the difference is
approximately 0.2 MeV at saturation Fermi momentum or
about 1% of the binding energy. At the saturation density, the
contribution coming from including the hole-hole ladders is
smaller than the error of an angular-average approximation of
the Pauli exclusion operators.

As mentioned earlier, the only difference between the BHF
and the PP-LAD approximations is the single-particle energy,
which in the BHF method is calculated with a G matrix and
in the ladder approximation with a bare interaction. Single-
particle potentials with a G matrix and with a bare interaction
are plotted in Fig. 9, as obtained using the N3LO interaction.
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FIG. 8. (Color online) The exact PPHH-LAD and PP-LAD
calculations of energy per nucleon as a function of Fermi momentum.
The equation of state of a BHF calculation is also given. The box
denotes the uncertainty region for the experimental saturation point
of symmetric nuclear matter. All results were obtained with the N3LO
interaction [64].

Next we compare the two different chiral interactions N3LO
and NNLOopt when applied to infinite-matter systems. In
Fig. 10 we have plotted the equations of state for symmetric
nuclear matter and in Fig. 11 for pure neutron matter, respec-
tively, as obtained with the two different nuclear interaction
models. When using the NNLOopt interaction for symmetric
nuclear matter, we find that the HF energy is much closer to
the PPHH-LAD approximation than is the case with the N3LO
interaction. Thus, the optimized next-to-next-to-lowest-order
interaction provides a better starting point for the perturbation
series than the N3LO interaction. As can be seen from
Fig. 10, in the PPHH-LAD approximation the two different
interactions give almost the same equation of state for Fermi
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FIG. 9. (Color online) Single-particle potential as a function
of laboratory frame momentum, calculated at Fermi momentum
1.8 fm−1 with a G matrix and with a bare interaction. In both
cases, we used the N3LO two-body interaction and the total angular
momentum cutoff Jmax = 9. The only difference between the BHF
and PP-LAD equations is the single-particle energy: In BHF theory
the single-particle potential is calculated using a self-consistent G

matrix, whereas in the PP-LAD approximation the single-particle
energy is obtained by replacing the G matrix with a bare interaction.
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FIG. 10. (Color online) Energy per particle for symmetric nuclear
matter, as calculated in the HF and PPHH-LAD approximations using
the N3LO and NNLOopt two-body interactions. In the PPHH-LAD
approximation, the angular momentum cutoff was set to J � 8 and
the calculations were done with exact Pauli exclusion operators.

momenta less than 1.6 fm−1. At higher Fermi momenta, the
NNLOopt interaction gives less binding. Both the N3LO and
the NNLOopt interactions overbind considerably and saturate
at too high density in symmetric nuclear matter. The similarity
between the binding energies obtained with the two different
two-body interactions is in contrast to the results in finite
nuclei [63], where the NNLOopt interaction gave significantly
better agreement with experiments than the N3LO interaction.
However, even if this may indicate that three-body forces could
play a smaller role with the optimized interaction, there is
no clear indication that such correlations are negligible. The
N3LO and NNLOopt interactions have also been compared
in nuclear-matter calculations using the SCGF method at
finite temperature [8]. The SCGF method was found to give
slightly more binding when using the NNLOopt interaction
compared to calculations with the N3LO two-body interaction.
The results obtained by Carbone et al. [8], using the SCGF
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FIG. 11. (Color online) Energy per particle for pure neutron
matter given as a function of Fermi momentum kF . The figure
shows results of calculations in Hartree-Fock (HF) and coupled
PPHH-LAD, using the N3LO and NNLOopt two-body interactions.
The neutron-matter results obtained with exact Pauli operators have
been published in Ref. [63].
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FIG. 12. (Color online) Potential energy per particle for the
1S0 partial wave as function of the Fermi momentum kF for pure
neutron matter. We plot the Hartree-Fock potential energy and the
total potential energy obtained by adding the correlation energies
obtained from PPHH-LAD approximation with angular-averaged
Pauli exclusion operators. Both potential models have been employed.

method, are rather close to those obtained with our present
CCD calculations.

Equations of state for neutron matter are given in Fig. 11.
As can be seen from the figure, the differences between the
calculations with exact and angular-averaged Pauli operators
are much smaller for neutron matter than for symmetric
nuclear matter. According to these results, the angular-average
approximation of the Pauli operators is a fairly good approxi-
mation in neutron-matter systems. In Ref. [63] we found that
the equation of state for neutron matter with the optimized
NNLO interaction was within the error estimates obtained
with an N3LO interaction with three-body forces [24], whereas
a calculation with a two-body N3LO interaction gave an
equation of state that was more attractive around the empirical
saturation density. Below we show that the stronger repulsion
seen when using the optimized NNLOopt interaction stems
from a poorer reproduction of the 3P0 and 3P1 partial-wave
phase shifts of the Nijmegen analysis.

The results for symmetric nuclear matter with the two
potential models result in energies that are very similar. This
effect is largely attributable to the excellent reproduction
of various partial waves for the proton-neutron channel, in
particular the 3S1 partial wave [77]. However, for pure neutron
matter we see a clear deviation starting at Fermi momenta
kF = 1.4 fm−1. To better understand this behavior, we have
singled out two partial waves, namely the 1S0 and the 3P0 partial
waves. The results for the potential energies per particle are
shown in Figs. 12 and 13 for the 1S0 and the 3P0 partial waves,
respectively. We show both the Hartree-Fock potential energy
and the total potential energy by adding the results from the
PPHH-LAD correlations. At the NNLO level of optimization,
the P waves show larger deviations from the phase shifts
deduced from the experimental cross sections [77], yielding
a poorer agreement compared with the N3LO interaction at
laboratory energies beyond 100 MeV in energy. This applies,
in particular, to the 3P0 and the 3P1 partial waves, resulting in
a 3P0 wave which is less attractive for the NNLO optimized
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FIG. 13. (Color online) Potential energy per particle for the
3P0 partial wave as function of the Fermi momentum kF for pure
neutron matter. We plot the Hartree-Fock potential energy and the
total potential energy obtained by adding the correlation energies
obtained from PPHH-LAD approximation with angular-averaged
Pauli exclusion operators. Both potential models have been employed.

interaction model. The contributions from the 3P1 partial wave
to the equation of state plays a smaller role compared with
the 3P0 partial wave. The differences for the 3P0 partial wave
is seen rather clearly in Fig. 13. The N3LO interaction results
in more binding than the NNLOopt interaction model for this
particular partial wave. This applies both to the Hartree-Fock
potential energy and to the final potential energy that includes
correlations. The discrepancy that arises from this partial wave
is the main reason behind the more repulsive equation of
state obtained with the NNLOopt interaction. It will thus be
interesting to see whether an optimization with respect to the
experimental cross section at both the NNLO and the N3LO
levels will bring the results for pure neutron matter closer to
the results obtained with the N3LO interaction of Ref. [64].
These results will be presented in Ref. [77]. It is interesting
to note also that the Hartree-Fock potential energies for the
1S0 channel are rather similar to the fully correlated potential
energy with the NNLOopt interaction. This is also in line with
our analysis from nuclear structure of Ref. [63], indicating
that this interaction is rather soft at the two-body level. Both
interaction models yield negligible differences for the full
potential energy for the 1S0 partial wave. In summary, the
poorer reproduction of the phase shifts for two selected P
waves leads to a more repulsive equation of state for pure
neutron matter with the newly optimized NNLOopt interaction.
Whether three-body forces or more complicated correlations
beyond the CCD approximation employed here will improve
the situation remains, however, to be explored.

Finally, we present our results for the symmetry energy in
Fig. 14. The symmetry energy S is defined as the difference
between the binding energies of pure neutron matter and
symmetric nuclear matter, that is

S = (Epnm − Esnm)/A, (28)

where Epnm/A and Esnm/A are the binding energies per
particle for pure neutron matter and symmetric nuclear matter,
respectively. The behavior of the symmetry energy at high
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FIG. 14. (Color online) Symmetry energy as function of density,
calculated in the PPHH-LAD approximation with exact Pauli exclu-
sion operators. The empirical saturation density of symmetric nuclear
matter is approximately 0.17 fm−3 [78].

densities is important for the understanding of several physical
properties and processes of neutron stars (see Refs. [79–81]
and references therein). In Fig. 14, the symmetry energy is
plotted as a function of nucleon density, as obtained from a
PPHH-LAD calculation with exact Pauli exclusion operators.
The symmetry energies are calculated with both the N3LO
and the NNLOopt two-body interactions. The symmetry energy
obtained with the N3LO interaction is slightly larger than what
was reported in Refs. [82,83], where the calculations were done
with BHF theory using the CD-Bonn interaction. At densities
lower than 0.1 fm−1, the two interaction models give almost the
same symmetry energy. However, above the saturation density,
the difference between the two models increases as a function
of density. As seen from Fig. 14, the NNLOopt interaction
gives significantly larger symmetry energies than the N3LO
interaction at high densities. Such a large deviation between
the two different two-body interactions is possible because the
nuclear interactions are fitted to phase shifts for laboratory
energies only up to 290 MeV [63,64].

V. CONCLUSIONS

We have studied infinite nuclear and neutron matter
using a CC ladder approximation, where the equations were
derived from the CCD approximation. In the coupled ladder
approximation, particle-hole and nonlinear diagrams were
neglected from the CCD amplitude equations. Our approach
can be seen as a first step in implementing CC theory for
infinite nuclear matter. The coupled ladder equations consist
of particle-particle and hole-hole ladder diagrams which are
coupled together. As we have shown, this method is closely
related to the commonly used BHF approximation.

We have derived coupled ladder equations both with exact
and angular-averaged Pauli exclusion operators, following
the approach introduced by Suzuki et al. for the BHF
approximation [15]. In all calculations we have used angular-
averaged input momenta for the single-particle energies.
Our method was applied numerically to both symmetric
nuclear-matter and pure neutron-matter systems. The ladder
approximations for symmetric nuclear matter were found to
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give less binding than the BHF approximation. In symmetric
nuclear matter, the contribution from the hole-hole ladder
diagrams was found to be smaller than the error owing
to angular-average approximations for the Pauli exclusion
operators. Generally, symmetric nuclear-matter calculations
with exact Pauli exclusion operators gave more binding
than calculations with angular-averaged Pauli operators. This
behavior is in agreement with observations made with the
BHF method [14,15]. The binding energy per particle of pure
neutron matter was found to be less sensitive to the Pauli
exclusion operator approximation than what was the case for
symmetric nuclear matter.

The ladder approximations were applied to infinite neutron
and nuclear matter using two different chiral two-body inter-
actions. An optimized NNLO interaction [63] was compared
with the N3LO interaction of Entem and Machleidt [64]. In
symmetric nuclear matter, we found that the two interac-
tion models gave similar binding energies. As was shown
in Ref. [63], the optimized NNLO interaction gives more
repulsion in neutron matter compared to the N3LO two-body
interaction. In the present work, we showed that the increased
repulsion obtained with the NNLO interaction is attributable to
differences in the 3P0 and 3P1 partial waves. We also calculated
symmetry energies with the N3LO and optimized NNLO
two-body interactions.
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APPENDIX: TECHNICAL DETAILS

1. Relative momentum basis

Infinite nuclear matter is defined in the thermodynamic
limit, that is, the limit where the volume � and the number
of particles A approach infinity, while the density of particles
ρ ≡ A/� is kept constant. At the limit when � approaches
infinity, the sums over momenta can be replaced by integrals:

∑
k

→ �

(2π )3

∫
dk. (A1)

In the following we replace all sums over momenta with
integrals according to Eq. (A1).

Taking the limit � → ∞, the ladder amplitude equations
(8) may be written in laboratory momentum coordinates as

0 = 〈kakb|v|kikj 〉 + (ε(ka) + ε(kb)

− ε(ki) − ε(kj ))〈kakb|t |kikj 〉

+ 1

2

(
�

(2π )3

)2 ∫
dkk

∫
dkl 〈kakb|t |kkkl〉 〈kkkl|v|kikj 〉

× θ (kF − |kk|)θ (kF − |kl|)

+ 1

2

(
�

(2π )3

)2 ∫
dkc

∫
kd 〈kakb|v|kckd〉 〈kckd |t |kikj 〉

× θ (|kc|−kF )θ (|kd |−kF ), (A2)

where θ (x) is the Heaviside step function and we have used
the definition ε(k) ≡ 〈k|f |k〉. Later we refer to ε(k) as the
single-particle energy.

We define the RCM momentum coordinates as

k = (ki − kj )/2, K = ki + kj ,

k′ = (ka − kb)/2, K′ = ka + kb,
(A3)

h = (kk − kl)/2, H = kk + kl ,

p = (kc − kd )/2, P = kc + kd ,

where i, j, k, l denote single-particle states occupied and
a, b, c, d states unoccupied in the uncorrelated Fermi vacuum
state. Transforming to RCM coordinates, the PPHH-LAD
equations become

0 = 〈k′|v|k〉 + (ε(|k′ + K/2|) + ε(|−k′ + K/2|)
− ε(|k − K/2|) − ε(|−k + K/2|))〈k′|t |k〉
+ 1

2

∫
dh〈k′|t(K)|h〉〈h|v|k〉

× θ (kF −|h + K/2|)θ (kF −|−h + K/2|)
+ 1

2

∫
dp〈k′|v|p〉〈p|t(K)|k〉

× θ (|p + K/2|−kF )θ (|−p + K/2|−kF ), (A4)

where the relation

〈kpkq |v|krks〉 = (2π )3

�
〈k|v|k′〉δKK′ (A5)

has been used. The expressions (9) and (10) for the reference
and correlation energies, respectively, can be transformed to
RCM coordinates in a similar way as is shown here for the
ladder amplitude equations.

Owing to the isotropy of nuclear matter, we assume that the
single-particle energy ε(kp) depends only on the absolute value
of the argument kp [54,70]. In laboratory frame momentum
coordinates, the single-particle energy is then

ε(|kp|) = h̄2k2
p

2m
+ U (|kp|), (A6)

where

U (|kp|) = �

(2π )3

∑
msmt

∫
dkq〈kpkq |v|kpkq〉θ (kF − |kq |).

(A7)

Because of the isotropy, we choose the direction such that
kp = (0, 0, kp). The single-particle potential energy can also
be written as

U (|kp|) =
∑
msmt

∫
dkq [〈p|v|p〉 − 〈p|v|−p〉]

× θ (kF −|−p + P/2|), (A8)
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where p and P are RCM momentum coordinates defined by
kp and kq , as in Eq. (A3).

2. Momentum and angular momentum basis

In this work, we assume that every interaction matrix
element,

〈k′(l′S)JmJ MT |v|k(lS)JmJ MT 〉,

and every t-amplitude matrix element is multiplied by a factor

Al′lSMT =

⎧⎪⎨
⎪⎩

1 + (−1)l+l′ , if MT = 0,
1
2 [1 − (−1)l+S+1],

×[1 − (−1)l
′+S+1], if |MT | = 1,

(A9)

which ensures antisymmetry and conservation of parity.
Using exact Pauli exclusion operators, the ladder t-

amplitude equations (A4) can be rewritten in the coupled
angular momentum basis as

�ε(k, k′, K)〈k′(l′S)J ′mJ ′MT |t(K, k̂, k̂′)|k(lS)JmJ MT 〉
= 〈k′(l′S)J ′mJ ′MT |v|k(lS)JmJ MT 〉δJJ ′δmJ mJ ′

+ 1

2

∑
J ′′mJ ′′

∑
l′′l′′′

∫ kF

0
h2dh〈k′(l′S)J ′mJ ′MT |t(K, k̂, k̂′)|h(l′′S)J ′′mJ ′′MT 〉〈h(l′′′S)JmJ MT |v|k(lS)JmJ MT 〉

×Qhh(l′′J ′′mJ ′′ , l′′′JmJ ; SMT hKθKφK )

+ 1

2

∑
J ′′mJ ′′

∑
l′′l′′′

∫ ∞

0
p2dp〈k′(l′S)J ′mJ ′MT |v|p(l′′S)J ′mJ ′MT 〉〈p(l′′′S)J ′′mJ ′′MT |t(K, k̂, k̂′)|k(lS)JmJ MT 〉

×Qpp(l′′J ′mJ ′ , l′′′J ′′mJ ′′ ; SMT pKθKφK ), (A10)

where |(lS)JmJ 〉 denotes a vector where l and S are coupled to J . In Eq. (A10) we have introduced the shorthand notation

�ε(k, k′, K) ≡ ε(|k + K/2|) + ε(|−k + K/2|) − ε(|k′ + K/2|) − ε(|−k′ + K/2|) (A11)

for the energy denominator.
The sum of the single-particle energies corresponding to two-hole states can be expressed in terms of RCM coordinates as

ε(|ki |) + ε(|kj |) = ε(|k + K/2|) + ε(|−k + K/2|) = h̄2k2

m
+ h̄2K2

4m

+UMT ,+(|k + K/2|) + UMT ,−(|−k + K/2|), (A12)

where

UMT ,±(|kp|) = 1

4

∑
J Sl

(2J + 1)
∫ kF

0
dkqk

2
q

∫ 1

−1
d cos θkq

BMT ,± 〈pJ lS|v|pJ lS〉 , (A13)

and the variable p = |kp − kq |/2. The antisymmetrization operator BMT ,± is defined through the relation

BMT ,±〈pJ lS|v|pJ l′S〉 = 〈pJ lS|v(M ′
T = 0)|pJ l′S〉 + [1 − (−1)l

′+S ′+1]〈pJ lS|v(M ′
T = MT ± δMT ,0)|pJ l′S〉 (A14)

for symmetric nuclear matter and the relation

BMT ,±〈pJ lS|v|pJ l′S〉 = [1 − (−1)l
′+S ′+1]〈pJ lS|v(M ′

T = 1)|pJ l′S〉 (A15)

for pure neutron matter. The expressions of k and K are given in Eq. (A3). The sum of single-particle energies corresponding to
two-particle states, ε(ka) + ε(kb), is calculated in the same way. We define the angular-averaged energy denominator as

�ε̃(k, k′,K) ≡ ε(ki) + ε(kj ) − ε(ka) − ε(kb), (A16)

where kp for p = i, j, a, b are angular-averaged input momenta defined in Eq. (17). Observe that the energy denominator is
assumed to be a function of the two-particle isospin projection MT .

The correlation energy can be written in the partial-wave expansion as

�ECCD/A = 3C

64πk3
F

∑
JmJ

∑
J ′′mJ ′′

∑
J ′′′mJ ′′′

∑
SMT

∑
ll′l′′l′′′

∫ √
k2
F −K2/4

0
k2dk

∫ ∞
√

k2
F −K2/4

k′2dk′
∫ 2kF

0
K2dK

×
∫ 1

−1
d cos θK

∫ 2π

0
dφK〈k(lS)JMT |v|k′(l′S)JMT 〉Q̂hh(l′′′J ′′′mJ ′′′ , lJmJ ; SMT kKθKφK )

× Q̂pp(l′JmJ , l′′J ′′mJ ′′ ; SMT k′KθKφK )〈k′(l′′S)J ′′mJ ′′MT |t(K, k̂, k̂′)|k(l′′′S)J ′′′mJ ′′′MT 〉, (A17)
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where the Pauli operators Q̂hh and Q̂pp are defined in Eqs. (20) and (21). Here we use the notations Q̂hh and Q̂pp instead of
Qhh and Qpp to emphasize that these are integral operators that operate on the t-amplitude matrix. The t amplitude depends on
k̂ ≡ (θk, φk) and k̂′ ≡ (θk′, φk′ ) through the energy denominator �ε(k, k′, K), and the closed-form expression (22) can therefore
generally not be used in the energy equation (A17).

When the ladder equations are written in the coupled partial-wave basis, it is possible to calculate the t-amplitude matrix for
only one angular direction of the CM momentum K, and then obtain the other matrix elements by performing a rotation [15].
Using the same technique as Suzuki et al., an amplitude matrix with a general CM momentum vector can be written

〈k′(l′′S)J ′′mJ ′′ |t(K)|k(l′′′S)J ′′′mJ ′′′ 〉 =
∑

mJ mJ ′

DJ ′′
mJ ′′ mJ (φK, θK, 0)DJ ′′′∗

mJ ′′′ mJ ′ (φK, θK, 0)〈k′(l′′S)J ′′mJ |t(K)|k(l′′′S)J ′′′mJ ′ 〉,

(A18)

where DJ
mJ mJ ′ (α, β, γ ) is the Wigner D function and α, β, and γ are Euler angles, defined in, for example, Ref. [71].

Equation (A18) can be used to obtain the correlation energy expression (18) from Eq. (A17).
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