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Di-neutron correlation in monopole two-neutron transfer modes in the Sn isotope chain
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We study microscopic structures of monopole pair vibrational modes and associated two-neutron transfer
amplitudes in neutron-rich Sn isotopes by means of the linear response formalism of the quasiparticle random
phase approximation (QRPA). For this purpose we introduce a method to decompose the transfer amplitudes
with respect to two-quasiparticle components of the QRPA eigenmode. It is found that pair-addition vibrational
modes in neutron-rich 132–140Sn and the pair rotational modes in 142–150Sn are commonly characterized by coherent
contribution of quasaiparticle states having high orbital angular momenta l � 5, which suggests transfer of a
spatially correlated neutron pair. The calculation also predicts a high-lying pair vibration, the giant pair vibration,
emerging near the one-neutron separation energy in 110–130Sn, and we find that they have the same di-neutron
characters as that of the low-lying pair vibration in 132–140Sn.
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I. INTRODUCTION

Nuclei close to the drip lines often exhibit exotic features
which are not present in stable nuclei. Representative examples
are the neutron halo and skin [1,2], which are associated with
the weak binding of the last neutrons. Another example is
the neutron pair correlation, which may be enhanced in the
surface region with the skin or halo [3–5]. Neutron pairing in
the low-density surface region may be related to the predicted
strong density dependence of pairing in neutron matter [6–10].

Because of the low-density enhancement, the pair cor-
relation in neutron-rich nuclei may lead to the di-neutron
correlation, i.e., a strong spatial correlation among the two
neutrons of the neutron Cooper pair. The di-neutron correlation
has been discussed for two-neutron halo nuclei, e.g., 11Li
[3,11–18], and recently its possibility is extended for heavier-
mass pair correlated nuclei [19–23]. The spatial correlation
has been discussed also for the closed-shell plus two-neutron
(two-neutron hole) configuration, e.g., 210Pb [24–26]. It is
argued also that the di-neutron correlation affects the nature of
excitation modes, a typical example of which is the soft dipole
excitation in the two-neutron halo nucleus 11Li [3,15,18,27].
It is also predicted that the soft octupole excitation in medium
heavy neutron-rich nuclei, e.g., 84Ni [28], and excited states of
clustering nuclei, e.g., 10Be [29], exhibit the di-neutron feature.

The most direct influence of the pair correlation is expected
to be seen in transfers of two nucleons. The pair correlation
induces collective excitation modes, known as pair vibration
and pair rotation, which accompany enhanced two-nucleon
transfer reaction cross sections [30–34]. Recently, two-neutron
transfer experiments have been conducted for some neutron-
rich nuclei [35–40]. Motivated by the above-mentioned inter-
ests and prospects of future experiments, theoretical studies
of two-neutron transfers in neutron-rich nuclei also have been
performed [41–48].

We have been investigating the two-neutron transfer modes
in neutron-rich Sn isotopes in order to explore possible
new features of pair vibration and pair rotation [44,45].
We adopt the nuclear energy density functional model, in
particular, the Skyrme-Hartree-Fock-Bogoliubov model, to
describe the pair-correlated ground state and the associated

pair rotational two-neutron transfer mode, and we apply the
quasiparticle random phase approximation (QRPA) to study
the pair vibrations and the associated two-neutron transfer
amplitudes. In a preceding work [45], where we described
monopole low-lying pair vibration in the whole isotope chain
100 � A � 150, we found a characteristic pair vibration in
132 � A � 140, which has a large pair-addition strength,
comparable to that of the ground-state pair-rotational mode,
and much larger than the independent-particle transitions. An
interesting feature is that the transition density of this pair
vibration mode has a long tail which reaches far outside the
nuclear surface r ∼ 15 fm.

One of the purposes of the present paper is to clarify
the nature of the characteristic pair vibration predicted in
our previous study [45] for neutron-rich Sn A = 132–140
isotopes. We shall analyze in detail the microscopic structure
of this mode by looking into the single-particle compositions.
We decompose the transition density and the QRPA phonon
amplitude with respect to two-quasiparticle configurations
forming the QRPA phonon. As shown later, we will find
that a large number of both weakly bound and unbound
quasineutron states contribute coherently to build up the
characteristic correlation in this mode. We will find further
that this correlation is consistent with what we expect for
a spatially correlated neutron pair, the di-neutron, which is
transferred in the pair vibration.

In the previous paper [45], we found also that the pair-
transfer strength associated with the pair rotation (the transition
between the ground states of the neighboring even nuclei)
significantly increases as the neutron number further increases,
i.e., in the isotopes beyond A = 140. In the present paper,
we shall also analyze microscopic structure of this enhanced
ground-state transfer. We will show that it is indeed related
to the characteristic pair vibration in 132–140Sn. In the present
study, we also aim at widening the scope of our study of
the pairing collectivity. Namely, we perform our numerical
calculation in a very wide interval A = 100–150 of the Sn
isotopic chain, including the stable isotopes, and we explore
the high-excitation-energy region ∼10–20 MeV, where we can
expect the giant pair vibration. We will discuss how the giant
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pair vibration, which we find in the isotopes A = 110–130, is
related to the low-lying pair vibration and the pair rotation in
the very neutron-rich nuclei A = 132–140 and A > 140.

II. TWO-QUASIPARTICLE COMPONENTS
OF THE QRPA MODE

A. Linear response formulation of the QRPA

In the present study, we adopt the Skyrme-Hartree-Fock-
Bogoliubov model to describe the pair-correlated ground
states, and apply a linear response formulation of the quasi-
particle random phase approximation (QRPA) to describe the
excitation modes [28,44,45,49]. The framework is essentially
the same as what we have adopted in the preceding study of
the two-neutron transfer in neutron-rich Sn isotopes [44,45].
Here we recapitulate only the basic framework with emphasis
on new aspects of the formulation in the present work.

We describe the nuclear response at the frequency ω with
multipolarity L by solving the linear response equation,⎛
⎜⎝

δρL(r, ω)

δρ̃+L(r, ω)

δρ̃−L(r, ω)

⎞
⎟⎠ =

∫
0
dr ′(Rαβ

0,L(r, r ′, ω)
)

×

⎛
⎜⎝

∑
q ′ κ

qq ′
ph (r ′)δρL(r ′, ω)/r ′2 + vext

0L (r ′)

κpair(r ′)δρ̃+L(r ′, ω)/r ′2 + ṽext
+L(r ′)

−κpair(r ′)δρ̃−L(r ′, ω)/r ′2 + ṽext
−L(r ′)

⎞
⎟⎠,

(1)

where δρL(r, ω) and δρ̃±L(r, ω) [collectively denoted
δραL(r, ω) hereafter] are the radial parts of δρL(r, ω) =
YLM (r̂)δρL(r, ω)/r2 and δρ̃±L(r, ω) = YLM (r̂)δρ̃±L(r, ω)/r2,
which are linear fluctuations in the normal density and the two
kinds of pair densities:

ρ(r, t) = 〈�(t)|ρ̂(r)|�(t)〉 (2)

= 〈�(t)|
∑

σ

ψ†(rσ )ψ(rσ )|�(t)〉, (3)

ρ̃±(r, t) = 〈�(t)| ˆ̃ρ±(r)|�(t)〉 (4)

= 〈�(t)|ψ†(r ↓)ψ†(r ↑) ± ψ (r ↑)ψ (r ↓)|�(t)〉.
(5)

Here κph(r) and κpair(r) are the residual interactions in the
particle-hole and the paring channels, respectively, and vext

0L (r)
and ṽext

±L(r) represent the external particle-hole field and the
pair-addition/pair-removal fields, respectively (see Ref. [44]
for details).

The unperturbed response function R
αβ
0,qL(r, r ′, ω) is ex-

pressed as

R
αβ
0,L(r, r ′, ω) = 1

2

∑
ii ′

|〈l′j ′||YL||lj 〉|2
2L + 1

×
{ 〈0|ρα(r)|ii ′〉〈ii ′|ρβ(r ′)|0〉

h̄ω + iε − Ei − Ei ′

− 〈0|ρβ(r ′)|ii ′〉〈ii ′|ρα(r)|0〉
h̄ω + iε + Ei + Ei ′

}
, (6)

with

〈ii ′|ρα(r)|0〉 ≡ φT
i (r)Aφ̄i ′(r), (7)

〈0|ρα(r)|ii ′〉 ≡ φ̄T
i ′ (r)Aφi(r), (8)

if we adopt the spectral representation. Here A are 2 × 2
matrices which correspond to the three kinds of densities
ρα(r) = ρ(r) and ρ̃±(r). Index i is a quantum number [nlj ]q
(q = n, p) of the one-quasiparticle state whose energy is
Ei and wave function is φi(rσ) = Yljm(rσ)φi(r)/r , where
φi(rσ) and its radial part φi(r) have two components, φi(r) =
[ϕ1,i(r), ϕ2,i(r)]T .

In the preceding paper [45], we adopted the continuum
version of the linear response QRPA, i.e., the continuum
QRPA [49], in which the unperturbed response function
is constructed in terms of the HFB Green’s function in
place of the spectral representation. The continuum QRPA
is appropriate to describe the response at energies above the
particle-emission threshold. However in this present work, we
use the unperturbed response function of Eq. (6) together with
the discretized quasiparticle eigenstates of the HFB equation.
As shown below, this enables us to express the microscopic
structure of the QRPA phonon and the transition densities in
terms of two-quasiparticle components.

B. Two-quasiparticle components of the QRPA phonon

It is customary to expresses the QRPA phonon operator as
a superposition of two-quasiparticle creation and annihilation
operators:

O
ν†
LM =

∑
i�i ′

1√
1 + δii ′

{
Xν

ii ′ [a
†
i a

†
i ′ ]LM − Y ν

ii ′[ai ′ai]LM

}
, (9)

with the two-quasiparticle operators defined by

[a†
i a

†
i ′ ]LM ≡

∑
mm′

〈jmj ′m′|LM〉a†
nljma

†
n′l′j ′m′ , (10)

[aiai ′ ]LM ≡
∑
mm′

〈jmj ′m′|LM〉ãnljmãn′l′j ′m′ , (11)

where Xν
ii ′ and Y ν

ii ′ are forward and backward amplitudes of a
two-quasiparticle component ii ′. Index ν stands for the QRPA
normal mode whose excitation energy is denoted as h̄ων . For
the time-reversal convention, we employ T anljmT † ≡ ãnljm =
(−)l−j+manlj−m.

The X and Y amplitudes are often obtained by diagonaliza-
tion of the QRPA matrix [50]. Below, we shall show that one
can also calculate the X and Y amplitudes on the basis of the
linear response formalism.

Let us consider transition densities

ρ
(tr)ν
αLM (r) = 〈0|ρ̂α(r)|ν〉, (12)

for the three kinds of densities ρ̂α(r) = ρ̂(r), ˆ̃ρ±(r). This
quantity can be expressed in the following two ways. First,
using the phonon creation operator O

ν†
LM that describes the
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excited state |ν〉 as |ν〉 = O
ν†
LM |0〉, Eq. (12) is written as

ρ
(tr)ν
αLM (r) = 〈0|[ρ̂α(r),Oν†

LM

]|0〉 (13)

=
∑
i�i ′

1√
1 + δii ′

{
Xν

ii ′ 〈0|[ρ̂α(r), [a†
i a

†
i ′ ]LM ]|0〉 − Y ν

ii ′ 〈0|[ρ̂α(r), [ai ′ai]LM ]|0〉} (14)

= YLM (r̂)
1

r2

∑
i�i ′

1√
1 + δii ′

{
(−)l

′
Xν

ii ′
〈l′j ′||YL||lj 〉∗√

2L + 1
〈0|ρα(r)|ii ′〉 + (−)lY ν

ii ′
〈l′j ′||YL||lj 〉∗√

2L + 1
〈ii ′|ρα(r)|0〉

}
. (15)

The other way is to use the density response δραL(r, ω) of the linear response formalism. In the linear response formalism, the
transition density can be calculated as

ρ
(tr)ν
αLM (r) = YLM (r̂)

[
− C

πr2
Im δραL(r, ων)

]
, (16)

where ων is the frequency of the QRPA normal mode. We then rewrite this by using the linear response equation [Eq. (1)] and
the unperturbed response function [Eq. (6)], and we obtain an expression for the transition density,

ρ
(tr)ν
αLM (r) = YLM (r̂)

1

r2

∑
i�i ′

1

1 + δii ′

([
− C

2π

〈l′j ′||YL||lj 〉2

2L + 1

1

h̄ων − Ei − Ei ′

×
∫

0
dr ′ ∑

β

〈ii ′|ρβ(r ′)|0〉
{∑

γ

κβγ (r ′) Im δργL(r ′, ων)

}]
〈0|ρα(r)|ii ′〉

+
[

C

2π

〈l′j ′||YL||lj 〉2

2L + 1

1

h̄ων + Ei + Ei ′

∫
0
dr ′ ∑

β

〈0|ρβ (r ′)|ii ′〉
{∑

γ

κβγ (r ′) Im δργL(r ′, ων)

}]
〈ii ′|ρα(r)|0〉

)
.

(17)

Note that since the density response δραL(r, ω) exhibits a pole behavior ∝1/(h̄ω + iε − h̄ων) at frequencies near the QRPA
eigen mode h̄ων , the external field vext

βL(r) in Eq. (1) is irrelevant here, provided that we take a sufficiently small value of ε. The
coefficient C is a normalization constant.

Comparing the above two definitions of the transition density, Eqs. (15) and (17), we obtain the expression for the forward
and backward amplitudes Xν

ii ′ and Y ν
ii ′ ,

Xν
ii ′ = (−)l

′+1

√
1 + δii ′

C

2π

〈l′j ′||YL||lj 〉√
2L + 1

1

h̄ων − Ei − Ei ′

∫
0
dr ′ ∑

β

〈ii ′|ρβ(r ′)|0〉
{∑

γ

κβγ (r ′)
1

r ′2 Im δργL(r ′, ων)

}
, (18)

Y ν
ii ′ = (−)l√

1 + δii ′

C

2π

〈l′j ′||YL||lj 〉√
2L + 1

1

h̄ων + Ei + Ei ′

∫
0
dr ′ ∑

β

〈0|ρβ(r ′)|ii ′〉
{∑

γ

κβγ (r ′)
1

r ′2 Im δργL(r ′, ων)

}
. (19)

The normalization constant C is determined to fulfill the normalization condition 〈0|[Oν
LM,O

ν†
LM ]|0〉 = ∑

i�i ′ |Xν
ii ′ |2 − |Y ν

ii ′ |2 = 1.

C. Decomposition of the transition densities

Once the X and Y amplitudes are obtained, it is straightfor-
ward to decompose the transition density with respect to the
two-quasiparticle components of the QRPA phonon:

ρ
(tr)ν
αLM (r) =

∑
i�i ′

ρ
(tr)ν
αLM,ii ′ (r), (20)

ρ
(tr)ν
αLM,ii ′ (r) = 1√

1 + δii ′

{
Xν

ii ′ 〈0|[ρ̂α(r), [a†
i a

†
i ′ ]LM ]|0〉

−Y ν
ii ′ 〈0|[ρ̂α(r), [ai ′ai]LM ]|0〉}. (21)

Here ρ
(tr)ν
αLM,ii ′ (r) is a partial contribution from a two-

quasiparticle configuration ii ′. Its radial part is expressed

as

ρ
(tr)ν
αLM,ii ′ (r) = YLM (r̂)ρ(tr)ν

αL,ii ′ (r), (22)

ρ
(tr)ν
αL,ii ′ (r) = 〈l′j ′||YL||lj 〉∗√

2L + 1

1

r2

{
(−)l

′
Xν

ii ′ 〈0|ρα(r)|ii ′〉

+ (−)lY ν
ii ′ 〈ii ′|ρα(r)|0〉}. (23)

In the present paper, we describe the pair transfer modes in
terms of operators

P †(r) = ψ†(r ↓)ψ†(r ↑) = 1
2 ( ˆ̃ρ+(r) + ˆ̃ρ−(r)), (24)

P (r) = ψ(r ↑)ψ(r ↓) = 1
2 ( ˆ̃ρ+(r) − ˆ̃ρ−(r)), (25)

which add and remove a spin-singlet (S = 0) neutron pair,
respectively. We then describe transition densities for these
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pair-addition and pair-removal operators, defined by

P
(ad)
νLM (r) ≡ 〈0|ψ(r ↓)ψ(r ↑)|ν〉 = YLM (r̂)P (ad)

νL (r), (26)

P
(rm)
νLM (r) ≡ 〈0|ψ†(r ↓)ψ†(r ↑)|ν〉 = YLM (r̂)P (rm)

νL (r), (27)

which are decomposed as

P
(ad/rm)
νL (r) =

∑
i�i ′

P
(ad/rm)
νL,ii ′ (r), (28)

and

P
(ad/rm)
νL,ii ′ (r) = 1√

1 + δii ′

〈l′j ′||YL||lj 〉∗
2r2

× [
(−)l

′
Xν

ii ′ {〈0|ρ̃+(r)|ii ′〉 ± 〈0|ρ̃−(r)|ii ′〉}
+ (−)lY ν

ii ′ {〈ii ′|ρ̃+(r)|0〉 ± 〈ii ′|ρ̃−(r)|0〉}].
(29)

We can also consider the transition density of the pair-
rotational ground-state transfer [45]. The transition density is
also expanded using the quasiparticle states:

P (ad/rm)
gs (r) = 〈0|ψ†(rσ )ψ†(rσ̃ )|0〉 (30)

= −〈0|
∑
ii ′

∑
mm′

ϕ2,i(rσ̃ )ϕ∗
1,i ′ (rσ̃ )aia

†
i ′ |0〉 (31)

= − 1

4
√

π

1

r2

∑
i

ϕ2,i(r)ϕ∗
1,i(r)Y00(r̂). (32)

Then, the radial transition density of the ground state transfer
and its decomposition are

P (ad/rm)
gs (r) =

∑
i

P
(ad/rm)
gs,ii (r), (33)

P
(ad/rm)
gs,ii (r) = − 1

4
√

π

1

r2
(2j + 1)ϕ2,i(r)ϕ∗

1,i(r). (34)

D. Details of the calculation

We assume the spherical ground states for the proton closed-
shell nuclei Sn (Z = 50). The Skyrme interaction parameter
SLy4 [51] is chosen for the particle-hole part of the HFB
mean field. The Landau-Migdal approximation is employed
for the RPA residual interaction in the particle-hole channel.
For the pairing interaction we adopt the density-dependent
delta interaction (DDDI) [4,12,52,53]. The DDDI is given
by v

pair
q (r, r ′) = 1

2Vq(r)δ(r − r ′), where Vq(r) is the pairing
interaction strength and is a function of the neutron and proton
densities. We adopt the following form:

Vq(r) = v0

[
1 − η

(
ρq(r)

ρ0

)α]
. (35)

The value v0 = −458.4 MeV fm3 is chosen to reproduce the
scattering length a = −18.5 fm of the bare neutron-neutron
interaction in the 1S channel. The parameter η = 0.71 is
adjusted to reproduce the experimental pairing gap in 120Sn.
The other parameters are ρ0 = 0.08 fm−3 and α = 0.59 [8,54].

We solve the HFB equation in the coordinate space
representation using the polar coordinate system. The radial
coordinate space is truncated at rmax = 20 fm. We truncate
the quasiparticle states by putting the maximum quasiparticle
energy Emax = 60 MeV and the largest value of the orbital
angular quantum number lmax = 12. The quasiparticle states
in the continuum energy region are obtained with the box
boundary condition φ(rmax) = 0, and they are all discretized.
All other details can be found in Refs. [44,45].

We calculate the strength function SPad0(h̄ω) ≡∑
ν |〈ν|P †

00|0〉|2δ(h̄ω − h̄ων) for the monopole (L = 0)
pair-addition transfer and the strength function
SPrm0(h̄ω) ≡ ∑

ν |〈ν|P00|0〉|2δ(h̄ω − h̄ων) for the pair-
removal transfer, where, the pair-addition operator P

†
LM and

pair-removal operator PLM ,

P
†
LM =

∫
d r YLM (r̂)ψ†(r ↓)ψ†(r ↑), (36)

PLM =
∫

d r YLM (r̂)ψ(r ↑)ψ(r ↓), (37)

are creation and annihilation operators of the S = 0 neutron pair
with the total angular momentum L. These strength functions
are evaluated using the solutions of the linear response
equation [Eq. (1)] [44]. Concerning the small imaginary part
iε appearing in the response function [Eq. (6)], we choose
ε = 0.5 keV, which is much smaller than the value ε = 50 keV
adopted in Ref. [45]. The QRPA eigenenergies h̄ων are then
extracted by searching the peak energies of the pair-addition
strength function SPad0(h̄ω). The pair-addition strength

B(Pad0; gs → ν) ≡ |〈0|P00|ν〉|2 (38)

associated with individual QRPA eigen modes is evaluated
by integrating the strength function SPad0(h̄ω) in an energy
interval ∈ [h̄ων − 10ε, h̄ων + 10ε]. We also calculate the
strength B(Pad0; gs → gs) of the ground-state transfer (the
pair rotation) as B(Pad0; gs → gs) = | ∫ r2P (ad)

gs (r)dr|2 using
the transition density P (ad)

gs (r).

III. VARIOUS COLLECTIVE PAIR-TRANSFER
MODES IN SN ISOTOPES

Figures 1(a) and 1(b) show the strength functions SPad0(h̄ω)
and SPrm0(h̄ω) for the monopole (L = 0) pair-addition and
pair-removal transfers in neutron-rich 134Sn and stable 120Sn,
respectively. In Fig. 1 we also show results of the continuum
QRPA calculation with solid curves. In this figure and only
here, we used a slightly large value of the imaginary constant
ε = 50 keV in order to make the peaks visible. It is noted
here that most of the peaks seen in the pair-addition strength
function SPad0(h̄ω) in the high-energy region above the two-
neutron separation energy (the second arrow) are fictitious
peaks originating from the discretization. We shall focus
only on peaks for which the discretized and the continuum
calculations give essentially the same peak energies and
strengths.

First, we pay attention to the low-lying peaks at 2 � h̄ω �
4 MeV. As already discussed in Ref. [45], a prominent feature
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FIG. 1. (Color online) The strength function SPad0(h̄ω) for the pair-addition mode, plotted in the upper panel, and the strength function
SPrm0(h̄ω) for the pair-removal mode (in the lower panel) in (a) 134Sn and (b) 120Sn. The dotted curves are the results of the discretized QRPA
while the solid curves are the result of the continuum QRPA calculation. The smoothing parameter ε = 50 keV is adopted in this figure.
The arrows indicate the one- and the two-neutron separation energies S1n = 3.31 MeV and S2n = 5.13 MeV for 134Sn, S1n = 9.36 MeV and
S2n = 16.20 MeV for 120Sn.

in neutron-rich 134Sn is the large peak located at h̄ω ≈ 3.8 MeV
in the pair-addition strength function SPad0(h̄ω). The pair-
addition strength of this pair vibration is several times larger
than that of the low-lying pair vibration at h̄ω ≈ 2.4 MeV in
stable 120Sn.

Let us next look at higher-lying pair-transfer modes
up to h̄ω = 20 MeV, extending our previous study which
covered only h̄ω < 10 MeV. There is no significant peak
in the pair-addition strength SPad0(h̄ω) in the high-frequency
region in neutron-rich 134Sn except the smooth strength
distribution spread broadly above the two neutron separation
energy. In stable 120Sn, on the other hand, two modes with
large pair-addition strength appear at h̄ω ≈ 12.4 MeV and
h̄ω ≈ 15.9 MeV. They are located below the two-neutron
separation energy S2n = 16.2 MeV. In the continuum QRPA
calculation, these peaks have physical escaping widths since
they are located above the one-neutron separation energy
S1n = 9.36 MeV, but their widths are actually very small.
As we show later, these two peaks can be regarded as
so-called giant pair vibration (GPV) [55–57]. The GPV is
a collective pair-transfer mode of adding or removing two
neutrons in the next major shell beyond the valence shell. In
the present calculation, the giant pair vibration consists of two
peaks. We call these two peaks GPV1 (h̄ω ≈ 12.4 MeV) and
GPV2 (h̄ω ≈ 15.9 MeV), and we discuss them in detail in
Sec. V. The giant pair vibrations exist in all the isotopes with
110 � A < 132.

In the pair-removal strength function SPrm0(h̄ω) in 134Sn
[Fig. 1(a)] there exists a giant pair-removal vibration with
large strength at h̄ω ≈ 8.7 MeV. It corresponds to the neutron
pair-removal from the N = 50–82 shell [58]. In this paper,
however, we do not investigate the pair-removal modes.

In Fig. 2, we show the systematical behavior of the
pair-additional strength B(Pad0; gs → ν) for the two gi-
ant pair vibrations GPV1 and GPV2, as well as the
strength B(Pad0; gs → ν) of the low-lying pair vibration, and
the strength B(Pad0; gs → gs) for the pair-rotational ground-
state transfer in the Sn isotopes A = 110–150. It is seen that the
pair-addition strengths of GPV1 and GPV2 increase with the

neutron number, and at A ∼ 130 they become comparable to
those of the characteristic low-lying pair vibrations and those
of the ground-state transfer in 132–140Sn.

The values of the pair-addition strength and the excitation
energy for the giant pair vibrational states are also listed in
Tables III and IV.

IV. MICROSCOPIC STRUCTURES OF LOW-LYING
PAIR VIBRATIONAL MODES

A. Dominant two-quasiparticle configurations

In Ref. [45], we discussed the collectivity of the low-lying
pair-addition vibration (h̄ων = 3.81 MeV) in 134Sn by com-
paring its strength B(Pad0) = 3.23 with the single-particle
strengths Bs.p.(Pad0) = (2j + 1)/8π = 0.18 and 0.15, evalu-
ated for pure independent two-neutron configurations [2f7/2]2
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 (
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Sn isotopes

ground state
pair vibration
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FIG. 2. (Color online) The neutron pair-addition strength
B(Pad0; gs → ν) for the giant pair vibrational modes GPV1 and
GPV2, plotted with filled circles and diamonds, respectively, and
the same quantity for the low-lying pair vibrational mode, plotted
with open diamonds, as well as the neutron pair-addition strength
B(Pad0; gs → gs) for the pair-rotational ground-state transfer (open
circles), in even-even Sn isotopes.
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TABLE I. The forward amplitude Xν
ii′ and the backward

amplitude Y ν
ii′ for the low-lying pair vibration modes in 134Sn

(h̄ων = 3.81 MeV) and in 120Sn (h̄ων = 2.44 MeV). The two-
quasiparticle configurations which have the largest values of |Xν

ii′ |
are listed.

Ei + Ei′ Xν
ii′ Y ν

ii′

134Sn [3p3/2]2 4.49 0.752 0.0006
h̄ων = 3.81 MeV [1h9/2]2 6.71 −0.368 −0.0017

[2f7/2]2 1.50 −0.297 −0.0325
[2f5/2]2 6.35 −0.279 −0.0013
[1i13/2]2 9.61 0.241 0.0021
[3p1/2]2 5.52 0.177 −0.0005

[3p3/2][4p3/2] 6.78 0.101 −0.0004
120Sn [1h11/2]2 3.60 0.659 −0.059
h̄ων = 2.44 MeV [2d3/2]2 2.52 0.606 0.014

[3s1/2]2 2.85 −0.436 −0.021
[1g7/2]2 4.80 0.087 −0.072
[2d5/2]2 6.76 −0.079 0.039

and [3p3/2]2, respectively. We observe a large collective
enhancement of a factor of more than 10. In this section,
we reveal the origin of this collectivity by examining the
microscopic structure of this mode.

First we evaluate and analyze the forward and backward
amplitudes Xν

ii ′ and Y ν
ii ′ for the two-quasiparticle configura-

tions, given by Eqs. (18) and (19), respectively. We find that
in the two-neutron transfer modes discussed above almost
all the amplitudes (�99%) are exhausted by neutron two-
quasiparticle states. In the following, we discuss only the
neutron amplitudes.

Let us consider the pair vibration at h̄ων = 3.81 MeV
in neutron-rich 134Sn. Table I lists the two-quasiparticle
components having the largest absolute values of the forward
amplitude |Xν

ii ′ |. The component with the largest amplitude
is [3p3/2]2 with Xν

ii ′ = 0.752. There are seven components
whose X amplitudes satisfy |Xν

ii ′ | > 0.1: [3p3/2]2, [1h9/2]2,
[2f7/2]2, [2f5/2]2 [1i13/2]2, and [3p1/2]2. The main components
indicate that the low-lying pair vibrational state in 134Sn has
some degree of collectivity. The Hartree-Fock(HF) single-
particle energies of neutrons are shown in Fig. 3. The
quasiparticle orbits of the main components are those located
near the Fermi energy, all of which are either weakly bound or
unbound resonant quasiparticle states.

In the case of the low-lying pair vibration (h̄ων =
2.44 MeV) in stable 120Sn, there are only three components,
[1h11/2]2, [2d3/2]2, and [3s1/2]2, having large forward ampli-
tudes satisfying |Xν

ii ′ | > 0.1; see Table I. It is evident that the
collectivity is smaller here than that of the pair vibration in
134Sn. This is consistent qualitatively with a much smaller
value of the pair-addition strength B(Pad0) = 0.40 in 120Sn
than B(Pad0) = 3.16 in 134Sn.

Next, we analyze the transition density P
(ad)
νL (r) by looking

into the decomposed transition densities P
(ad)
νL,ii ′ (r) [Eq. (29)]

associated with the main two-quasiparticle configurations.
They are shown in Figs. 4(a) and 4(b), for the low-lying pair
vibration in 134Sn and 120Sn, respectively.
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2d3/2

1h11/2

2f7/2

3p3/2
3p1/2 2f5/2

1h9/2

1h11/2

2f7/2

3p1/23p3/2

FIG. 3. (Color online) The Hartree-Fock single-particle energies
eHF of neutrons in 120Sn, 134Sn, and 142Sn. The dashed lines show the
neutron Fermi energies λn = −8.10, −2.56, and −1.42 MeV for the
three isotopes.

We see in Fig. 4(a) the following characteristics of the
pair vibration in 134Sn. The individual decomposed transition
densities have much smaller amplitudes than that of the total
transition density. Even if we sum the transition densities
of the largest five components (the thick solid curve in the
inset), it accounts for only approximately half of the total
transition density. The situation is essentially the same also
for a sum of the largest ten components (the thick dotted
curve). We note also that the tail of the total transition
density extending to r ∼ 16 fm is not reproduced by the
largest five (ten) components. The component [3p3/2]2 has the
largest tail among the five (note that 3p3/2 is a weakly bound
single-particle orbit with low angular momentum), but its tail
amplitude is quite smaller than that of total transition density.
We thus find that contributions from small components other
than the largest five or ten play important role in some way
to produce the large pair-addition strength B(Pad0) and the
characteristic transition density of the low-lying pair vibration
in 134Sn.

The situation of the low-lying pair vibration in 120Sn is
different. As shown in Fig. 4(b), the [1h11/2]2 component
has a dominant contribution to the pair-addition transition
density, amounting more than two-thirds of the total transition
density around the surface. Because the HF single-particle
energy of the 1h11/2 orbits in 120Sn is located deeply at
e1h11/2 = −7.00 MeV, and the Fermi energy is also a deep
λn = −8.10 MeV (see Fig. 3), the transition density of the
component [1h11/2]2 as well as the total do not extend far
outside the surface.

B. High-l two-quasiparticle configurations
and di-neutron correlation

We have seen in the previous section that the main
components of the pair vibration mode in 134Sn reproduce only
about a half of the total transition density. In this subsection
we investigate how other small two-quasiparticle components
contribute.

For this purpose, we put all the two-quasiparticle config-
urations into subgroups which are specified with the orbital
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FIG. 4. (Color online) (a) The decomposed transition densities r2P
(ad)
νL,ii′ (r) for the largest two-quasiparticle components of the low-lying

pair vibration mode (h̄ων = 3.81 MeV) in 134Sn (see Table I). In the inset, shown also are the total transition density r2P
(ad)
νL (r) and partial sums

of the decomposed transition densities of the largest five and ten two-quasiparticle components. (b) The same as (a), but for the low-lying pair
vibration mode (h̄ων = 2.44 MeV) in 120Sn. The arrow indicates the neutron rms radii RN,rms(=

√〈r2
n〉) = 4.93 fm and 4.73 fm for 134Sn and

120Sn, respectively.

angular momentum l of the quasiparticle states. Note that we
have only two-quasiparticle combinations ii ′ = [nlj ][n′l′j ′]
satisfying l = l′ and j = j ′ for 0+ modes. We then calculate a
partial sum of the decomposed transition densities P

(ad)
νL,lcut

(r) =∑
ii ′,l�lcut

P
(ad)
νL,ii ′ (r), where the orbital angular momenta l are

taken into account up to cutoff values lcut. Figures 5(a)
and 5(b) show the l-cut transition densities P

(ad)
νL,lcut

(r) with
lcut = 0, 1, 2, . . . ,12 for low-lying pair-addition vibration in
neutron-rich 134Sn and in stable 120Sn, respectively.

Let us first look at the case of 134Sn, i.e., Fig. 5(a). It
is clearly seen that a large number of the orbital angular
momenta covering up to the maximum value lmax = 12 have
non-negligible contributions, especially at larger values of r .
The highest orbital angular momentum of the occupied HF
single-particle orbits in 134Sn is locc = 5 (1h11/2). The sum up
to lcut = locc = 5 can account for only about a half of the total
transition density. The other half comes from the contributions
of quasiparticle states with higher orbital angular momenta
l > 5, which are all unbound continuum states. A remarkable
feature is that at large distances, r � 8 fm, contributions from

different l’s are similar in magnitude, depending only weakly
on l, and their contributions are accumulated coherently
to build up the total transition density of the pair-addition
vibration.

The coherent contribution up to high orbital angular
momenta is a signature of the di-neutron correlation. Let
us recall that a two-particle wave function made of the
J = 0 coupled single-particle states brings about an angular
correlation

∑
m Y ∗

lm(r̂1)Ylm(r̂2) ∼ Pl(cosθ12) with respect to
the relative angle θ12 between the positions r̂1 and r̂2 of the
two particles. Since Pl(cosθ12) is peaked at θ12 = 0 and always
positive for θ12 � 1/l, and if we superpose them coherently
over a large number of l in a range 0 � l � lcorr, the obtained
two-particle wave function may exhibit an angular correlation
at small relative angles θ12 � 1/lcorr. The validity of this
argument is confirmed for the Cooper pair wave function
and the pair density ρ̃(r) in the HFB ground state [19,20].
Extending this argument to the pair-addition transition density
P

(ad)
Lν (r), we deduce that the coherent contribution up to high

orbital angular momenta suggests the di-neutron correlation,
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TABLE II. The forward amplitudes Xν
ii′ and the backward ampli-

tudes Y ν
ii′ for the giant pair vibrations, GPV1 (h̄ων = 12.36 MeV) and

GPV2 (h̄ων = 15.88 MeV), in 120Sn. The largest two-quasiparticle
components satisfying |Xν

ii′ | > 0.1 are listed.

Ei + Ei′ Xν
ii′ Y ν

ii′

120Sn [2f7/2]2 13.53 0.936 0.0005
h̄ων = 12.36 MeV [1h9/2]2 19.77 −0.151 −0.0006
GPV1 [1i13/2]2 22.41 0.145 0.0007

[2f5/2]2 18.61 −0.122 −0.0003
[3p3/2]2 16.27 0.116 0.0002
[1h11/2]2 3.60 −0.114 0.0129

h̄ων = 15.88 MeV [3p3/2]2 16.27 0.877 0.0003
GPV2 [2f7/2]2 13.53 −0.228 0.0015

[2d5/2][4d5/2] 16.29 0.165 0.0015
[3p1/2]2 17.14 −0.156 −0.0001
[1h9/2]2 19.77 −0.154 −0.0019
[2f5/2]2 18.61 −0.154 −0.0006
[1i13/2]2 22.41 0.121 −0.0023

a spatial correlation at short distances in the pair-addition
transition density [28]. In other words, it suggests transfer of
“a di-neutron” in exciting the low-lying pair vibrational mode
in 134Sn.

Concerning the pair vibration in 120Sn, Fig. 5(b), we see
some coherent contributions of high-l quasiparticles with 5 <
l � 8–9, but it to a much lesser extent than that in 134Sn. The
difference is very clear for the tail region r � 8 fm; in 134Sn
the coherent high-l contribution is evident while in 120Sn the
transition density itself is vanishing.

V. GIANT PAIR VIBRATIONS IN A < 132 ISOTOPES

Let us analyze the high-lying pair-addition modes GPV2 at
h̄ων = 15.88 MeV and GPV1 at h̄ων = 12.36 MeV in 120Sn
[Fig. 1(b)].

We first note that the pair-addition strengths of these modes,
B(Pad0) = 1.374 of GPV2 and B(Pad0) = 2.332 of GPV1,

are about eight times larger than the single-particle values
Bs.p.(Pad0) = 0.16 for j = 3/2 and Bs.p.(Pad0) = 0.32 for
j = 7/2, respectively.

Let us first examine the phonon amplitudes. Table II shows
the forward amplitudes Xν

ii ′ of the dominant two-quasiparticle
components of GPV1 and GPV2. Here the two-quasiparticle
configurations with large amplitudes |Xν

ii ′ | > 0.1 are plotted.
All these dominant components, except [2d5/2][4d5/2], are
made of the quasiparticle states [2f7/2], [3p3/2], [3p1/2],
[1h9/2], [2f5/2], and [1i13/2], which all belong to the shell next
to the valence shell, i.e., the one above the N = 82 shell gap
(see Fig. 3). This confirms that GPV1 and GPV2 are indeed
the giant pair vibrations. (Note that the two-quasiparticle
configuration [2d5/2][4d5/2] is a particle-hole excitation from
the bound 2d5/2 orbit to a discretized continuum state in the
partial wave d5/2. This component contributes very little to
the pair-transfer mode.) Even though the largest components
[2f7/2]2 in GPV1 and [3p3/2]2 in GPV2 have predominant
amplitudes Xν

ii ′ = 0.94 and 0.88, respectively, the number (∼7)
of large components which satisfy |Xν

ii ′ | > 0.1 show a degree
of collectivity similar to that of the pair vibration in 134Sn.

Figures 6(a) and 6(b) show the transition densities P
(ad)
νL (r)

of the GPV2 and GPV1 modes, respectively. It is seen that the
transition densities extend to far outside the nuclear surface,
reaching r ∼ 16 and r ∼ 14 fm, respectively. Plotted are also
the decomposed transition densities P

(ad)
νL,ii ′ (r) for the largest

five components listed in Table II. In the GPV2 mode [see
the inset of Fig. 6(a)], the amplitude of transition density
of the main component [3p3/2]2 is significantly smaller than
that of the total transition density. Even if we consider the
superposition of the decomposed transition densities with the
largest five components, it reproduces only one-quarter of
the total transition density of the GPV2 mode. A similar situa-
tion is observed also in the case of GPV1 [Fig. 6(b)], where the
most dominant component [2f7/2]2 accounts for only one-third
of the maximum of the total transition density, and a sum of
the largest five components gives only a bit more than a half.
The large components alone are not sufficient to account for
the collectivity of GPV1 and GPV2, especially that of GPV2.
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FIG. 6. (Color online) (a) The decomposed transition densities r2P
(ad)
νL,ii′ (r) for the largest two-quasiparticle components of the giant pair vi-

bration GPV2 at h̄ων = 15.88 MeV in 120Sn (see Table II). In the inset, shown also are the total transition density r2P
(ad)
νL (r) and a partial sum of the

decomposed transition densities of the largest five two-quasiparticle components. The arrow indicates the neutron rms radius RN,rms = 4.73 fm.
(b) The same as (a) but for the giant pair vibration GPV1 at h̄ων = 12.36 MeV in 120Sn.
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FIG. 7. (Color online) The l-cut transition densities r2P
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(h̄ων = 15.88 MeV) and (b) GPV1 (h̄ων = 12.36 MeV) in 120Sn. The arrow indicates the neutron rms radius RN,rms.

We also analyze the microscopic structure of these modes
in terms of the orbital angular momentum l of the quasiparticle
orbits. The method is the same as what we have done
for the low-lying pair vibration, i.e., we plot partial
sums of the decomposed transition densities P

(ad)
νL,lcut

(r) =∑
ii ′,l�lcut

P
(ad)
νL,ii ′ (r), for various values of the angular momen-

tum cutoff lcut. The results are shown in Fig. 7.
It is seen in both Figs. 7(a) and 7(b) that two-quasiparticle

components with different l’s contribute coherently, and
the contributions from high-l states (with l > locc = 5) are
significant. The latter feature is very strong in the external
region r � 8 fm of GPV2 [Fig. 7(a)]. This is quite similar
to the features observed for the low-lying pair vibration in
134Sn [Fig. 5(a)]. Applying the same arguments on Fig. 5(a),
we deduce that the di-neutron correlation appears also in the
GPV2 mode in the stable 120Sn isotope, and that the GPV1
mode also exhibits the same feature, but to a lesser extent.
This is in contrast to the low-lying pair vibration in 120Sn
[Fig. 5(b)], where the di-neutron feature is seen only weakly.

VI. PAIR ROTATION

In this section we show the microscopic structure of the pair
rotation, i.e., the transfer mode populating the ground state of
the neighboring N + 2 isotope.

We decompose the transition density P (ad)
gs (r) with respect

to the quasiparticle states involved, as is shown in Eqs. (33) and
(34). We then introduce a partial sum specified by the orbital
angular momentum cutoff lcut as P

(ad)
gs,lcut

(r) = ∑
i,l<lcut

P
(ad)
gs,ii(r)

[cf. Eq. (33)]. This decomposition is shown in Figs. 8(a)–8(c)
for the ground-state transfer of 120Sn, 134Sn, and 142Sn,
respectively.

The amplitude in the external region develops significantly
with increasing neutron number, from 120Sn to 134Sn and
142Sn. In addition to this overall feature (discussed already in
Ref. [45]), we find here that the high-l contribution (with l � 5)
to the transition density grows with increasing neutron number.
Looking at r = 6 fm where the plotted transition density is
close to the largest value, the high-l contributions are ∼20%,
∼30%, and ∼40% in 120Sn, 134Sn, and 142Sn, respectively. It
is also obvious that all high l’s contribute coherently to build

up the pair-addition transition density P (ad)
gs (r). In short, the

features suggesting the di-neutron correlation are seen well in
the pair rotational mode in 134Sn, and especially in 142Sn, but
not very significantly in 120Sn.

It is noted here that the Fermi energies in 134Sn and 142Sn
are small (λn = −2.56 and −1.42 MeV, respectively), and the
lowest-energy quasiparticle states in these isotopes are 3p1/2,
3p3/2, and 2f7/2 states (see Fig. 3). However, the contribution
of these quasiparticle states to the pair-addition transition
density is not very large as seen in the curve with lcut = 3.
The high-l quasiparticle states, which give the dominant part
of the transition density in the external region, are all unbound
quasiparticle states in the continuum energy region. This is
one of the mechanisms that make the transition density very
extended in 134Sn and 142Sn.

All the above-mentioned features of the pair rotation in
134Sn and 142Sn have some similarity to those of the low-lying
pair vibration in 134Sn and the GPV’s in the isotopes with
A < 132, discussed in the previous sections.

VII. SYSTEMATICS

In order to clarify the isotopic trends of the low-lying pair
vibration, the giant pair vibration and the pair rotation, we
have performed systematic numerical calculations for all the
even-N isotopes from A = 120 to A = 150. In 110–130Sn, we
systematically observe two peaks of the high-lying giant pair
vibrations, GPV1 and GPV2. In 132Sn, we find two low-lying
pair vibrations in the pair-addition channel. The lowest one,
denoted PV1 hereafter, can be regarded as a pair-addition
mode populating the ground state of 134Sn, while the second
one, denoted PV2, is another pair-addition mode populating
the second 0+ state in 134Sn. (Note that in the N = 82
closed-shell nucleus 132Sn in which the neutron gap vanishes,
the QRPA equation decomposes into the particle-hole, particle-
particle, and hole-hole RPA equations. The lowest and the
second excited pair vibrations PV1 and PV2 in 132Sn are the
eigenmodes of the particle-particle RPA.) In 134–140Sn we find
the characteristic low-lying pair-addition vibration which we
discussed in Sec. IV and in Ref. [45]. In 142–150Sn, the pairing
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FIG. 8. (Color online) The l-cut transition densities r2P
(ad)
gs,lcut

(r) with lcut = 0, 1, 2, . . . ,12 for the pair rotational modes in (a) 120Sn,
(b) 134Sn and (c) 142Sn. The arrow indicates the neutron rms radius RN,rms = 4.73 fm, 4.93 fm and 5.10 fm for 120Sn, 134Sn and 142Sn,
respectively.

collective mode having a large transfer strength is only the pair
rotation. (There exist low-lying monopole modes having very
small strength in 142–150Sn (see Fig. 2), but we do not discuss
these in this paper. Note also that the GPV in the pair-addition
mode does not exist in the isotopes with A � 132. This is
presumably due to the strong continuum coupling which does
not allow most of the single-particle states in the next shell
N > 126 to form resonances.)

From the systematic analysis, we find the following series
and relations connecting the above mentioned various pair-
transfer modes that appear in different regions of the Sn
isotopes.

(i) The giant pair vibration GPV2 in 120–130Sn, the second
excited pair vibration PV2 in 132Sn, and the low-lying
pair vibration in 134–140Sn.

(ii) The giant pair vibration GPV1 in 120–130Sn, the lowest
pair vibration PV1 in 132Sn, and the pair rotation in
134–140Sn.

(iii) The pair rotation in 142–150Sn and the above two series
(i) and (ii).

A. Series (i)

We first discuss series (i). The forward amplitudes Xν
ii ′ of

the GPV2 in 120–130Sn, the second excited pair vibration PV2
in 132Sn, and the low-lying pair vibration in 134–140Sn are listed
in Table III for the largest ten two-quasiparticle components.

It is seen that the X amplitudes of the GPV2 are very
similar for all the isotopes in the interval A = 120–130. The
largest is the two-quasiparticle configuration [3p3/2]2 and
the other largest components are [2f7/2]2, [3p1/2]2, [1h9/2]2

[2f5/2]2, and [1i13/2]2. The X amplitudes of them all vary
only gradually with changing the neutron number. A slight
increase of collectivity is seen; for instance, the X amplitude
of [1i13/2]2, the fifth largest in most cases, increases from
0.120 in 120Sn to 0.193 in 130Sn. This is consistent with the
increase of the pair-addition strength B(Pad0) (Fig. 2 and
Table III).

We now compare the X amplitudes of the GPV2 in 128,130Sn
with those of the second pair vibration PV2 in 132Sn and the
low-lying pair vibration in 134Sn. A similarity is obvious for
the X amplitudes of the largest components [3p3/2]2, [2f7/2]2,
[3p1/2]2, [1h9/2]2, [2f5/2]2, and [1i13/2]2; the X amplitudes
are smoothly connected among the GPV2 in 120–130Sn, PV2
in 132Sn, and the low-lying pair vibration in 134Sn. Further
increasing the neutron number to A = 136, 138, we find a
continuation of the similarity for the low-lying pair-vibration
in 136,138Sn. In A = 140, we can still trace the same similarity
to some extent, but at the same time the variation from A = 138
to A = 140 becomes slightly large.

Figure 9(a) shows the pair-addition transition densities for
the series. We can confirm that the transition densities of the
GPV2 modes in 120–130Sn are smoothly connected to that for
the pair-addition vibration in 132–138Sn.
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TABLE III. The forward amplitudes Xν
ii′ of the giant pair vibration GPV2 in 120–130Sn, of the second excited pair vibration PV2 in 132Sn,

and of the low-lying pair vibration in 134–140Sn. The two-quasiparticle components having ten largest values of |Xν
ii′ | are listed for each mode.

The excitation energy h̄ων and the strength B(Pad0; gs → ν) are also listed.

GPV2 PV2 Low-lying pair vibration
120Sn 122Sn 124Sn 126Sn 128Sn 130Sn 132Sn 134Sn 136Sn 138Sn 140Sn

h̄ων (MeV) 15.88 15.12 14.42 13.81 13.27 12.78 8.35 3.81 3.21 2.46 1.38
B(Pad0) (fm0) 1.374 1.545 1.682 1.816 2.023 2.248 2.928 3.233 3.721 4.615 2.932

[3p3/2]2 0.877 0.896 0.886 0.870 0.855 0.830 0.768 0.752 0.723 0.676 0.479
[2f7/2]2 −0.228 −0.228 −0.230 −0.236 −0.245 −0.259 −0.296 −0.297 −0.302 −0.323 −0.764
[2d5/2][4d5/2] 0.165
[3p1/2]2 −0.156 −0.158 −0.159 −0.161 −0.164 −0.167 −0.172 −0.177 −0.185 −0.193 −0.149
[1h9/2]2 −0.154 −0.174 −0.193 −0.214 −0.243 −0.282 −0.344 −0.368 −0.402 −0.449 −0.360
[2f5/2]2 −0.154 −0.169 −0.183 −0.198 −0.217 −0.240 −0.276 −0.279 −0.289 −0.309 −0.239
[1i13/2]2 0.120 0.131 0.142 0.154 0.171 0.193 0.231 0.241 0.259 0.288 0.229
[3p3/2][4p3/2] 0.088 0.092 0.093 0.094 0.095 0.098 0.103 0.101 0.100 0.100 0.071
[1g7/2][3g7/2] −0.086
[3p1/2][4p1/2] −0.053 −0.056 −0.058 −0.059 −0.060 −0.062 −0.067 −0.066 −0.067 −0.069 −0.051
[2f5/2][3f5/2] −0.045 −0.047 −0.044 −0.049 −0.051 −0.056 −0.056 −0.058 −0.061 −0.045
[1h11/2]2 −0.045
[2d3/2][4d3/2] 0.071 −0.093
[2d5/2][3d5/2] 0.054
[2f7/2][3f7/2] 0.053 0.060
[3g9/2]2 0.047 0.051 0.045
[2j15/2]2 0.058

B. Series (ii)

The second series is identified among the GPV1 modes in
120–130Sn, the lowest pair vibration PV1 in 132Sn, and the pair
rotations in the isotopes 134–140Sn. The latter two populates the
ground states in neighboring N + 2 isotopes.

We show in Table IV the X amplitudes of two-quasiparticle
components for the giant pair vibration GPV1 modes in
120–130Sn and for the lowest pair-addition vibration PV1
in 132Sn. The main components include [2f7/2]2, [1h9/2]2,
[1i13/2]2, [2f5/2]2, and [3p3/2]2 (they are all shared with the
GPV2 mode), and the largest is [2f7/2]2 (this is different
from GPV2). From the X amplitudes of these components,

we find that the GPV1 modes in 120–130Sn have a common
microscopic structure with only small variation with N . It is
seen also that the lowest pair vibration mode PV1 in 132Sn
has essentially the same microscopic structure as that of the
GPV1 modes in 120–130Sn. This mode can be regarded as a
smooth continuation of GPV1.

For the pair rotation modes in 134–140Sn, the X and Y
amplitudes are not evaluated. In place of them, we calculate
decomposed transition densities P

(ad)
gs,ii(r) [Eq. (34)] for each

of the main configurations [2f7/2]2, [1h9/2]2, [1i132]2, [2f5/2]2,
and [3p3/2]2 of GPV1 in 120–130Sn. They are shown in Fig. 10(a)
for 134Sn. Comparing with the decomposed transition densities
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FIG. 9. (Color online) (a) The transition densities r2P
(ad)
νL (r) for the giant pair vibration GPV2 in A = 120–130 (dotted), for the second pair

vibration PV2 in A = 132 (dashed) and for the low-lying pair vibration in A = 134–138 (solid). (b) The transition densities for the giant pair
vibration GPV1 in A = 120–130 (dotted), for the first pair vibration PV1 in A = 132 (dashed) and the transition densities of the pair rotation
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TABLE IV. The forward amplitudes Xν
ii′ of the giant pair vibration GPV1 in 120–130Sn and of the first pair vibration PV1 in 132Sn.

The two-quasiparticle components having ten largest values of |Xν
ii′ | are listed for each mode. The excitation energy h̄ων and the strength

B(Pad0; gs → ν) are also listed. For the pair rotation in 134–140Sn, we only list the strength B(Pad0; gs → gs) since the X and Y amplitudes are
not evaluated.

GPV1 PV1 Pair rotation
120Sn 122Sn 124Sn 126Sn 128Sn 130Sn 132Sn 134Sn 136Sn 138Sn 140Sn

h̄ων (MeV) 12.36 11.46 10.65 9.94 9.30 8.71 4.15
B(Pad0) (fm0) 2.332 2.416 2.545 2.679 2.877 3.105 3.973 3.607 5.662 6.048 5.157

[2f7/2]2 0.936 0.939 0.940 0.942 0.943 0.945 0.942
[1h9/2]2 −0.151 −0.154 −0.157 −0.161 −0.167 −0.175 −0.192
[1i13/2]2 0.145 0.147 0.149 0.153 0.158 0.165 0.181
[2f5/2]2 −0.122 −0.123 −0.125 −0.128 −0.132 −0.136 −0.146
[3p3/2]2 0.116 0.113 0.112 0.111 0.112 0.112 0.117
[1h11/2]2 −0.113 −0.106 −0.094 −0.077
[3p3/2][4p3/2] 0.059 0.057 0.056 0.054 0.053 0.053 0.054
[2f5/2][3f5/2] −0.057 −0.055 −0.053 −0.051 −0.049 −0.048 −0.049
[3p1/2]2 −0.050 −0.049 −0.049 −0.049 −0.050 −0.051 −0.054
[2f7/2][3f7/2] 0.040 0.039
[2j15/2][3j15/2] 0.038 0.039 0.040 0.041 0.044
[3g9/2]2 0.038
[2j15/2]2 0.039 0.044

of GPV1, plotted in Fig. 6(b) for 120Sn, we find a close
similarity between the two figures. We find also that the pair
rotations in 134–140Sn are all similar (the decomposed transition
densities for 136–140Sn are not shown here). It is seen in Fig. 9(b)
that the transition densities of the GPV1 modes in 120–130Sn
smoothly match that of the PV1 in 132Sn, and those of the pair
rotations in 134–138Sn.

C. Relation (iii)

Finally we discuss the relation (iii). As a representative of
the pair rotational modes in 142–150Sn,we take 142Sn and show
in Fig. 10(b) microscopic decomposition of the pair-addition
transition density P

(ad)
gs,ii(r) for the quasiparticle configurations

[3p3/2]2, [1h9/2]2, [2f7/2]2, [2f5/2]2, and [1i13/2]2. We now

compare this with the decomposed transition densities of the
low-lying pair vibration and the pair rotation modes in 134Sn
[Figs. 4(a) and 10(a)]. It is not difficult to find some similarity
between the transition density of the pair rotation in 142Sn
[Fig. 10(b)] and that of the low-lying pair vibration in 134Sn
[Fig. 4(a)]. To be more specific, the components which have
the largest amplitudes at r ∼ 6 fm are the quasiparticle states
[1h9/2] and [1i13/2] in both cases. The largest contribution in
the external region r � 8 fm is that of the quasiparticle state
[3p3/2]. However, a difference is seen in the contribution of
[2f7/2], which has positive amplitude for the pair rotation in
142Sn [Fig. 10(b)], but the phase is opposite for the low-lying
pair vibration in 134Sn [Fig. 4(a)]. We then compare the pair
rotation in 134Sn [Fig. 10(a)] and that in 142Sn [Fig. 10(b)],
and find that the [2f7/2] amplitude is positive and large in both
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FIG. 10. (Color online) (a) The decomposed transition densities r2P
(ad)
gs,ii′ (r) of the components [2f7/2]2, [1h9/2]2, [1i13/2]2, [2f5/2]2, and

[3p3/2]2 for the pair rotation in 134Sn. These five components correspond to those plotted in Fig. 6(b). The inset also shows the total transition
density P (ad)
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cases. The above observations suggest that, if we superpose
the low-lying pair vibration and the pair rotation in 134Sn,
a resultant transition density may resemble that of the pair
rotation in 142Sn. The analysis of other isotopes 136–140Sn, not
shown here, also suggests the same feature. We thus deduce
that the two pairing collectivities in 134–140Sn, i.e., the series
(i) and (ii), merge into a single mode, which appears as the
pair rotation in 142–150Sn.

VIII. CONCLUSIONS

We have investigated the monopole pair-additional transfer
modes using the Skyrme-Hartree-Fock-Bogoliubov theory and
the linear response formalism of QRPA using the Skyrme
parameter set SLy4 and the DDDI pairing interaction. We
particularly analyzed the microscopic structure of the pairing
collective modes in detail by evaluating the forward and back-
ward amplitudes Xν

ii ′ and Y ν
ii ′ of the QRPA phonon operator,

and by decomposing the transition densities associated with
the pair-addition transfer operator. We apply this analysis
for the low-lying pair vibration, the high-lying giant pair
vibration and the pair rotation in even-even A = 120–150 Sn
isotopes.

We first investigated the low-lying pair-addition vibration
emerging in neutron-rich 134–140Sn in order to reveal its very
large pair-addition strength [45]. The largest two-quasiparticle
components of this mode are those involving the neutron
quasiparticle states located just above the N = 82 shell gap,
i.e., 2f7/2, 3p3/2, 3p1/2, 2f5/2, 1h9/2, etc., but it turned out
that contributions from these largest components can account
for only a part of the amplitude and the long tail of the
transition density. We found significant contributions from the
quasiparticle states which have larger orbital angular momenta
l > 5, reaching to l � 10, all of which are unbound continuum
states. These two-quasiparticle configurations of high-l states
accumulate coherently to build up the large and extended tail
of the transition density. This suggests that a neutron pair
transfered in the low-lying pair-addition vibration of 134–140Sn
exhibits a strong spatial correlation, the di-neutron correlation,
especially outside the nuclear surface.

We have analyzed also isotopes 110–130Sn in order to explore
the long-tail pairing vibration in isotopes closer to the stability
line. The present calculation predicts presence of the giant
pair vibrations, with two peaks GPV1 and GPV2, in 110 �
A � 130 with excitation energy h̄ων ≈ 8−20 MeV. The pair-
addition strengths of GPV1 and GPV2 are comparable to (but
slightly smaller than) that of the low-lying pair vibration in
134–140Sn. The detailed analysis of the phonon amplitudes and
the transition density revealed that these modes have similar
microscopic structures as that of the low-lying pair vibration in
134–140Sn, and the di-neutron character and the long tail are also
seen. The di-neutron character is also seen in the pair-addition
vibrations in 132Sn and the pair rotation in 134–150Sn.

From the systematic analysis performed for all the isotopes
from the stable ones to very neutron-rich 150Sn, we found the
above pairing collective modes are all related. The giant pair
vibration GPV1 in 110–130Sn is smoothly connected to the low-
est pair-addition vibration in 132Sn (the lowest one populating
the ground state of 134Sn), which is then connected to the pair
rotation in 134–140Sn. A parallel series is the GPV2 in 120–130Sn,
the second lowest pair-addition vibration in 132Sn, and the
low-lying pair vibration in 134–140Sn, which are also connected
smoothly with changing N . At 142Sn, these two series merge
into a single mode, the pair rotation, which then continues
further for A > 142. The tail enhancement in the transition
density and the collectivity in the pair-addition strength of
these modes increase constantly with N , especially at A > 132
where the neutron Fermi energy becomes very shallow.
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