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Spin- J nucleon-pair approximation with a J-pairing interaction for a single- j shell
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In this paper we study the spin-J nucleon-pair approximation for a single-j shell, with a simple J -pairing
interaction. For a four-nucleon system, the J -pair truncation works remarkably well, in particular for isospin
T = 0 states. The lowest I = 0 states of four nucleons are exactly described by the J -pair approximation. If
both J = 0 and J = 2j pairing interactions are considered, the J = 2j pair truncation works very well in one
of the two lowest I = 2j − 1 states. For six nucleons, J -pair approximations are very good for J ∼ 2j , and the
seniority scheme provides us with exact solutions to the J = 0 pairing interaction.
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I. INTRODUCTION

The pairing correlation is one of the most prominent
correlations in low-energy phenomena of atomic nuclei.
Theoretically, the seniority scheme of Racah [1] provides us
with solutions of the isovector monopole pairing Hamiltonian.
The generalization of the monopole pairing correlations are
considered in the broken pair model [2,3] and the nucleon-pair
approximation of the shell model [4,5].

The so-called J -pairing correlations have been discussed
for a single-j shell in Ref. [6], where spin-J pair approxima-
tions under the spin-J pairing interaction have been examined
for four identical particles. Recently, proton-neutron pairs
with spin J = 9 and isospin T = 0 were suggested to be
the key components in low-lying states of 96Cd, 94Ag, and
92Pd [7]. In Ref. [8] states of spin two and spin 2j − 1 for
four-particle systems with isospin T = 1 were studied for the
single j = 7/2 shell and the j = 9/2 shell. In Refs. [9,10]
isoscalar pairing interactions, especially the spin-2j pairing
interaction, were studied for two valence protons and two
valence neutrons in a single-j shell.

In this paper we study spin-J nucleon-pair (J -pair for short)
approximation under the J -pairing interaction in a single-j
shell space for four and six nucleons. Our J -pairing interaction
HJ is defined as follows:

HJ = −
J∑

M=−J

T∑
τ=−T

A
(JT )
Mτ

†
A

(JT )
Mτ ,

A
(JT )
Mτ

† = 1√
2

(aj
† × aj

†)JT
Mτ ,

where J and M are the spin of a pair and its projection,
respectively, and T and τ are the isospin of a nucleon pair
and its projection, respectively. For a single-j shell, T = 1 if
J is even, and T = 0 if J is odd. For simplicity the index T can
be suppressed without confusion. We use I and T to denote
the total spin and isospin of a given system, respectively.

This paper is organized as follows. In Sec. II we study the
validity of J -pair truncations with the J -pairing interaction for
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four nucleons, and in Sec. III we come to the cases with six
nucleons. Our summary and conclusion are given in Sec. IV.

II. FOUR NUCLEONS

In this section we study four nucleons. For convenience, we
use the following notation for a state with spin I and isospin
T , constructed by one pair with spin J1 and another with
spin J2:

|j 4[J1J2]IT 〉 = 1√
N

(IT )
J1J2;J1J2

(A(J1)† × A(J2)†)(IT )|0〉,

where N
(IT )
J1J2;J1J2

is the norm given as below

N
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(1)

where δJ ′
1J1 is 1 if J ′

1 = J1 and is 0 otherwise; [· · ·] is a nine-j
coefficient. The matrix element of HJ between two arbitrary
basis vectors is as follows:

〈j 4[J ′
1J

′
2]IT |HJ |j 4[J1J2]IT 〉 = −

∑
J ′ N

(IT )
J ′

1J
′
2;J ′J N

(IT )
J ′J ;J1J2√

N
(IT )
J ′

1J
′
2;J ′

1J
′
2
N

(IT )
J1J2;J1J2

.

Some special cases of this formula are

〈j 4[00]0T |H0|j 4[00]0T 〉 = −
[

2 + 2 − T (T + 1)

2j + 1

]
,

〈j 4[0I ]IT |H0|j 4[0I ]IT 〉=−
[
1+ (1 + (−)I ) − T (T + 1)

2j + 1

]
,

for I �= 0. The first formula presents us with the eigenenergy of
the seniority-zero state under the monopole pairing interaction
and the second gives eigenenergies of seniority-two states.
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For the J -pairing interaction, we assume the wave functions
of the lowest states are given by two J pairs, i.e., |j 4[JJ ]IT 〉,
and that the corresponding eigenvalue is

EP
J (I, T ) ≡ 〈j 4[JJ ]IT |HJ |j 4[JJ ]IT 〉.

We use the superscript “P” to represent the abbreviation “pair
approximation,” and “SM” to represent “shell model.”

A. Validity of the J-pair approximation

We use two quantities as fingerprints for the validity
of the nucleon-pair approximation. The first is the overlap
between the wave function based on the spin-J nucleon-pair
approximation and that given by the exact shell model, and
the second is the relative deviation of the eigenvalue in
the nucleon-pair approximation from the exact result, i.e.,

εJ
IT = |EP

J (I,T )−ESM
J (I,T )

ESM
J (I,T )

|. If the pair approximation is good for a

given state, the overlap between the two sets of wave functions
is close to 1, and the value of εJ

IT is close to zero.
In Fig. 1 we exemplify our results by j = 21/2, thus spin

J of our nucleon pair ranges from 0 to 21. One sees that the
J -pair approximation is remarkably good for almost all yrast
states with T = 0 and reasonably good for T = 1 and 2 for I
below 5.

There are a few features worth pointing out. First, we
note that the lowest I = 0 states with T = 0, 2 under the
J -pairing Hamiltonian are precisely described by two J pairs.
An explanation for this has been already discussed in Ref. [6],
by using the fact that there is only one nonzero eigenvalue in
I = 0 and n = 4 states for identical particles. Below we show
that this explanation is equally applicable for T = 0 and J

odd pairs. For the J -pairing Hamiltonian HJ we define

|j 4J 〉 = |j 4[JJ ]I = 0T 〉,
where T equals 0 and 2 if J is even, and equals 0 if J is odd.
We define

|j 4J ′〉 = |j 4[J ′J ′]I = 0T 〉 − N
(0T )
JJ ;J ′J ′√

N
(0T )
JJ ;JJ N

(0T )
J ′J ′;J ′J ′

|j 4J 〉,

where J ′ �= J . |j 4J ′〉 is orthogonal to |j 4J 〉. Using Eq. (1),
we have

〈j 4J1|HJ |j 4J2〉 = −δJ1J δJ2J N
(0T )
JJ ;JJ .

This means that the J -pairing Hamiltonian has only one
nonzero matrix element corresponding to the wave function
of |j 4[JJ ]I = 0T 〉, i.e., the J -pair truncated wave function
for I = 0, T = 0 or 2.

By using this feature, we readily explain Fig. 5 of Ref. [10],
where Neergård presented the squared overlap between the
wave function with the monopole-pairing interaction and that
with the J = 2j pairing interaction, for the lowest state of
I = 0 and T = 0 in a single-j shell. Neergård found that
the squared overlap is equal to 1 for j = 1/2 and gradually
decreases with j . According to our work, the wave function
with the monopole-pairing interaction is |j 4[00]00〉, and that
with the J = 2j pairing interaction is |j 4[2j2j ]00〉. The
squared overlap is given by

3(4j + 1)

(2j + 1)(2j + 2)
(
1 + (2j )!2

(4j )!

) → 3/j

for the large j limit. Here Eq. (1) and some special values of
nine-j coefficients are used.

FIG. 1. (Color online) Comparison of J -pair approximation calculations with shell model calculations with the J -pairing interaction HJ

for four nucleons in the single j = 21/2 shell. J equals 0, 1, 2, . . . , 20, 21 (=2j ). Here we consider the lowest states of spin I for T = 0, 1, 2.
The upper panels present the overlaps between wave functions of the shell model calculations and those of J -pair truncated calculations, and
the lower present the relative deviations of the calculated energies. Blue color means J -pair approximation are very good and green color means
the J -pair truncation is not good. The seniority-zero state for T = 0 and 2 are precisely represented by two S pairs with T = 1, as shown in
panels (a), (a′), (c), and (c′).
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The second feature is that the D-pair (one isovector
nucleon pair with spin two) approximation is very good
under the quadrupole-pairing interaction HJ=2. Using two D
pairs, one can construct states with T = 0 and I = 0, 2, 4,
T = 1 and I = 1, 3, and T = 2 and I = 0, 2, 4. According to
our numerical experiments, for all these states, the overlaps
between the wave functions of the D-pair approximation and
exact wave functions are from 0.9883 to 1, and the relative
energy deviations are from 0.0164 to 0. In addition, we note
three sets of asymptotic degenerate states: (1) T = 0 and
I = 2, 4; (2) T = 1 and I = 1, 3; (3) T = 2 and I = 2, 4.

The third point we would like to make is that the J = 2j
pair approximation works remarkably well for the yrast states
with the J = 2j pairing interaction. In these cases the overlaps
are from 0.9523 to 1, and the relative energy deviations range
from 0.0446 to 0. A similar result is for T = 1, J ∼ 2j − 1,
and T = 1, 2. For the J = 2j − 1 pairing interaction, spin-
(2j − 1) nucleon-pair approximation is very good for T = 2
when I is not large or I ≈ Imax, as pointed out and explained
in Ref. [6]. Here we note that the J -pair (J ∼ 2j − 1) approx-
imation is asymptotically a good truncation for T = 1 states.

B. Lowest two states of I = 2 j − 1

In Ref. [9] Zamick and Escuderos performed shell model
calculations for low-lying states of 96Cd with two valence
proton holes and two valence neutron holes in the single
j = 9/2 shell, with various sets of interactions. They found
that the wave functions of the yrast states of T = 0 under
the J = 9 pairing interaction HJ=9 are very close to those
obtained under the realistic interaction, except for the states
of I ∼ 8. The 8+

1 state cannot be described by |j 4[99]IT 〉
[11]. Because the J = 0 and J = 2j pairing interactions are
the most strongly attractive in atomic nuclei, Zamick and
Escuderos calculated the 8+

1 state wave function under a simple
Hamiltonian (HJ=0 + HJ=9), and found the overlap between
the 8+

1 state wave function based on such a simple Hamiltonian
and that obtained under the realistic interaction will be larger
than 0.98 [9]. In Refs. [11,12] it was also found that the 8+

1
state of 96Cd is well described by |j 4[08]IT 〉, a seniority-two
configuration.

Here we are interested in the competition between the
|j 4[2j2j ]IT 〉 configuration and the seniority-two configura-
tion |j 4[02j − 1]IT 〉 for low-lying states of I = 2j − 1 and
T = 0, with a Hamiltonian with both the J = 0 and J = 2j
pairing interactions. We adopt the following Hamiltonian

H (δ) = (1 − δ)HJ=0 + δHJ=2j ,

where δ is an adjustable parameter ranging between 0 to 1.
We calculate the squared overlaps of the shell model wave
function with pair truncated wave functions |j 4[2j2j ]IT 〉 and
|j 4[02j − 1]IT 〉, for the lowest I = 8, T = 0 state (denoted
by x2

1 ) and the second lowest I = 8, T = 0 state (denoted
by x2

2 ).
In Fig. 2 we plot the x2

1 , x2
2 , and x2

1 + x2
2 versus our

adjustable parameter δ. One sees that x2
1 of seniority-two

configuration |j 4[02j − 1]IT 〉 is close to one as δ is small,
and decreases suddenly as δ increases from 0.50 to 0.55; mean-
while x2

1 of the spin-J = 2j pair approximation |j 4[2j2j ]IT 〉

FIG. 2. (Color online) Squared overlaps (x2
1 , x

2
2 ) between

nucleon-pair truncated wave functions and shell model wave func-
tions for the lowest two states of I = 2j − 1 and T = 0, with a
Hamiltonian H (δ) = (1 − δ)HJ=0 + δHJ=2j , where δ is an adjustable
parameter between 0 to 1. x2

1 corresponds to the lowest state, and
x2

2 the second lowest. Plots in red correspond to J = 2j nucleon
pair approximation (i.e., |j 4[2j2j ]IT 〉) and dashed plots in black
correspond to seniority-two wave function (i.e., |j 4[02j − 1]IT 〉).
In the left panels they are obtained for j = 9/2, and in the right
panels j = 21/2.

is close to zero for small δ and increases sharply at δ =
0.50 ∼ 0.55. The situation for the second lowest T = 0,
I = 8 state is different. According to our calculated results
[see Fig. 2(b)] the J = 2j -pair approximation is a good
approximation for small δ and the seniority scheme is more
relevant (but not good) for large δ. Summing up x2

1 and x2
2 ,

one sees in Fig. 2(c) that x2
1 + x2

2 ∼ 1.0 for the J = 2j -pair
approximation. For the seniority scheme, x2

1 + x2
2 ∼ 1.0 for

small δ and decreases as δ increases. We also exemplify our
study for the lowest two 20+ states in the single j = 21/2 shell
[see in Figs. 2(a′) to 2(c′)], where one sees similar features
(except that the evolution versus δ is now abrupt). We also
note that the J = 2j -pair truncation and the seniority scheme
are asymptotically orthogonal to each other, as |j 4[2j2j ]IT 〉
and |j 4[02j − 1]IT 〉 is very small (the overlap is 0.0996 for
j = 9/2 and 0.0007 for j = 21/2).

III. SIX-NUCLEON SYSTEMS

We exemplify our results of six nucleons by a j = 11/2
shell, for which the spin of each nucleon pair J runs from
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FIG. 3. (Color online) Same as Fig. 1, except that nucleon numbers n = 6 and j = 11/2. The seniority-zero state is precisely represented
by J -pair truncation for J = I = 0, with T = 1 or 3, as shown in panels (b), (b′), (d), and (d′).

0 to 11. For each J , our nucleon-pair basis is given by

1√N ((A(J )† × A(J )†)(I ′T ′) × A(J )†)(IT )|0〉,

where 1/
√N is the normalization factor, and I ′ (T ′) is

an intermediate spin (isospin). In the J -pair subspace, we
calculate eigenenergies and wave functions of the yrast
states with spin I and isospin T by using our nucleon-pair
approximation model [13]. The construction of a complete
set of basis states by using nucleon pairs has been discussed
for SD pairs in Ref. [14] and for arbitrary nucleon pairs in
Ref. [15]. In short, the number of states is enumerated in terms
of an m scheme, and their linear independence is demonstrated
by numerical experiments based on the eigenvalues of the norm
matrix. There is freedom in choosing the intermediate spins,
and different sets of the basis are equivalent.

In Figs. 3(a) through 3(d) we present our calculated overlaps
between wave functions by using the J -pair approximation
and those by the shell model, and in Figs. 3(a′) through 3(d′)
relative deviations of the calculated energies in these two
spaces. One sees that the J -pair approximation for nucleon
number n = 6 is not as good as for n = 4. Yet J -pair truncation
provides us with a reasonable approach for most states with
T = 0, in particular for the case of J ∼ 2j . This might be the
reason why isoscalar spin-aligned pairs are dominant building
blocks in low-lying states of 94Ag.

For J = 0, the seniority scheme provides us with the
solution, as studied in the quasispin formalism with isospin
[16], according to which the eigenvalue of the monopole-
pairing interaction is

− 1

2�

[
(n − ν)(4� + 6 − n − ν)

4
+ t(t + 1) − T (T + 1)

]

= − 1

12

[
(6 − ν)(24 − ν)

4
+ t(t + 1) − T (T + 1)

]
, (2)

where � is the allowed number of pairs, i.e., � = j + 1/2 =
6; n is the particle number, 6; ν is the seniority; t is called the
reduced isospin; and T is the total isospin of the state.

According to Eq. (2), the lowest state has seniority zero
(i.e., S) and reduced isospin t = 0 for a given T = 1, 3. The
corresponding eigenvalues are −17/6 and −2, respectively.
For odd I , T = 0, and t = 0, we have the seniority-two states

1√N ((A(0)† × A(0)†)(00) × A(I )†)(IT =0)|0〉.

For even I , T = 1, and t = 1, the seniority-two states are

1√N ((A(0)† × A(0)†)(00) × A(I )†)(IT =1)|0〉,
1√N ((A(0)† × A(0)†)(02) × A(I )†)(IT =1)|0〉.

According to Eq. (2), all eigenvalues of these states are equal
to −11/6, and are reproduced in our numerical calculations.

IV. SUMMARY

In this paper, we study J -pair approximations under the
J -pairing interaction in a single-j shell. For each J -pairing
interaction, we calculate the lowest states with spin I and
isospin T , as well as the overlaps between the shell model
wave functions and those by using the J -pair approximation.

For four nucleons in a single-j shell, J -pair approximations
work well for most yrast states (especially for those of T = 0),
under the J -pairing interaction. The lowest states of I = 0 and
T = 0 (or 2) are precisely represented by two spin-J pairs.
The D-pair approximation is found to be very good for the
quadrupole pairing interaction, and J -pair approximations are
very good for all T = 0 states, and for T = 1 and 2 states with
I not large or I ≈ Imax, when J ∼ 2j . A remarkable example
is that the J = 2j -pair approximation works very well in the
lowest states of T = 0 under the J = 2j pairing interaction,
with calculated overlaps between the shell model wave
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functions and J -pair truncated wave functions larger than
0.9523, and a relative energy deviation lower than 0.0446.

We study the competition between the J = 2j pair ap-
proximation (i.e., |j 4[2j2j ]IT 〉) the seniority-two picture
(i.e., |j 4[02j − 1]IT 〉) for the lowest two states with I =
2j − 1 and T = 0, in the presence of both the monopole and
J = 2j pairing interactions, H (δ) = (1 − δ)HJ=0 + δHJ=2j .
For the lowest state, the seniority picture is dominant when
the monopole pairing interaction is relatively strong, and
the picture of the J = 2j -pair approximation is dominant
when the J = 2j pairing interaction is relatively strong. The
transition from seniority picture to the J = 2j pair picture
arises abruptly at δ ∼ 0.5.

Our study of six nucleons is performed by using a j = 11/2
shell. Although the J -pair approximation for six nucleons is

not as remarkable as for four nucleons, it provides us with a
reasonable approximation for many yrast states, in particular,
the J -pair approximation is very good for yrast states of T = 0
when J is close to 2j . For the monopole pairing interaction
the seniority scheme presents exact solutions.
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