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Off-shell extrapolation of Regge-model NN-scattering amplitudes describing
final-state interactions in 2H(e, e′ p)
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In this paper, an off-shell extrapolation is proposed for the Regge-model NN amplitudes presented in a paper
by Ford and Van Orden [Phys. Rev. C 87, 014004 (2013)] and in an eprint by Ford (arXiv:1310.0871 [nucl-th]).
A prescription for extrapolating these amplitudes for one nucleon off-shell in the initial state is given. Application
of these amplitudes to calculations of deuteron electrodisintegration is presented and compared to the limited
available precision data in the kinematical region covered by the Regge model.
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I. INTRODUCTION

Deuteron electrodisintegration experiments have been per-
formed at Jefferson Lab that produce a final proton-neutron
state with relatively large invariant masses. Theoretically,
the descriptions of these data pose considerable difficulty.
At invariant masses below pion production threshold, this
reaction can be calculated consistently with potential or meson
exchange models. Describing the reaction above pion thresh-
old can be very challenging since it is necessary to include
contributions from the open inelastic channels as intermediate
states to the observed exclusive pn final state. This means that
in principle contributions from electroproduction of mesons,
and from the production of mesons and nucleon resonances
by pn need to be included for invariant masses above
threshold.

The most successful attempt to describe NN scattering
above pion threshold was presented in Refs. [1–3]. This
paper provides a reasonable description of the NN phase
shifts and inelasticities up to a laboratory kinetic energy
Tlab = 1 GeV (s = 4m2 + 2mTlab) by including N� and ��
intermediate states in a meson-exchange model based on a
three-dimensional reduction of the Bethe-Salpeter equation.
However, this is at the bottom end of the energy range
of the Regge-model fits, and the computer code necessary
to obtain off-shell contributions is no longer available. A
more recent work [4] extended this model by including
N∗(1440) and N∗(1525) resonances and shows calculations
up to Tlab = 1.5 GeV. However, the total inelastic cross section
is much too low for energies much above threshold. It should
be emphasized that this is a very difficult problem since the
number of pions that can be produced in intermediate states
increases significantly with the energy.

In the absence of a consistent dynamical model for use at
large invariant masses, it has been common to use the on-shell
data to parametrize the final state interaction in calculations of
d(e, e′p) above pion threshold. The most common approach
has been to use only the central part of a two-dimensional
spinor representation of the NN amplitudes parameterized in
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terms of the total cross section, the ratio of real to imaginary
parts of the forward scattering amplitude, and a parameter
for the exponential falloff of the differential cross section as
a function of the square of the center-of-mass momentum
transfer [5,6]. In Refs. [7–9] we included the full spin-
dependence of the np amplitudes by means of constructing
Fermi invariants from the scattering analysis interactive dial-in
(SAID) helicity amplitudes [10,11] which are available up to
Tlab = 1.3 GeV. In Ref. [12] the spin dependence is introduced
by using the two-dimensional Saclay parametrization of the
on-shell amplitudes obtained from SAID up to Tlab = 1.3 GeV
and the simple parametrization of the central contribution
above this energy. In Ref. [6] it is argued that the d(e, e′p)
amplitudes will be dominated by on-shell nucleon propagation
near x = 1. Attempts to estimate off-shell contributions have
been introduced in Refs. [7–9] and [12] by introducing
prescriptions for the off-shell behavior of the amplitudes along
with a cutoff function. These prescriptions are essentially
arbitrary. A unique determination of the off-shell behavior the
NN amplitudes requires a dynamical model which produces
the off-shell values of the scattering amplitudes as an intrinsic
part of its solution.

In a recent paper [13] we described a fit to nucleon-nucleon
scattering for Mandelstam s = 5.4 to s = 4000 GeV2 using
a Regge model. The immediate purpose of this model was
to allow extension of calculations of deuteron electrodisinte-
gration to higher invariant masses than was possible using the
SAID helicity amplitudes as used in Refs. [7–9]. In Ref. [7] the
electrodisintegration amplitude for the d(e, e′p) amplitude for
large energy and momentum transfers was described by the
Feynman diagram represented in Fig. 1. Diagram Fig. 1(a)
represents the plane-wave (PWIA) contribution, while the
diagram represented by Fig. 1(b) includes the final-state
interaction (FSI). It was shown that the FSI contribution
Fig. 1(b) could be represented by the diagrams of Fig. 2.
Examination of the poles in the loop integral shows that the
integral is dominated by the pole in the propagator for particle
2 which is represented by the cross on this line in diagrams
Fig. 2(a)–2(c). The propagator for k′

1 can be separated into an
on-shell part Fig. 2(a), an off-shell part with positive energy
projection Fig. 2(b), and an off-shell part with negative energy
projection Fig. 2(c).
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FIG. 1. (Color online) Diagrams representing impulse approxi-
mation to deuteron electrodisintegration at large energy and momen-
tum transfers. Diagram (a) is the plane-wave contribution and diagram
(b) includes final-state interactions (FSI).

In Ref. [14] we presented a comparison of the FSI
contributions to the d(e, e′p) reaction using the SAID and
Regge parametrizations of the FSI. Since both the SAID
and Regge helicity amplitudes are fit to on-shell data, only
the on-shell contribution to the FSI represented by Fig. 2(a)
was included. In order to understand the uncertainty in these
calculations, it is necessary to have some reasonable estimate
of the NN scattering amplitudes off-shell. Working directly
with on-shell amplitudes, the amplitudes are functions of s and
t only since the crossed diagrams required by Pauli symmetry
are included with the on-shell value u = 4m2 − s − t . This
constraint is valid only on-shell and the inability to separate
the direct and crossed contributions eliminates the possibility
of extrapolating the amplitudes off-shell in reasonable manner.
The Regge parametrization provides direct contribution as
functions of s and t , and the crossed contributions as functions
of s and u allowing for the off-shell constraint on the
Mandelstam variables to be implemented.

The object of this paper is to provide a reasonable
extrapolation of the Regge-model amplitudes for particle 1
off-shell. In Sec. II we will show how this extrapolation is

+ +
O+ O-
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FIG. 2. (Color online) Diagrams representing the separation of
the FSI contribution to deuteron electrodisintegration into (a) on-
shell, (b) positive energy off-shell, and (c) negative energy off-shell
contributions. Diagram (c) gives a small contribution and is neglected
in the calculations presented here.
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FIG. 3. Representation of the direct contribution to NN̄ scat-
tering through a single meson exchange in the t-channel center of
momentum frame.

constructed and show the effects of an off-shell extrapolation
of the NN differential cross section. In Sec. III we will apply
this off-shell extrapolation to the d(e, e′p) reaction and show
its cutoff dependence. Section IV will contain a summary and
conclusions drawn from this paper.

II. OFF-SHELL EXTRAPOLATION OF THE
REGGE-MODEL NN AMPLITUDES

As described in Refs. [13,14,16], the scattering amplitudes
in the s channel are described by Reggion exchange in the t
channel. In the t-channel center-of-momentum (c.m.) frame
the amplitudes are given by NN̄ scattering as represented
by Fig. 3. For p1 off-shell and all other legs on-shell, the
four-momenta are given by

p1 = (
p0

1, p
)
, p′

1 = (Et,− p),
(1)

p2 = (E′
t ,− p′), p′

2 = (E′
t , p′),

where E′
t is the on-shell energy of the final-state particles, ± p′

are the momenta of the final state particles, Et is the on-shell
energy for initial state particles of momentum ± p, and p0

1 is
the off-shell energy of particle 1. Using energy conservation,
it can be easily shown that

E′
t =

√
t

2
, | p′| =

√
t

4
− m2,

(2)

Et = t − v

2
√

t
, | p| =

√
(t − v)2

4t
− m2,

where

v = p2
1 − m2 (3)

is a measure of the off-shellness of particle 1 and m is the
nucleon mass. The scattering angle in the t c.m. frame is

z = cos θt = 2s + t − 4m2 − v√
(4m2 − t)

(
4m2 − (t−v)2

t

) . (4)
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For this situation the constraint on the Mandelstam variables
s, t , and u is given by

s + t + u = 3m2 + p2
1 = 4m2 + v . (5)

In Ref. [13] we used helicity matrix elements of the
Fermi invariant representation to relate the scalar functions
in the Fermi invariant representation to the Reggeized matrix
elements in the t c.m. frame. This approach greatly simplifies
the analytic continuation of the scattering amplitudes to the
physical s c.m. frame. For on-shell scattering there are five
terms in the Fermi invariant description of the scattering matrix
characterized by the scalar functions FS , FV , FT , FP , and FA.
If p1 is off-shell, there are five additional scalar functions FSO,
FVO, FT 0, FPO, and FA0. The Fermi-invariant representation
of the off-shell scattering operator can then be written as

M̂ = FS(s, t, v)1(1)1(2) + FV (s, t, v)γ μ(1)γ (2)
μ

+FT (s, t, v)σμν(1)σ (2)
μν − FP (s, t, v)(iγ5)(1)(iγ5)(2)

+FA(s, t, v)(γ5γ
μ)(1)(γ5γμ)(2) + (FSO(s, t, v)1(1)1(2)

+FVO(s, t, v)γ μ(1)γ (2)
μ + FT 0(s, t, v)σμν(1)σ (2)

μν

−FPO(s, t, v)(iγ5)(1)(iγ5)(2)

+FA0(s, t, v)(γ5γ
μ)(1)(γ5γμ)(2)

)S(1)−1(p1)

2m
, (6)

where

S(1)−1(p1) = γ (1) · p1 − m (7)

is the inverse of the propagator with four-momentum p1.
The effect of this on a positive-energy spinor is

S(1)−1(p1)

2m
u( p1, λ1)

= γ (1)0p0
1 − γ (1) · p1 − m

2m
u( p1, λ1)

= γ (1)0p0
1 − γ (1)0Ep1 + γ (1)0Ep1 − γ (1) · p1 − m

2m
u( p1, λ1)

=
(

γ (1)0
(
p0

1 − Ep1

)
2m

− �(1)−( p1)

)
u( p1, λ1)

= γ (1)0
(
p0

1 − Ep1

)
2m

u( p1, λ1) = v

2m
√

t
γ (1)0u( p1, λ1), (8)

where Ep1 = Et is the on-shell energy of the spinor. Since
this is linear in v, the five off-shell terms must vanish on-shell
as expected. In addition, while the helicity matrix elements
needed to obtain the terms containing Fi are such that λ1 = λ′

1
and λ2 = λ′

2, or λ1 = −λ′
1 and λ2 = −λ′

2, the terms containing
FiO require matrix elements where λ1 = −λ′

1 and λ2 = λ′
2, or

λ1 = λ′
1 and λ2 = −λ′

2 due to the extra factor of γ (1)0. The
latter terms are then disjoint from the former, and can not be
obtainable from on-mass-shell data.

The actual fitting of the Fermi invariants takes place in the s
c.m. frame. In Eq. (6), it is necessary to fit ten scalar functions,
while on-shell there are only five helicity matrix elements
which are determined on-shell. Consider, for example, that it
were possible to construct a model for larger energies based on
iteration of an interaction kernel using the spectator equation

[15], which is a three-dimensional reduction of the Bethe-
Salpeter equation. A set of coupled integral equations could
be written for the helicity amplitudes

M+
λ′

1,λ
′
2;λ1,λ2

= ū(1)( p′
1, λ

′
1)ū(2)( p′

2, λ
′
2)M̂u(1)( p1, λ1)u(2)( p2, λ2),

M−
λ′

1,λ
′
2;λ1,λ2

= ū(1)( p′
1, λ

′
1)ū(2)( p′

2, λ
′
2)M̂v(1)(− p1, λ1)u(2)( p2, λ2),

(9)

where p1 and p′
1 would have a range of values encompassing

both on-shell and off-shell contributions. The results could
then be examined for p′

1 fixed on-shell. Fixing p1 on-shell
for M+

λ′
1,λ

′
2;λ1,λ2

gives the fully on-shell helicity amplitudes that
can the be used to fit to data. For p1 off-shell there are five
possible unique helicity combinations each for M+

λ′
1,λ

′
2;λ1,λ2

and

M−
λ′

1,λ
′
2;λ1,λ2

allowing for all of the scalar functions in Eq. (6).
Unfortunately, as discussed above, there are no available

models that can be used to fix the off-shell contributions for
Tlab > 1 GeV. We can produce a reasonable procedure for
extrapolating the Fi to off-shell values which are constrained
at the on-shell point. The Fi0 are completely unconstrained.
We could, with some difficulty, use such a model below pion
threshold to perform this procedure to obtain some information
about the complete off-shell behavior, but we can not be sure
that the relationship obtained between on-shell and off-shell
contributions will hold at larger energies. Aside from imposing
a range of arbitrary, unconstrained prescriptions of the Fi0, we
could instead concentrate on the constrained Fi in order to
obtain some sense of the properties of off-shell extrapolations
that may provide some understanding of the complete problem.
We choose to take the latter course and set

FSO = FVO = FT 0 = FPO = FA0 = 0 (10)

in Eq. (6) for this paper.
Additional problems occur in analytic continuation of the

Fermi invariants from the t c.m. frame where t � 4m2 and
s � 0 to the s c.m. frame where t � 0 and s � 4m2.

The scattering amplitude in the s-channel c.m. frame is
represented by Fig. 4 where

p1 = (
p0

1, p
)
, p′

1 = (E, p′),
(11)

p2 = (E′,− p), p′
2 = (E′,− p′) .

As in the previous case E′ and E represent on-shell energies
and p0

1 is the off-shell energy of particle 1 in the initial state.
From conservation of energy

E′ =
√

s

2
, | p′| =

√
s

4
− m2,

(12)

E = s − v

2
√

s
, | p| =

√
(s − v)2

4s
− m2 .

In this frame t is given by

t =
4m2 − s + v +

√
(s − 4m2)

( (s−v)2

s
− 4m2

)
cos θcm

2
,

(13)
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FIG. 4. (Color online) Diagram representing NN scattering in the
s channel c.m. frame.

where θcm is the scattering amplitude in the s c.m. frame. As a
result, t is bounded by the functions

tmax =
4m2 − s + v +

√
(s − 4m2)

( (s−v)2

s
− 4m2

)
2

(14)

and

tmin =
4m2 − s + v −

√
(s − 4m2)

( (s−v)2

s
− 4m2

)
2

. (15)

The maximum value of v is given by

vmax = s − 2m
√

s . (16)

These constraints are shown for s = 7 GeV2 in Fig. 5, where
the physically accessible region is the area between the lines
for tmax and tmin. Note that the on-shell amplitudes are given
by v = 0 where tmax = 0 and tmin = 4m2 − s.

FIG. 5. (Color online) The area between the curve labeled tmax

and tmin contains the allowed values of t in the s c.m. frame as a
function of the off-shell parameter v for s = 7 GeV2. The line at
v = 0 shows the range of t for on-shell scattering.

Now consider (4) which gives the value of the t c.m.
scattering angle for particle 1 off-shell. Evaluation of z at
the extreme values of t in the s c.m. frame gives for v �= 0

z(tmax)|v �=0 = z(tmin)|v �=0 = 1. (17)

For v = 0 we still have,

z(tmin)|v=0 = 1, (18)

However,

z(tmax)|v=0 = s

2m2
− 1 . (19)

So z as described by (4) is discontinuous at v = 0. This
is a problem for our Regge model parametrization of
the scattering amplitudes since the Regge amplitudes are
represented as

RIPG
±j (s, t) ∝

∑
k

ξk±(t)βIPG
±k (t)zαk(t), (20)

where βIPG(t) ∝ eβ1t is the residue, ξ±(t) is a phase function,
and α(t) = α0 + α1t is the Regge trajectory. The discontinuity
in z results in very extreme discontinuous behavior in Regge
amplitudes due to the factor of zα(t). This is contrary to the
reasonable expectation that the scattering amplitudes should
have a smooth continuous extrapolation off-shell. Therefore,
a straightforward analytic continuation of the off-shell Fermi
invariants for the Regge model from the t c.m. frame to the s
c.m. frame is unsatisfactory and an alternate method must be
considered.

An alternate approach is to make the off-shell extrap-
olation after the on-shell Fermi invariants are analytically
continued to the s c.m. frame. This requires that we choose
a prescription for z off-shell that will be continuous in v.
We choose

z = s(t + tmax − 2tmin) − 4m2(t − tmin)

s(tmax − t) + 4m2(t − tmin)
(21)

which is constrained such that

z(tmax) = s

2m2
− 1 (22)

and

z(tmin) = 1 (23)

for all allowed values of v.
The remainder of the details of the parametrization follow

those in Refs. [13,14,16] and with the exception that Eq. (19)
of Ref. [14] is replaced by

�S1(s, t, v) = − m2

2(4m2 − t)
,

�V 2(s, t, v) = − 4m2 − t

8(2s + t − 4m2 − v)
,

�V 3(s, t, v) = t

8(2s + t − 4m2 − v)
,

�T 3(s, t, v) = − m2

4(2s + t − 4m2 − v)
,
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�P 4(s, t, v) = −m2

2t
,

�A5(s, t, v) = 1

8
. (24)

The off-shell cross section

One way to visualize the nature of this off-shell prescription
is the calculation of the NN cross section off-shell. The helicity
matrix elements of (6) are defined as

Mλ′
1,λ

′
2;λ1,λ2 (s, t, v) = ū(1)( p′

1, λ
′
1)ū(2)( p′

2, λ
′
2)M̂(s, t, v)

× u(1)( p1, λ1)u(2)( p2, λ2) , (25)

where u( p, λ) is a spinor in the helicity basis. For identical
particles, only five amplitudes are independent and are given
by

a(s, t, v) = φ1(s, t, v) = M 1
2 , 1

2 ; 1
2 , 1

2
(s, t, v),

b(s, t, v) = φ5(s, t, v) = M 1
2 , 1

2 ; 1
2 ,− 1

2
(s, t, v),

c(s, t, v) = φ3(s, t, v) = M 1
2 ,− 1

2 ; 1
2 ,− 1

2
(s, t, v), (26)

d(s, t, v) = φ2(s, t, v) = M 1
2 , 1

2 ;− 1
2 ,− 1

2
(s, t, v),

e(s, t, v) = φ4(s, t, v) = M 1
2 ,− 1

2 ;− 1
2 , 1

2
(s, t, v) .

A fictitious off-shell c.m. differential cross section can then be
defined as

dσ

d�cm
(s, t, v) = m4

8π2s
(|a|2 + 4|b|2 + |c|2 + |d|2 + |e|2).

(27)

One source of v dependence in the helicity amplitude results
from the matrix elements of the Dirac γ matrices in Eq. (6)
using the definitions of the on-shell energies given by (12).
In Ref. [7], where the SAID helicity amplitudes were used to
describe the FSI, an off-shell prescription was proposed that
effectively only contains these contributions. The off-shell c.m.
cross sections using the SAID amplitudes for s = 5.9 GeV2 are
shown in Fig. 6 for pp scattering at various values of v. Here
v = 0 corresponds to the physical cross section. Note that as
the magnitude of v increases the size of the cross section also
increases. It can be shown by explicit calculation of the helicity
matrix elements using this prescription that the amplitudes
must vary as |v| when the magnitude of v becomes large.
The cross sections should then vary as v2. Clearly, use of this
prescription in calculations of deuteron electrodisintegration
will diverge unless a cutoff is introduced. In Ref. [7], we
introduced a cutoff of the form

f (v) = (�2 − m2)2

(�2 − m2)2 + v2
, (28)

where the cutoff mass � was typically taken to be 1 GeV.
For the Regge model, the amplitudes (20) depend explicitly

on t through the phase factor ξ (t), the Regge trajectory α(t),
and the residue factor βIPG(t) ∝ eβ1t . From Fig. 5 it can
be seen that the maximum value of t becomes increasingly
negative as v moves away from the on-shell point. This
means that the maximum size of the residue factor decreases

FIG. 6. (Color online) Off-shell cross sections for pp scattering
using the SAID helicity amplitudes as a function of v for s =
5.9 GeV2.

exponentially away from the on-shell point. In addition, the
range of t values that can contribute increases as v becomes
more negative. Since the point where the maximum value of u
occurs corresponds to the minimum value of t , this causes the
overlap of the t and u channel contributions to decrease. We
should therefore expect that the off-shell cross sections using
the Regge model amplitudes should decrease exponentially as
the magnitude of v increases. Figure 7 shows the off-shell pp
cross section at s = 8 GeV2 for various values of v. This figure
shows that the variation of the off-shell cross section with v
is consistent with the arguments made above, and decreases
exponentially with increasing magnitude of v. The off-shell
fall off of the amplitudes is therefore related to the fall off of
the on-shell amplitudes with |t | and |u|.

III. DEUTERON ELECTRODISINTEGRATION

We now consider the effects of including the off-shell
contributions from Fig. 2(b) using the off-shell prescription
for the Regge FSI described above. It is useful to include the

FIG. 7. (Color online) Off-shell cross sections for pp scattering
using the Regge amplitudes as a function of v for s = 8 GeV2.
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FIG. 8. (Color online) The deuteron electrodisintegration cross
section using the Regge FSI for x = 1, beam energy Ebeam = 5 GeV,
Q2 = 3.5 GeV2, s = 7.0 GeV2, and φ = 180◦.

cutoff (28) as a means of studying the off-shell contributions.
Figure 8 shows the differential cross section plotted vs missing
momentum pm for x = 1, beam energy Ebeam = 5 GeV,
Q2 = 3.5 GeV2, s = 7.0 GeV2, and φ = 180◦. Calculations of
the PWIA represented by Fig. 1(a), the PWIA plus the on-shell
contribution represented by Fig. 2(a), and the cross section for
the PWIA, on-shell and off-shell contributions of Fig. 2(b) for
various values of the cutoff mass � are shown. It is clear from
this figure that at the chosen kinematics the off-shell effects
are small. However, since this is a semilog plot, the relative
size of the off-shell contributions can be better understood by
considering the ratio of off-shell to on-shell cross sections for
various values of � defined by

σR =
(

d5σ
d�ed�pdE′

)
�(

d5σ
d�ed�pdE′

)
onshell

. (29)

This ratio is shown in Fig. 9 for cutoff masses of 1 to
10 GeV. This shows that the off-shell contribution is quite
sensitive to the cutoff mass for values below 2 GeV, but quickly
saturates for larger values of the cutoff mass. Indeed the effect

FIG. 9. (Color online) Ratio of off-shell to on-shell cross sections
for various values of the cutoff mass.

FIG. 10. (Color online) The asymmetry ALT for PWIA, on-shell
and off-shell FSI with different cutoff masses.

is effectively saturated by � = 10 GeV, and we will use this
value of the cutoff mass to represent the maximum variation in
the off-shell contributions in subsequent figures. Note that the
size of the off-shell effects increases with increasing missing
momentum, and has maximum value for these kinematics of
about 25% at pm = 1.0 GeV. The off-shell contributions vary
significantly with kinematics and are potentially large.

An example of off-shell contributions to the asymmetry ALT

is shown in Fig. 10 for the same kinematics as in the previous
figures. For this asymmetry the effect of including the on-shell
FSI is large, but the contributions of off-shell scattering is
small for these kinematics. As in the case of the cross sections,
the rapid saturation of off-shell contributions is evident.

The differential cross section for x = 1.3, Ebeam = 12 GeV,
Q2 = 7.5 GeV2, s = 7.54 GeV2, and φ = 180◦ is shown in
Fig. 11. For these kinematics the on-shell cross section is
substantial below the plane-wave cross section. For the x = 1
kinematics of Fig. 8, the on-shell cross section is larger than
the PWIA cross section. In this case, we show only the case
of saturated off-shell contributions with � = 10 GeV. Here
the off-shell contributions tend to move the cross section back
toward the PWIA for most values of the missing momentum.

FIG. 11. (Color online) Differential cross section for x = 1.3,
Ebeam = 12 GeV, Q2 = 7.5 GeV2, s = 7.54 GeV2, and φ = 180◦
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FIG. 12. (Color online) Cross section ratio σR for the same
kinematics as the previous figure.

The size of this effect can be seen by plotting the ratio of
off-shell to on-shell cross sections as shown in Fig. 12. Clearly,
for these kinematics the size of the off-shell contributions to
the cross section are much larger than for the previous x = 1
kinematics. The saturation value at pm = 1 GeV is about 130%
above the on-shell contribution as opposed to about 25% of
the x = 1 kinematics.

Since the off-shell prescription described here is somewhat
arbitrary and incomplete, it is necessary to compare the
computed cross sections to precision data to determine how
large the effect should be. Unfortunately, there is a relatively
small amount of data available in the kinematic regions where
the Regge-model parametrization applies. The principal source
of such data is from [17]. The cross sections in this paper are
subdivided into a number of kinematical sets that display a
large variation in the values of x and s. In order to allow these
to be compared for each of the values of pm, the cross sections
are normalized by the plane-wave calculation performed at

FIG. 13. (Color online) Ratio of FSI cross sections to the PWIA
cross section as a function of θm for pm = 0.2 GeV. Data are from
[17]. �SAID = 1 GeV, and �Regge = 10 GeV.

FIG. 14. (Color online) Ratio of FSI cross sections to the PWIA
cross section as a function of θm for pm = 0.4 GeV. Data are from
[17]. �SAID = 1 GeV, and �Regge = 10 GeV.

each kinematic point. This is defined by the ratio

σ PWIA
R =

(
d5σ

d�ed�pdE′
)

(
d5σ

d�ed�pdE′
)

PWIA

. (30)

The data and calculations for this quantity are shown in
Fig. 13 for pm = 0.2 GeV, Fig. 14 for pm = 0.4 GeV, and
Fig. 15 for pm = 0.5 GeV. For each case four calculations
are shown. The calculation labeled “onshell Regge” uses
the on-shell contribution from the Regge-model FSI. The
calculation labeled “offshell Regge” uses the off-shell Regge-
model FSI with � = 10 GeV. The calculation labeled “onshell
SAID” uses the on-shell SAID amplitudes and that labeled
“offshell SAID” uses the off-shell prescription for the SAID
amplitudes with � = 1 GeV. In these figures smaller values
of θm are associated with large values of x and small values
of s, and larger values of θm are associated with small
values of x and large values of s. Roughly, 0.8 < x < 1.5
and 4.8 GeV2 < s < 8.5 GeV2. In all three cases all of the

FIG. 15. (Color online) Ratio of FSI cross sections to the PWIA
cross section as a function of θm for pm = 0.5 GeV. Data are from
[17]. �SAID = 1 GeV, and �Regge = 10 GeV.
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calculations agree qualitatively with shape of the data except
at the largest and smallest angles. In regions where the SAID
and Regge calculations overlap they are in close agreement.
The calculations for the off-shell SAID FSI vary little from the
corresponding on-shell results. It should be noted that none
of the calculations [5,6,12] shown in Ref. [17] provides a
satisfactory description of all of the data.

The calculations containing the off-shell Regge-model FSI
along with the corresponding on-shell calculation provides
the range of off-shell contributions that can be obtained with
the prescription presented in this paper. For all three values
of pm the off-shell calculation is larger than the on-shell
calculation. Comparison with the data suggests that the off-
shell contributions should be small. It would, however, be
prudent to use some caution in accepting this result until
more data can be obtained. It should be noted that if the
off-shell contributions do indeed prove to be small, this is
very advantageous for calculating deuteron electrodisinte-
gration observables for the purposes of simulating potential
experiments since the off-shell contributions are much more
computationally expensive than are the PWIA and on-shell
contributions.

IV. SUMMARY AND CONCLUSIONS

In this paper we have proposed a reasonable estimation of
the Regge-model NN scattering amplitude to the case where
one of the initial nucleons is off-shell. This extrapolation is
smooth and self-regulating. It is shown that the falloff of the
off-shell amplitudes is related to the falloff of the on-shell
amplitudes with |t | and |u|. Application of this approach to
deuteron electrodisintegration show that the off-shell con-
tributions are dependent on kinematics and are potentially
large. However, comparison to the data from [17] suggest
that off-shell effects may be small. Caution should be taken in
accepting this result until other data sets may become available.
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