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Comparative study of nuclear effects in polarized electron scattering from 3He
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We present a detailed analysis of nuclear effects in inclusive electron scattering from polarized 3He nuclei
for polarization asymmetries, structure functions, and their moments, in both the nucleon-resonance and deep-
inelastic regions. We compare the results of calculations within the weak binding approximation at finite Q2 with
the effective polarization ansatz often used in experimental data analyses and explore the impact of � components
in the nuclear wave function and nucleon off-shell corrections on extractions of the free neutron structure. Using
the same framework we also make predictions for the Q2 dependence of quasielastic scattering from polarized
3He, data which can be used to constrain the spin-dependent nuclear smearing functions in 3He.
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I. INTRODUCTION

Reliable extraction of information on the spin structure of
the neutron is vital for our understanding of the flavor and
spin decomposition of the nucleon in terms of its quark and
gluon constituents. When combined with the more copious
measurements of the proton structure, the neutron data allow
the individual u and d flavor contributions to be determined.
The absence of free neutron targets, however, means that
polarized nuclei such as deuterium, 3He, or 7Li must be used
as effective polarized neutron targets. The perennial problem
of nuclear corrections must therefore be seriously addressed
if one is obtain neutron structure information with sufficient
accuracy. This is especially pertinent for new generations of
polarized deep-inelastic scattering (DIS) experiments that aim
to measure spin structure functions and their moments with
unprecedented precision [1,2].

The study of nuclear corrections to spin structure functions
in the DIS and quasielastic (QE) regions has some history
already, with the first quantitative calculations dating back
to the 1980s [3–5]. Subsequent work by Ciofi degli Atti
et al. [6–9] and other groups [10–15] over the past two
decades has made important inroads into our understanding
of nuclear effects in scattering from polarized 3He nuclei
and the extraction of the spin structure of the free neutron.
The technology developed for inclusive scattering has more
recently been extended to other observables, such as the
3He generalized parton distributions [16] and transversity in
semi-inclusive DIS [17].

While most of the traditional approaches have been based
on a nonrelativistic treatment of the dynamics, some calcula-
tions of polarized 3He structure functions have attempted to
incorporate relativistic and off-shell effects [18–20], although
these are generally difficult to constrain unambiguously. A
systematic approach for expanding the nucleon propagator
in the nuclear medium was developed [21,22] in the weak-
binding approximation (WBA), in which the usual convolution
formulas for nuclear structure functions can be derived to
order p2/M2, where p is the nucleon three-momentum and
M is its mass, with identifiable higher order corrections. The
WBA method was applied to polarized deuteron [23] and 3He

nuclei [24], where the nuclear corrections were estimated in
both the DIS and the nucleon-resonance regions.

The standard nuclear structure function analyses have for
the most part been formulated within the plane-wave impulse
approximation, in which scattering is assumed to take place
incoherently from individual nucleons within the nucleus, with
the closure approximation used to sum over the hadrons in
the final state. Beyond the impulse approximation, nuclear
shadowing corrections in polarized 3He have been shown
to arise from multiple scattering of the lepton from two
or more nucleons in the 3He nucleus [25,26]. In addition,
contributions to the spin-dependent 3He structure function
from non-nucleonic degrees of freedom in the nucleus, such
as the �(1232) isobar, have been argued [14,15] to account for
the ≈4% difference between the value of the isovector axial
charge gA in the free nucleon (measured in neutron β decay)
and that in the A = 3 nuclei (from tritium β decay) [27].

With recent polarized 3He experiments at Jefferson Lab,
as well as those planned for the upcoming 12-GeV energy
upgrade, attaining ever greater precision, the need exists for
increasingly accurate theoretical descriptions of the nuclear
corrections to spin-dependent structure functions and their
moments. For example, the d2 moment of the 3He struc-
ture functions has recently been measured in the E06-014
experiment [28] at Jefferson Lab Hall A, which can, in
principle, reveal certain higher twist matrix elements of the
neutron, provided the nuclear corrections can be accounted for.
Furthermore, extraction of the neutron polarization asymmetry
An

1 from data on the A
3He
1 asymmetry requires the simultaneous

determination of nuclear corrections to the spin-dependent g1

and g2 structure functions, as well as the unpolarized F1 and F2

structure functions of 3He, which has not been systematically
considered in previous work.

In this paper we revisit the problem of nuclear effects
in inclusive scattering of polarized leptons from polarized
3He nuclei in the DIS, nucleon-resonance, and QE regions,
focusing in particular on kinematics at intermediate and large
values of Bjorken x. We provide a critical comparison of
various approaches and approximations to computing the
nuclear corrections, with a view of obtaining a more reliable
estimate of the uncertainty on the nuclear effects to be used in
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extractions of the free neutron structure. We work within the
framework of the WBA to compute the polarized nucleon light-
cone momentum distributions in 3He (commonly referred
to as “smearing functions”) and compare the full results at
finite four-momentum transfer squared Q2 with those often
used in the large-Q2 approximation, as well as with the
effective polarization ansatz typically adopted in experimental
data analyses. In addition to the standard nuclear smearing
corrections which incorporate Fermi motion and binding
effects, we discuss the effects of non-nucleonic constituents of
the nucleus such as the � resonance and the possible off-shell
modification of the nucleon structure functions in the nuclear
medium. The effects of the various nuclear corrections are
considered for both the g1 and the g2 structure functions and
their moments, as well as for the A1 and the A2 polarization
asymmetries, which requires correcting also the unpolarized
3He structure functions. As a possible test of the reliability
of the nuclear corrections, we evaluate the QE contributions
to the spin structure functions, which can be compared with
future precision data from dedicated 3He experiments in the
QE region.

This paper is organized as follows. In Sec. II we sum-
marize the basic formulas for the inclusive cross sections,
structure functions, and polarization asymmetries relevant for
the analysis. The formalism used for computing the polarized
3He structure functions within the WBA is outlined in Sec. III,
where we discuss the full results for the nuclear smearing
functions at finite values of Q2, as well as those in the Bjorken
limit and in the zero-width approximation. The latter leads to
the effective polarization approximation, which is often used in
analyses of 3He data. Numerical results for structure functions,
asymmetries, and moments are presented in Sec. IV, where we
study the dependence on the nuclear wave function and test the
efficacy of the various approximations. The possible impact of
effects beyond the impulse approximation, namely, from �
degrees of freedom and nucleon off-shell corrections, is also
examined. Finally, in Sec. V we summarize our findings and
discuss possible further applications of this work.

II. CROSS SECTIONS AND ASYMMETRIES

To begin our discussion we first summarize the main
formulas for cross sections and polarization asymmetries in
terms of the spin-dependent g1 and g2 structure functions. The
structure functions can be extracted from measurements of
longitudinally polarized leptons scattered from a target that is
polarized either longitudinally or transversely relative to the
electron beam. For longitudinal beam and target polarization,
the difference between the spin-aligned and spin-antialigned
cross sections (with the arrows ↑ and ⇑ denoting the electron
and nucleon spin orientations, respectively) is given in the
target rest frame by

d2σ ↑⇓

d�dE′ − d2σ ↑⇑

d�dE′ = σMott

Mν
4 tan2 θ

2
[(E +E′ cos θ )g1(x,Q2)

− 2Mxg2(x,Q2)], (1)

where E and E′ are the incident and scattered electron
energies, ν = E − E′ is the energy transfer, and θ is the

electron scattering angle. The Bjorken scaling variable is
defined as x = Q2/2Mν, and σMott = (4α2E′2/Q4) cos2(θ/2)
is the Mott cross section for scattering from a point particle.
The g2 structure function can be extracted if one, in addition,
measures the cross section for a nucleon polarized in a
direction transverse to the beam polarization,

d2σ ↑⇒

d�dE′ − d2σ ↑⇐

d�dE′

= σMott

Mν
4 tan2 θ

2
E′ sin θ

[
g1(x,Q2) + 2E

ν
g2(x,Q2)

]
. (2)

In practice, it is often easier to measure polarization
asymmetries, or ratios of spin-dependent to spin-averaged
cross sections. The ratios of the cross-section differences in
Eqs. (1) and (2) to the sums of the cross sections define the
longitudinal A‖ and transverse A⊥ polarization asymmetries,
respectively. The g1 and g2 structure functions can then be
extracted from these asymmetries according to

g1(x,Q2) = F1(x,Q2)
1

d ′

[
A‖ + tan

θ

2
A⊥

]
, (3a)

g2(x,Q2) = F1(x,Q2)
ye

2d ′

[
E + E′ cos θ

E′ sin θ
A⊥ − A‖

]
, (3b)

where the kinematical factor d ′ = (1 − ε)(2 − ye)/{ye[1 +
εR(x,Q2)]}, ε is the ratio of longitudinal to transverse virtual
photon polarizations, and ye = ν/E is the fractional energy
loss of the incident electron. The ratio R is defined in terms
of the spin-averaged longitudinal and transverse structure
functions,

R(x,Q2) = FL(x,Q2)

2xF1(x,Q2)
, (4)

where

FL(x,Q2) = γ 2F2(x,Q2) − 2xF1(x,Q2), (5)

with γ 2 = q2/ν2 = 1 + 4M2x2/Q2 and q2 = ν2 + Q2. Note
that the F1 structure function is related only to the transverse
virtual photon coupling, while F2 is a combination of both
transverse and longitudinal couplings.

One can also define virtual photon absorption asymmetries
A1 and A2 in terms of the measured asymmetries,

A‖ = D(A1 + ηA2), (6a)

A⊥ = d(A2 − ζA1), (6b)

where D = (1 − E′ε/E)/[1 + εR(x,Q2)] is the photon depo-
larization factor, and the other kinematic factors are given by
η = ε

√
Q2/(E − E′ε), d = D

√
2ε/(1 + ε), and ζ = η(1 +

ε)/2ε. The A1 and A2 asymmetries can also be directly
expressed in terms of the g1, g2, and F1 structure functions,

A1(x,Q2) = 1

F1(x,Q2)
[g1(x,Q2) − (γ 2 − 1)g2(x,Q2)],

(7a)

A2(x,Q2) =
√

γ 2 − 1

F1(x,Q2)
[g1(x,Q2) + g2(x,Q2)]. (7b)

At small values of x2/Q2, one then finds A1 ≈ g1/F1. In
the same limit, the A2 asymmetry also vanishes: A2 → 0 for

054001-2



COMPARATIVE STUDY OF NUCLEAR EFFECTS IN . . . PHYSICAL REVIEW C 88, 054001 (2013)

γ → 1. If the Q2 dependence of the polarized and unpolarized
structure functions is similar, the polarization asymmetry A1

will be weakly dependent on Q2. Furthermore, positivity
constraints lead to bounds on the magnitude of the virtual
photon asymmetries,

|A1| � 1, |A2| �
√

R. (8)

For QCD analysis it is usually convenient to work in terms
of (Cornwall-Norton) moments of the g1 and g2 structure
functions; the nth moments are defined as


(n)
1,2(Q2) =

∫ 1

0
dx xn−1g1,2(x,Q2). (9)

Note that because the moments integrate the structure func-
tions up to x = 1, they formally include the elastic scattering
contributions. The elastic contributions to g1 and g2 can be
written in terms of the Sachs electric and magnetic form factors
as

g
(el)
1 (x,Q2) = 1

2(1 + τ )
GM (Q2)[GE(Q2) + τ GM (Q2)]

× δ(x − 1), (10a)

g
(el)
2 (x,Q2) = τ

2(1 + τ )
GM (Q2)[GE(Q2) − GM (Q2)]

× δ(x − 1), (10b)

where τ = Q2/4M2. Of particular interest to the study of the
nucleon’s nonperturbative structure is the d2 moment,

d2(Q2) =
∫ 1

0
dx x2 [2g1(x,Q2) + 3g2(x,Q2)], (11)

which is defined so as to expose the twist-3 part of the
g2 structure function. The g2 structure function is unique
among the nucleon’s structure functions in that its higher twist
contributions are not suppressed by powers of 1/Q2, but enter
at the same order as the twist-2 component. The latter is given
by the Wandzura-Wilczek relation [29],

gWW
2 (x,Q2) = −g1(x,Q2) +

∫ 1

x

dz

z
g1(z,Q2), (12)

where g1 here includes only twist-2 contributions. In general,
the total d2 moment can be written in terms of the twist-2
(WW) and higher twist contributions, d2 = dWW

2 + d2. Using
Eq. (12) one can verify that the WW part of d2 vanishes,
dWW

2 = 0, so that measurement of d2 cleanly reveals the higher
twist component d2. Obviously, for the WW component the
lowest moment of g2 vanishes identically, 

(1)WW
2 = 0 [30].

III. NUCLEAR STRUCTURE FUNCTIONS

In this section we present the formalism for computing
the spin-dependent structure functions of 3He and discuss
their relation to the spin structure functions of the proton and
neutron. Within the WBA, the nuclear and nucleon structure
functions can be related by convolutions involving light-cone
momentum distributions of polarized nucleons in the 3He
nucleus. We consider the full results at finite Q2, along with
various approximations which arise in specific limits, as well

as corrections to the convolution approximation from nucleon
off-shell and non-nucleonic degrees of freedom. Coherent
effects associated with multiple scattering from two or more
nucleons in the nucleus give rise to corrections at small
values of x [31]; in this analysis we restrict ourselves to
the intermediate- and large-x region, x  0, in which the
incoherent scattering from a single nucleon is expected to
dominate.

A. Weak binding approximation

A systematic framework that has been used to successfully
compute nuclear structure functions in terms of nucleon
degrees of freedom is the WBA, in which the nucleus is
treated as a nonrelativistic system of weakly bound nucleons
with four-momentum pμ ≡ (M + ε, p), with | p|, |ε| � M .
In this approach the spin-averaged F1,2 and spin-dependent
g1,2 structure functions of nuclei have been derived by
Kulagin et al. in Refs. [21–24,32]. Neglecting possible nucleon
structure modifications off the mass shell (see Sec. III D
below), the spin-dependent structure functions of 3He can be
written, to order p2/M2, as [24]

g
3He
i (x,Q2) =

∫
dy

y

[
2f

p
ij (y, γ ) g

p
j

(
x

y
,Q2

)

+ f n
ij (y, γ ) gn

j

(
x

y
,Q2

)]
, i, j = 1, 2, (13)

where y = p · q/Mν = (M + ε + γpz)/M is the nuclear
light-cone momentum fraction carried by the interacting
nucleon, and a sum over indices j is implied. The functions
f N

ij (y, γ ) are nucleon light-cone momentum distributions (or
“smearing functions”) in the 3He nucleus computed in terms
of the nuclear spectral function,

f N
ij (y, γ ) =

∫
d4p

(2π )4
DN

ij (ε, p, γ ) δ

(
y − 1 − ε + γpz

M

)
,

(14)

with N = p or n. In the Bjorken limit (γ → 1), the smearing
functions depend only on the light-cone momentum fraction
y, which spans the range between x and MHe/M ≈ 3. At finite
Q2, however, they depend in addition on the variable γ , making
them process-dependent at finite kinematics.

The energy-momentum distribution functions DN
ij can be

conveniently expressed in terms of coefficients of the spectral
function PN [11],

PN (ε, p, S) = 1
2

[FN
0 + FN

σ σ · S

+FN
t

(
p̂ · S p̂ · σ − 1

3 S · σ
)]

, (15)

where p̂ is a unit vector in the direction of p, and the nuclear
spin vector S is defined to lie along the z axis. The spectral
coefficient FN

0 represents the spin-averaged distribution of
nucleons in the nucleus, while the spin-dependent distributions
are parametrized in terms of the longitudinal FN

σ and tensor
FN

t spectral coefficients. In general, the spectral coefficients
are functions of the separation energy ε and the magnitude | p|
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of the nucleon momentum, FN
0,σ,t ≡ FN

0,σ,t (ε, | p|). For the g1 structure function the nucleon energy-momentum distributions are
given by [23,24]

DN
11 = FN

σ + 3 − γ 2

6γ 2

(
3p̂ 2

z − 1
)FN

t + pz

γM

(
FN

σ + 2

3
FN

t

)
+ p2

M2

(3 − γ 2)p̂ 2
z − 1 − γ 2

12γ 2

(
3FN

σ − FN
t

)
, (16a)

DN
12 = (γ 2 − 1)

{
− 3p̂ 2

z − 1

2γ 2
FN

t + pz

γM

[
Fσ

N +
(

3

2
p̂ 2

z − 5

6

)
FN

t

]

− p2

M2

[
1 + p̂ 2

z(4γ 2 − 3)

4γ 2
FN

σ + 5 + 18p̂ 4
zγ

2 − 5p̂ 2
z (3 + 2γ 2)

12γ 2
FN

t

]}
, (16b)

while for the g2 structure function the corresponding distributions are

DN
21 = −3p̂ 2

z − 1

2γ 2
FN

t − pz

γM

(
FN

σ + 2

3
FN

t

)
− p2

M2

3p̂ 2
z − 1

12γ 2

(
3FN

σ − FN
t

)
, (16c)

DN
22 = FN

σ + 2γ 2 − 3

6γ 2

(
3p̂ 2

z − 1
)FN

t + pz

γM

{
(1 − γ 2)FN

σ +
[

− 5

6
+ 1

3
γ 2 + p̂ 2

z

(
3

2
− γ 2

)]
FN

t

}

+ p2

M2

[
p̂ 2

z(3 − 6γ 2 + 4γ 4) − 1 − 2γ 2

4γ 2
FN

σ + 5 − 2γ 2
(
1 + 3p̂ 2

z

) + 4p̂ 2
zγ

4

12γ 2

(
3p̂ 2

z − 1
)FN

t

]
. (16d)

Note that in the γ → 1 limit, the DN
12 function vanishes,

in which case the nuclear g1 structure function receives
contributions only from gN

1 . However, both gN
1 and gN

2
contribute to the nuclear g2 structure function at all Q2 values.
For γ = 1, the diagonal functions f N

11 and f N
22 integrate to the

effective nucleon polarizations (see Sec. III B below), while the
integral over the off-diagonal f N

21 smearing function vanishes.
The dependence of the smearing functions f N

ij on y and γ is
illustrated in Ref. [24] for realistic models of the 3He spectral
function.

The integrated spectral function coefficient FN
σ determines

the average nucleon polarization in the nucleus,

〈σz〉N =
∫

d4p

(2π )4
FN

σ , (17)

while FN
t is related to the tensor polarization [11,24]. For

3He, the integral of the function F0 gives the number of
protons (2) or neutrons (1) in the nucleus. The average nucleon
polarization can also be written in more familiar notation in
terms of the probabilities of the nucleons in the 3He nucleus
to be in relative S, S ′, or D states [33],

〈σz〉p = − 2
3 (PD − PS ′ ), (18a)

〈σz〉n = PS − 1
3 (PD − PS ′ ). (18b)

Typically, the space-symmetric S state is the dominant contri-
bution, with the L = 0 mixed-symmetric S ′ state and L = 2
tensor D state giving small corrections [33].

B. Effective polarizations

In the limit of zero nuclear binding and γ → 1, the
smearing functions become infinitesimally narrow [f N

ii ∼
δ(1 − y), with f N

i �=j = 0], resulting in nuclear corrections that
are independent of x. In this approximation one can express
the nuclear structure functions as linear combinations of the
proton and neutron structure functions weighted by effective

polarizations P N
i ,

g
3He
i (x,Q2) = 2P

p
i g

p
i (x,Q2) + P n

i gn
i (x,Q2), i = 1, 2.

(19)

The proton effective polarizations P
p
i are defined to be

the average polarizations of the two protons in the 3He
nucleus, rather than the total proton polarization. The effective
polarizations are defined in terms of integrals of the diagonal
smearing functions f N

11 and f N
22 at γ = 1,

P N
i =

∫
dy f N

ii (y, γ = 1), (20)

which can be expressed through the momentum-weighted
moments FN(n)

m of the spectral coefficients,

P N
1 = FN(0)

σ − 1
3

(FN(2)
σ − 1

3 FN(2)
t

)
, (21a)

P N
2 = FN(0)

σ − 2
3

(FN(2)
σ − 1

15 FN(2)
t

)
, (21b)

with

FN(n)
m ≡

∫
d4p

(2π )4

(
p
M

)n

FN
m (ε, p), m = 0, σ, t. (22)

In this notation the average nucleon polarization in Eq. (17)
can also be written as 〈σz〉N ≡ FN(0)

σ .
The effective polarizations can be computed numerically

from models of the 3He wave function. Table I lists values of

TABLE I. Effective polarization parameters FN(0)
σ , FN(2)

σ , FN(2)
t

and the average polarizations P N
1 and P N

2 for the neutron and proton,
from the KPSV [12] and SS [11] (in parentheses) spectral functions.

FN(0)
σ FN(2)

σ FN(2)
t P N

1 P N
2

Neutron 0.856 0.018 0.013 0.851 0.844
(0.888) (0.016) (0.010) (0.884) (0.878)

Proton −0.029 −0.002 0.009 −0.028 −0.028
(−0.022) (−0.001) (0.004) (−0.021) (−0.021)
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the coefficients in Eqs. (21) for the proton and neutron obtained
from the spectral function of Kievsky et al. (KPSV) [12], which
is calculated using a variational approach with a pair-correlated
hyperspherical-harmonic basis. For comparison, we also list
values (in parentheses) obtained from the spectral function
of Schulze and Sauer (SS) [11], which uses the trinucleon
bound-state wave function from Ref. [34] computed by solving
the Faddeev equations for 18 channels.

The lowest order neutron coefficient 〈σz〉n dominates all
other contributions, giving an average neutron polarization
of ≈86% (89%) for the KPSV (SS) spectral function. The
small negative value of the average proton polarization reflects
the preferential antialignment of the spins of the proton pair,
with 〈σz〉p ≈ −3%(−2%) for the two models. Other models,
such as the PEST three-body wave function [13], give similar
values, 〈σz〉n = 88% and 〈σz〉p = −2%, as does an earlier
world average of three-nucleon models, 〈σz〉n = 86% ± 2%
and 〈σz〉p = −2.8% ± 0.4% [33].

The p2-weighted moment FN(2)
σ is ≈2% of the average

polarization for the neutron and ≈3–4% for the proton.
The p2-weighted tensor moment FN(2)

t is ≈1–1.5% of the
leading FN(0)

σ term for the neutron, but a somewhat larger
fraction, ≈10–15%, for the proton, and with opposite sign
(although, as noted, the proton average polarization itself is
very small). In practice, the additional suppression factors
of ∼10 and ∼20 for the P N

1 and P N
2 effective polarization

in Eqs. (21), respectively, render the tensor contributions
negligible. Overall, the higher order coefficients reduce the
magnitude of the neutron polarization by ≈1–1.5% and the
proton polarization by ≈2–3%. On the scale of the nuclear
wave function model dependence [11,12] of the effective
polarizations, which amounts to ∼4% for the neutron and
∼15% for the proton, the higher order corrections are not
significant.

C. Non-nucleonic contributions

While scattering from nucleons in the nucleus gives the
dominant contribution to nuclear DIS, there are indications that
a description of nuclear properties in terms of nucleon degrees
of freedom alone may not be complete. Pions and vector
mesons have long been recognized as playing an important role
in the structure and interactions of nucleons at low energies,
and their effects may also be relevant in high-energy reactions
such as DIS. A notable example is the nuclear EMC effect,
or the ratio of nuclear to deuteron structure functions, which
deviates from unity owing to the redistribution of momentum
between nucleons and pions in the nucleus [35]. DIS from
pions and other mesons exchanged between different nucleons
in the nucleus can also lead to antishadowing effects at x ∼ 0.1
in unpolarized structure functions [36–38]. More recently, it
was observed [39] that the presence of an isovector-vector ρ0

mean field in asymmetric nuclei can induce a shift in the u and
d quark distributions which has important consequences for
the NuTeV anomaly.

For spin-dependent observables, a small admixture of the
�(1232) isobar in the three-body wave function [40] was
found to be necessary to understand the experimental value
of the axial vector charge measured in 3H β decay [27]. The

same mechanism was argued [14,25] to contribute also to the
isovector g1 structure function for the 3He-3H system, whose
lowest moment is given by the Bjorken sum rule [41]


3H(1)
1 − 

3He(1)
1


p(1)
1 − 

n(1)
1

= g
3H
A

gA

. (23)

Experimentally, one finds an ≈4% suppression of the axial
vector charge for 3H compared with the nucleon, g

3H
A /gA =

0.956 ± 0.004 [27]. Neglecting the Fermi motion of the �
baryon in the nucleus, the � contribution to the nuclear g1

structure function was incorporated by Bissey et al. [13] in
terms of off-diagonal N → � transition structure functions
and corresponding effective polarizations P N�

1 . For a 3He
target, the total g1 structure function is then given by

g
3He
1 (x,Q2) = g

3He
1 (x,Q2)|N + g

3He
1 (x,Q2)|�, (24)

where the nucleonic contribution g
3He
1 (x,Q2)|N is given by

Eq. (13) [or the effective polarization approximation, Eq. (19)],
and

g
3He
1 (x,Q2)|�
= 2

[
P n �0

1 g n�0

1 (x,Q2) + P
p �+

1 g
p �+
1 (x,Q2)

]
. (25)

In valence quark models the nucleon g1 structure function can
be decomposed into contributions involving scalar and axial
vector spectator diquarks [42,43], which allows the transition
structure functions to be related by [13]

g n �0

1 (x,Q2) = g
p �+
1 (x,Q2)

= 2
√

2

5

[
g

p
1 (x,Q2) − 4gn

1 (x,Q2)
]
. (26)

The effective transition polarizations can then be determined
from Eqs. (23)–(26) in terms of the diagonal polarizations P N

1

and the moments 
N(1)
1 of the nucleon g1 structure functions,

P n�0

1 + P
p �+

1 = 5

4
√

2

(
P n

1 − P
p
1 − g

3H
A

/
gA

)(


p(1)
1 − 

n(1)
1

)


p(1)
1 − 4

n(1)
1

.

(27)

Using the most recent de Florian et al. (DSSV) [44]
parametrization of the spin-dependent parton distribution
functions (PDFs) at Q2 = 5 GeV2 and the KPSV values for
the effective polarizations [12], we find P n �0

1 + P
p �+

1 =
−0.0125. This can be compared with the value −0.012
obtained by Bissey et al. [13] using the earlier GRSV spin-
dependent PDFs [45] and including corrections from nucleon
off-shell effects [46] (see Sec. III D below).

For the g2 structure function, there is no corresponding
isovector sum rule analogous to the Bjorken sum rule.
However, in the WW (leading twist) approximation, and in the
absence of nuclear Fermi motion, the � contributions to g

3He
2

can be expressed in analogy with those for g
3He
1 in Eq. (25),

which we use in our numerical estimates in Sec. IV.
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D. Nucleon off-shell corrections

In the derivation of the one-dimensional convolution
representation of the nuclear structure function in Eq. (13),
the partonic structure of the free nucleon was assumed to
be unaltered when the nucleon is placed inside the nucleus.
Off-shell dependence of the nucleon structure functions would
require a generalization of Eq. (13) to take into account the
additional dependence of gN

1,2 on p2 �= M2. In the WBA,
to order p2/M2 in the nucleon momentum, one can write
a generalized, two-dimensional convolution for the nuclear
structure function in terms of a y- and p2-dependent smearing
function and a (p2-dependent) off-shell nucleon structure
function [22]

g
3He
i (x,Q2) =

∫
dy

y

∫
dp2

[
2f̃

p
ij (y, γ, p2) g

p
j

(
x

y
,Q2, p2

)

+ f̃ n
ij (y, γ, p2) gn

j

(
x

y
,Q2, p2

)]
, (28)

where i, j = 1, 2 and the off-shell dependent smearing func-
tion is defined in analogy with that in Eq. (14) by

f̃ N
ij (y, γ, p2) =

∫
d4p

(2π )4
DN

ij (ε, p, γ ) δ

(
y − 1 − ε + γpz

M

)
× δ[p2 − (M + ε)2 + p2]. (29)

The presence of the p2 dependence in the nucleon structure
functions in Eq. (28) does not allow the y and p2 integrations
to decouple, as in the on-shell convolution expression (13).
Note that from Eqs. (14) and (29), the smearing function
f N

ij (y, γ ) is obtained simply by integrating the off-shell
function f̃ N

ij (y, p2, γ ) over p2,

f N
ij (y, γ ) =

∫
dp2 f̃ N

ij (y, γ, p2). (30)

The dependence of the bound nucleon structure function
on the off-shell mass p2 is generally difficult to determine.
In fact, the concept of nucleon off-shell effects is inherently
a theoretical construct which is strictly defined only within a
specific definition of the nucleon fields; field redefinitions can,
in principle, be made to move strength between wave function
and off-shell contributions, with only the total structure
function being physical. For the case of the deuteron structure
function, this was demonstrated for both unpolarized and
polarized scattering in Refs. [18,19,47] in a simple spectator
quark model. A number of other models have also been
considered in attempts to quantify the possible modification of
the nucleon substructure in the nuclear medium [32,46,48–52].

In the WBA, the average nuclear binding and kinetic
energies of the in-medium nucleons are small compared with
the nucleon mass, so that the typical nucleon virtuality is
|p2 − M2|/M2 � 1. In this case, the bound nucleon structure
function can be expanded in a Taylor series about the on-shell
limit [22],

gN
i (x,Q2, p2) = gN

i (x,Q2) + (p2 − M2)
∂gN

i

∂p2

∣∣∣∣
p2=M2

.

(31)

To determine the p2 derivative of the off-shell structure
functions, we take the leading twist approximation for gN

1
and gN

2 and assume that the spin-dependent quark distribution
at a scale Q2 = Q2

0 can be written in the form of a spectral
representation,

�q(x, p2) =
∫

ds

∫ k2
max(x,p2)

−∞
dk2 ρ(s, x, p2, k2), (32)

where k is the four-momentum of the interacting quark, with
maximum virtuality k2

max = x[p2 − s/(1 − x)], and s = (p −
k)2 is the invariant mass squared of the spectator quark system.
Because our focus is mainly on the nuclear effects in the large-
x region, we consider the application of the model specifically
to the spin-dependent valence quark PDFs. In this case the
quark spectral function may be approximation by a single pole
at mass s = s0 [32],

ρ → δ(s − s0) �(k2, p2). (33)

Fits to the unpolarized free nucleon structure functions in the
valence quark region suggest values of the invariant spectator
masses squared ∼2 GeV2 [32], and in practice we use s0 =
2.1 GeV2. Following Refs. [32,51], the off-shell dependence
of the quark spectral function can be parametrized through
the p2 dependence of the ultraviolet cutoff parameter �N (p2)
used to regulate the k2 integration in Eq. (32). The cutoff �N

can be related to the radius of confinement of the nucleon RN ,
�N ∼ 1/RN , with the variation with p2 reflecting the amount
of nucleon swelling in the nuclear medium. From the analysis
of the nuclear EMC effect in the Q2 rescaling model [53],
typical values for nucleon swelling in the 3He nucleus were
found to be δRN/RN ≈ 4.0–4.7%.

Within this framework, the p2 derivative of the spin-
dependent structure function gN

i becomes

M2 ∂gN
i

∂p2

∣∣∣∣
p2=M2

= cN gN
i + hN (x)

∂gN
i

∂x
, (34)

where

hN (x) = x(1 − x)
(1 − λN )(1 − x)M2 + λNs0

(1 − x)2M2 − s0
. (35)

The scale parameter λN is the p2 derivative of the cutoff �N

and can be expressed in terms of the change in confinement
scale δRN/RN and the average virtuality of the nucleon 〈δp2〉N
[32],

λN ≡ ∂ ln �2
N

∂ ln p2

∣∣∣∣
p2=M2

= −2
δRN/RN

〈δp2〉N/M2
, (36)

where

〈δp2〉N =
∫

dy dp2 (p2 − M2) f̃ N
0 (y, p2, γ ). (37)

Here the function f̃ N
0 is the spin-averaged analog of the

off-shell nucleon smearing functions in 3He. Note that because
the proton and neutron momentum distributions in 3He are
not identical, the average value of the virtuality of the bound
proton and neutron in 3He will, in general, be different.
Using the KPSV spectral function, the average virtualities
for the proton and neutron are 〈δp2〉n/M2 ≈ −9.5% and
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〈δp2〉p/M2 ≈ −7.2%, respectively. (For comparison, the cor-
responding average virtuality of nucleons in a deuterium
nucleus is ≈−(4–6)% [51].)

For spin-averaged PDFs, the normalization coefficient cN

in Eq. (34) was computed in Ref. [51] by requiring that
the off-shell corrections do not modify the valence quark
number, while Kulagin and Petti [32] imposed the sum of
the off-shell and shadowing corrections to not renormalize the
valence quark number. For the axial vector current, there is
no corresponding sum rule for a bound nucleon; however, it is
reasonable to assume a similar invariance of the axial charge
for a given flavor q in the nuclear medium. As discussed in
Sec. III C above, the axial vector charge in the β decay of 3H
differs by ≈4% from that in neutron β decay, and some of this
difference could arise from nucleon off-shell corrections [13].
In the framework of the present analysis, the entire difference
is attributed to wave function effects and corrections arising
from � components in the nuclear wave function [40], so that
off-shell corrections do not modify the lowest moments of
the valence quark PDFs. This assumption is equivalent to the
condition ∫ 1

0
dx

∂gN
i

∂p2

∣∣∣∣
p2=M2

= 0, (38)

which leads to the constraint on the normalization constant,

cN = −
∫ 1

0 dx hN (x)
(
∂gN

i

/
∂x

)


N(1)
i

. (39)

In the following we refer to this model as the off-shell covariant
spectator (OCS) model.

In a related approach, the off-shell corrections were com-
puted in terms of relativistic nucleon-quark-spectator vertex
functions [18,19] for the case of the deuteron g1 structure
function. Corrections arising from the negative energy com-
ponents of the nuclear wave function and the nucleon off-shell
dependence of the vertex functions were identified, as well as
additional functions not present on-shell, but were found to be
relatively small.

In a somewhat different framework, Steffens et al. [46]
used the quark-meson coupling (QMC) model to compute the
effects of mean-field potentials in the nucleus using the local
density approximation. The in-medium scalar (σ ) and vector
(ρ, ω) fields modify the quark-meson couplings, inducing
changes in the nucleon’s mass and energy, as well as the
energy of intermediate state. For the quark distributions in
the free nucleon the MIT bag model was used, which restricts
the validity of the calculation to 0.2 � x � 0.7. The net
effect is a small, flavor-dependent correction, which was
parametrized in terms of the ratio of the PDFs in the free
and bound nucleons,

�qv(x)

�q̃v(x)
= aq xbq + cq xdq (1 − x)eq , (40)

with the parameters aq, . . . , eq given in Ref. [46] for the 3He
and 6Li nuclei. In the next section we compare the effects of
these models on the g

3He
1 structure function and estimate the

uncertainty arising from the off-shell model dependence.

IV. NUMERICAL RESULTS

In this section we present the numerical results for
the various spin-dependent nuclear corrections described in
Sec. III. We consider the effects on the x dependence of the
g1 and g2 structure functions of 3He, and several of their low
moments, as well as on the polarization asymmetries that are
more directly accessed in inclusive scattering experiments. In
particular, we study the impact of the different corrections and
their uncertainties on the extraction of the spin structure of
the neutron and the accuracy of the various approximations
used in the literature. We examine the corrections in both the
DIS and the nucleon-resonance regions, using, for illustration,
the DSSV [44] leading twist parametrization of the spin-
dependent PDFs in the former, and the MAID parametrization
for the low-W region. To estimate the dependence of the results
on the input nucleon parametrization, we also compare with the
parametrization from Ref. [54]. For the nucleon distributions in
3He, we use the spin-dependent KPSV spectral function [12],
but consider also the results with the SS [11] spectral function.

A. Structure functions

To begin our discussion of the nuclear effects on the 3He
structure functions and polarization asymmetries, we note that
because the latter are ratios of spin-averaged to spin-dependent
structure functions, they will, in general, also depend on the
nuclear corrections to the unpolarized F1 and F2 structure
functions. To determine the role played by nuclear effects in
the asymmetries, it is therefore necessary to first understand
the corrections to the 3He F1 and F2 structure functions.

In Fig. 1 the spin-averaged F1 and F2 structure functions for
3He are compared with those for the corresponding nucleon
isospin combination, 2p + n, at Q2 = 1 and 5 GeV2. Note
that at finite Q2 the nuclear F1 structure function receives
contributions from the nucleon F1 and F2 structure functions,
while the nuclear F2 structure functions depends only on FN

2
at any Q2. At the lower Q2 value, the resonance structures are
prominent at large values of x for the free proton and neutron
structure functions, particularly in the region of the �(1232)
resonance. For the input nucleon F1 and F2 structure functions
we use the resonance parametrization of Bosted and Christy
[55]. After applying the nuclear smearing corrections in the
WBA, using the spin-averaged analogs [32] of the nucleon-
momentum distribution functions f N

ij in Sec. III A with the
KPSV spectral functions, the resonance peaks are significantly
smeared out. The effects are strongest in the � region, where
the smearing reduces the height of the peaks by a factor of ≈2.

This is also evident in the ratio of the 3He to 2p + n
structure functions shown in Fig. 1(b), where the resonance
structures are effectively inverted compared to those in the F1

and F2 functions themselves. In contrast, the ratios of the 3He
to nucleon structure functions in the deep-inelastic region at
Q2 = 5 GeV2, computed using the NMC parametrization [56],
show the smooth behavior characteristic of the nuclear EMC
effect, with a depletion at x ∼ 0.7 and a subsequent rise above
unity at larger x due to Fermi motion.

Qualitatively similar effects of smearing are observed for
the spin-dependent 3He structure functions g1 and g2 in Fig. 2.
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FIG. 1. (Color online) (a) Spin-averaged F1 and F2 structure functions of 3He (solid lines) and (2p + n) (dotted lines), using the Bosted-
Christy nucleon structure function parametrization [55] at Q2 = 1 GeV2. (b) Ratios of F1 and F2 structure functions of 3He to (2p + n)
at Q2 = 1 GeV2 (dotted lines) and Q2 = 5 GeV2 (solid lines), using the Bosted-Christy [55] and NMC [56] nucleon structure function
parametrization for the resonance and DIS regions, respectively. The 3He structure functions in all cases are computed using the convolution
formalism including finite Q2 corrections [32].

Here the functions xg1 and xg2 for the free neutron are
compared with the corresponding 3He functions computed
using the various approximations discussed in Sec. III, both

in the resonance region at Q2 = 1 GeV2 [Figs. 2(a) and 2(b)]
and in the DIS region at Q2 = 5 GeV2 [Figs. 2(c) and 2(d)].
In particular, we compute the 3He structure functions using
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FIG. 2. (Color online) Spin-dependent xg1 and xg2 structure functions of the neutron (black dotted line) and 3He, computed in the EPA
with nucleon only (blue dot-dashed line) and with � components (green dashed line), and with Fermi smearing in the Bjorken (γ = 1) limit
(violet dot-dot-dashed line) and at finite Q2 (red solid line). The functions at Q2 = 1 GeV2 [(a) and (b)] are computed from the MAID [57] and
DSSV [44] parametrizations of the nucleon-resonance and DIS regions, respectively (the dashed vertical line indicating the boundary between
these), while those at Q2 = 5 GeV2 [(c) and (d)] use the DSSV fit.
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the effective polarization approximation (EPA), Eq. (19),
including the effects of � components in the nuclear wave
function, Eq. (25), and accounting for Fermi smearing effects,
both in the Bjorken limit (γ = 1) and at finite Q2, Eq. (28).

For the input nucleon structure functions we use the MAID
model [57] for the resonance region at low W values, and the
DSSV leading twist parametrization [44] in the DIS region,
which is taken here to be W 2 � 3 GeV2. At Q2 = 1 GeV2,
the boundary between these [indicated by the dashed vertical
lines in Figs. 2(a) and 2(b)] occurs at x ≈ 0.32. At this Q2

the dominant feature in the structure functions is the strong �
resonance peak at x ≈ 0.6. Compared with the free neutron,
the � peak in the 3He structure functions computed from
the full smearing function in Eq. (14) is reduced by more
than a factor of 2. As noted in Ref. [24] and illustrated in
Figs. 2(a) and 2(b), using the smearing function computed
in the Bjorken limit underestimates the amount of smearing,
with the � peak in the 3He structure function some 20–30%
larger in magnitude than for the full, Q2-dependent smearing.
The difference between the smeared results and those obtained
from the EPA are even more striking, with the EPA reducing the
neutron structure functions by only a few percent. The addition
of the � contribution increases the magnitude of the functions
slightly, but in either case it is clear that the approximation of
x-independent nuclear corrections breaks down in the region
where the structure is dominated by resonances.

The EPA approach is expected to be more reliable in
the DIS region at high W , where the structure functions
are considerably smoother. The corresponding xg1 and xg2

functions are illustrated in Figs. 2(c) and 2(d) at Q2 = 5 GeV2.
Here the resonance structure at low W is restricted to larger
x, and for most x values the functions are dominated by the
nonresonant continuum, so that it is reasonable to approximate
g1 and g2 by the leading twist contributions [44]. Away from
the x ∼ 1 region, where smearing effects will come into
play, one can understand the relative differences between the
neutron and 3He structure functions simply within the EPA.
From Eq. (19) and Table I, the neutron effective polarization
P n

1 reduces the magnitude of the (negative) gn
1 structure

function by ≈15%. However, the proton contribution, which
is given by the product of the small (negative) effective
polarization, 2P

p
1 ≈ −5%, and the large (positive) g

p
1 structure

function, shifts the overall 3He structure function downward,
rendering g

3He
1 < gn

1 . This is seen in the comparison in Fig. 2(c)
and in the DIS region at small x in Fig. 2(a).

The effects of nuclear smearing in the DIS region, either for
γ = 1 or including the finite-Q2 corrections, are negligible at
x � 0.5 compared with the EPA with nucleons. At larger x the
smearing effects are more significant, although the magnitude
of the structure functions there is considerably smaller. (Note
that because the neutron structure function changes sign, it is
not practical to consider a ratio of nuclear to nucleon structure
functions as in the unpolarized case in Fig. 1.) A larger
effect arises with the addition of � contributions to the 3He
wave function [15], which accentuates the differences between
the free neutron and 3He structure functions, especially at
intermediate values of x, 0.1 � x � 0.4. Qualitatively similar
behavior is seen for the g2 structure function in Fig. 2(d),
with the signs reversed compared to g1. Namely, the neutron

0 0.2 0.4 0.6 0.8
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3
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Q
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2

xg
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,Q
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FIG. 3. (Color online) Nucleon off-shell corrections to the xg1

structure function of 3He, within the OCS model (dashed line and
shaded band) and in the QMC model [46] (dot-dashed line) in the
valence approximation, with an extrapolation of the latter for x � 0.2
(light dot-dashed line). The free neutron structure function (dotted
line) and the 3He structure function computed with on-shell nucleon
input (solid line) are shown for comparison.

polarization slightly reduces the (positive) gn
2 contribution,

while the (negative) proton polarization combines with the
(negative) g

p
2 structure function to produce a compensating

shift upward, leaving g
3He
2 > gn

2 . Again, this trend is also seen
in the DIS part of the g2 comparison at Q2 = 1 GeV2 in
Fig. 2(b).

The effects of the (negative) � resonance contribution to
g

3He
1 are offset somewhat by the nucleon off-shell corrections

discussed in Sec. III D. As illustrated in Fig. 3, the corrections
computed within the OCS model give rise to a positive
contribution in the intermediate-x region, 0.1 � x � 0.6,
where the magnitude of the effects is largest. This will mostly
cancel the impact of the � resonance in this region, bringing
the total 3He structure function closer to the on-shell result.
(For simplicity, here we have computed the effects of the
smearing in the γ = 1 limit, although as Fig. 2 illustrates,
at Q2 = 5 GeV2 the finite-Q2 effects are negligible.) To
give an estimate of the uncertainty on this correction, we
consider a range of nucleon swelling parameters δRN between
δRN/RN ≈ 2% and 6%, with a central value of 4%. This
gives for the parameter λN , which determines the p2 derivative
∂gN

i /∂p2 in Eqs. (34)–(36), the values λn = 0.84 ± 0.42
for the neutron and λn = 1.12 ± 0.56 for the proton. The
corrections corresponding to this range of parameters are
indicated in Fig. 3 by the shaded band.

Qualitatively similar behavior is observed using the QMC
off-shell model from Steffens et al. [46], which gives a small
positive shift in g

3He
1 over most of the x range considered. Note

that this model assumes the valence quark approximation,
so that its predictions at small x (x � 0.2) may not be
reliable. Nevertheless, it is reassuring that these models, which
are based on rather different assumptions, lead to off-shell
corrections that are similar in sign and magnitude in their
regions of validity.

While the above results are obtained using specific
parametrizations for the input proton and neutron g1 and g2

structure functions [44,57], the detailed predictions for the 3He
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FIG. 4. (Color online) Dependence of the neutron and 3He g1 structure functions on the input nucleon parametrization (MAID [57] and
DSSV [44], and SORT [54]) [(a) and (b)], and on the 3He wave function (KPSV [12] and SS [11]) [(c) and (d)], at Q2 = 1 GeV2 and 5 GeV2.
The dashed vertical lines at Q2 = 1 GeV2 indicate the boundary between the nucleon-resonance and DIS regions.

functions will naturally be modified with different nucleon
inputs. In Figs. 4(a) and 4(b) we compare the results for the
neutron and 3He structure functions, computed using the full
smearing functions in Eq. (28), as in Fig. 2, with those using the
combined parametrization of the resonance and DIS regions
by Simula et al. (SORT) [54]. The quantitative differences
between the two sets of results reflect the degree to which
the structure functions of the free nucleon, and particularly
the neutron, are determined experimentally. However, the
conclusions about the relative importance of the various
nuclear corrections investigated here does not depend on the
form of the input distributions. Furthermore, the dependence of
the 3He structure functions on the input neutron g1 and g2, can,
in principle, be removed by applying an iterative procedure,
such as that outlined by Kahn et al. [58], for example. In
practice, the number of iterations required for convergence
depends on the number of data points and the precision of
the data.

Indeed, the only theoretical input on which the 3He structure
functions, in principle, depend are the nuclear smearing
functions and whatever approximations are made for them.
In Figs. 4(c) and 4(d) the dependence on the nuclear structure
model is illustrated by comparing the g1 structure function
computed from the KPSV [12] and SS [11] 3He wave

functions, at Q2 = 1 GeV2 and 5 GeV2. To isolate the effects
of the wave function alone, the same Bjorken limit (γ = 1)
approximation is used for the smearing functions in the two
models. The results in both the resonance region and in the DIS
region show a very mild dependence on the wave function,
smaller than on the input nucleon structure functions in
Figs. 4(a) and 4(b), suggesting that the theoretical uncertainty
arising from the nuclear wave function is not significant.

The dependence on the 3He wave function model can be
reduced by comparing the calculated smearing functions with
data on QE cross sections. In the impulse approximation these
depend simply on the product of the smearing function and
the nucleon elastic form factors [Eqs. (10)]. To the extent
that the form factors are determined from data in other elastic
or QE scattering reactions, and corrections from final-state
interactions or non-nucleonic contributions are not large,
measurement of the QE cross sections can directly constrain
the smearing function in the vicinity of the QE peak.

The predictions for the QE contribution to the g1 structure
function of 3He are shown in the WBA in Fig. 5(a) for
Q2 = 1, 2, and 5 GeV2, using the full, Q2-dependent smearing
functions in Eqs. (14) and (16). For the proton electric and
magnetic elastic form factors we use the parametrization from
Ref. [59], while the Kelly [60] fit is used for the neutron
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FIG. 5. (Color online) (a) Quasielastic contributions to the xg1 structure function of 3He at Q2 = 1 (solid line), 2 (dashed line), and 5 GeV2

(dotted line). (b) Individual contributions to the QE xg1 structure function of 3He (solid line) at Q2 = 1 GeV2, from the neutron g1 (dashed
line), neutron g2 (dotted line), proton g1 (dot-dashed line), and proton g2 (dot-dot-dashed line) structure functions.

form factors. As expected, the amplitude of the QE peak falls
rapidly with increasing Q2, so that by Q2 = 5 GeV2 the QE
contribution is strongly suppressed. At the lowest Q2 value,
Q2 = 1 GeV2, the QE contribution exhibits a striking double
peak structure, with local maxima at x ≈ 0.85 and 1.2 and
a dip at x ≈ 1. This is attributable primarily to the proton
g

p
1 contribution, which has a relatively large and negative

peak at x = 1, as Fig. 5(b) illustrates. Although the polarized
proton smearing function in 3He is strongly suppressed relative
to the neutron, the larger proton electric form factor G

p
E

compared with the neutron Gn
E makes the proton and neutron

contributions comparable at this Q2 value.
Future data on inclusive QE cross sections in the x ∼ 1

would allow one to investigate this intriguing interplay
between the various components of g

3He
1 in detail and provide a

sensitive test of the nuclear wave function. Examination of the
tails of the QE cross sections at large x (x � 1.6) would also
enable exploration of, and possible constraints on, the wave
function and nucleon off-shell effects [61].

B. Asymmetries

While nuclear effects in structure functions have received
the greatest attention theoretically, the quantities that are
most directly accessible in polarized DIS experiments are
the polarization asymmetries A1 and A2 in Eqs. (7) [which
are themselves extracted from the longitudinal and parallel
asymmetries in Eqs. (6)]. As ratios of spin-dependent to spin-
averaged structure functions, the polarization asymmetries can
display more subtle effects arising from the x dependence of
the polarized g1,2 and unpolarized F1,2 structure functions,
and the nuclear corrections to these, especially in the nucleon-
resonance region.

In Fig. 6 the A1 and A2 asymmetries of the neutron
and 3He are shown at Q2 = 1 and 5 GeV2 for the various
nuclear models considered in Fig. 2. Note that because
g

3He
1,2 ≈ gn

1,2, while F
3He
1  Fn

1 , the absolute value of the
3He asymmetry will be considerably smaller than that of
the neutron asymmetry. To display both the neutron and the
3He asymmetry results on the same scale, we multiply the

latter by the factor (1 + 2F
p
1 /F n

1 ), which compensates for the
suppression of A

3He
1,2 due to the small proton contribution to

g
3He
1,2 ,

A
3He
1 =

[
g

3He
1 − (γ 2 − 1)g

3He
2

]
F

3He
1

−→ A
3He
1 ×

(
1 + 2F

p
1

Fn
1

)
,

(41a)

A
3He
2 =

√
γ 2 − 1

(
g

3He
1 + g

3He
2

)
F

3He
1

−→ A
3He
2 ×

(
1 + 2F

p
1

Fn
1

)
.

(41b)

For the A1 asymmetry, the effect of the nuclear corrections
is qualitatively similar to that for the g1 structure function
in Fig. 2. The nuclear smearing corrections have the largest
impact in the nucleon-resonance region, particularly in the
vicinity of the � resonance, although the magnitude of the
effect is slightly smaller compared to that for g1. Because
both the numerator and denominator in the 3He asymmetry
involve smeared structure functions, the relative effects of the
smearing on A

3He
1 will be reduced. Note that for the isovector �

resonance, the scaling factor in Eqs. (41) is 1 + 2F
p
1 /F n

1 ≈ 3.
At larger x, in the region W � M�, the free neutron asymmetry
computed from the MAID parametrization of g1 and g2 rises
steeply, which suggests that the Fn

1 denominator from the
Bosted-Christy fit falls rapidly in this region. A similar trend
is observed when using the SORT parametrization [54] of the
spin-dependent structure functions. The general features of the
A1 asymmetry in the DIS region at Q2 = 5 GeV2 are similar
to those of the g1 structure function in Fig. 2(c). Namely, with
the rescaling factor in Eqs. (41), the asymmetries at x � 1 are
basically given by the corresponding g1 structure functions
divided by the Fn

1 structure function, with the scaled 3He
asymmetry below the free neutron asymmetry.

For the A2 asymmetry, which is proportional to the sum
of the g1 and g2 structure functions, the resulting scaled
3He asymmetry at Q2 = 5 GeV2 is very similar to the input
An

2. Here, the dominant leading twist contribution to A2 is
given by the integral term

∫
(dz/z)g1(z) on the right-hand

side of Eq. (12). Therefore, the differences between the A2
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FIG. 6. (Color online) As in Fig. 2, but for the polarization asymmetries A1 and A2 of the neutron and 3He at Q2 = 1 GeV2 [(a) and (b)]
and Q2 = 5 GeV2 [(c) and (d)], constructed from ratios of the spin-dependent structure functions in Fig. 2 and the unpolarized F1 structure
function from the Bosted-Christy parametrization [55]. Note that the 3He asymmetries are scaled by a factor (1 + 2F

p
1 /F n

1 ).

asymmetries of the neutron and 3He at leading twist will be
determined by the nuclear effects on the g1 structure function.
As is evident from Figs. 2(c) and 2(d), the nuclear corrections
lower the 3He structure function relative to the neutron for g1

but raise it for g2, the net effect of which is a strong cancellation
of the nuclear effects (for both the EPA and smearing calcula-
tions), which leaves An

2 ≈ A
3He
2 (1 + 2F

p
1 /F n

1 ) at x � 1. The
cancellations are not as evident at the lower, Q2 = 1 GeV2

value, where the resonance structures dominate and the WW
approximation (12) to g2 is, in general, not valid. Here the
prominent � resonance peaks in g1 (negative) and g2 (positive)
in Fig. 2 largely cancel, resulting in a 3He A2 asymmetry that
is several times smaller than the corresponding A1 asymmetry
at the � peak in Fig. 6(a). Because of the

√
γ 2 − 1 factor in

the definition of A2 in Eq. (7b), the overall magnitude of the
A2 asymmetry at lower Q2 (larger γ ) is almost an order of
magnitude larger than that at Q2 = 5 GeV2 in Fig. 6(d).

From a simple counting rule and perturbative QCD argu-
ments, in the x → 1 limit DIS from quarks with spins aligned
with the spin of the nucleon is expected to dominate over
scattering from quarks with spins antialigned [62–66]. At
leading twist, the proton and neutron polarization asymme-
tries should therefore approach unity, A1 → 1 as x → 1. A
number of other, nonperturbative models also make specific

predictions for the large-x behavior of An
1, making this quantity

particularly sensitive to the dynamics of valence quarks in
the nucleon [42,67,68]. Because of the lack of data on spin
structure functions or asymmetries at very large x, however,
the x → 1 behavior is usually not addressed in standard PDF
parametrizations, such as the DSSV fit [44] used in Fig. 6,
and the behavior at x � 0.8 is left unconstrained. To illustrate
the possible effects of the perturbative x → 1 expectations on
the spin-dependent PDFs, Leader, Sidorov, and Stamenov [69]
performed a global fit with polarized and unpolarized PDFs
constrained with �q/q → 1 as x → 1 [66], which at large
Q2 forces A1 → g1/F1 → 1. The neutron asymmetry with
this constraint is illustrated in Fig. 7(a), where for simplicity
the g2 contribution is omitted.

The question we would like to address in this work is how
the nuclear corrections in 3He would affect such behavior, and
the degree to which these corrections can be reliably subtracted
to reveal the true dependence of An

1 on x as x → 1. Within the
EPA, the 3He asymmetry is reduced by ≈30% in the x → 1
limit relative to the neutron asymmetry, for the same reasons
that the effective polarizations render g

3He
1 < gn

1 in Fig. 2(c),
for example, and that the scaled 3He asymmetry lies below An

1
in Fig. 6(c) for the DSSV parametrization. The effect of the
nuclear smearing is a further reduction of A

3He
1 to ≈0.25–0.35
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FIG. 7. (Color online) Polarization asymmetry A1 of the neutron and 3He computed using the input LSS [69] parametrization constrained
by A1 → 1 as x → 1. The asymmetries are computed (a) with g1 contributions only and (b) including also g2 corrections in Eq. (7a), which
push the A1 asymmetry above unity at large x at Q2 = 5 GeV2. The nuclear models are as in Fig. 6, and the the 3He asymmetry is scaled by a
factor (1 + 2F

p
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1 ).

at Q2 = 5 GeV2, depending on whether the full, Q2-dependent
smearing function is used or its γ = 1 approximation. Includ-
ing the g2 terms in Eq. (7a), the free neutron A1 asymmetry,
computed from the LSS parametrization [69] using the WW
relation (12) for gn

2 , increases by �60% at x ≈ 1 for Q2 = 5
GeV2, as Fig. 7(b) illustrates. [Recall from Fig. 2(d) that the
twist-2 part of gn

2 is negative at large x.] The resulting 3He
asymmetries are correspondingly larger, although the effects
of the Q2-dependent smearing are even more pronounced
in the presence of the g2 contributions. With the upcoming
high-precision experiments to determine the x → 1 behavior
of An

1 from measurements of the 3He polarization asymmetries
planned at Jefferson Lab at 12 GeV [70,71], it will therefore
be crucial to account for the finite-Q2 and nuclear smearing
corrections in the large-x region.

C. Moments

The nuclear corrections examined in this analysis clearly
have a significant impact on the shape of the structure
functions, especially at large values of x. Because in this
region the structure functions themselves are typically small,
one may expect that the nuclear effects on integrals of structure
functions, or moments 

(n)
i , may be reduced. This would be

expected particularly of the low moments, which are most
sensitive to the small-x region, whereas higher moments
progressively emphasize the large-x tails of distributions with
increasing rank n.

In QCD, the moments of structure functions are formally
related through the operator product expansion to hadronic
matrix elements of local operators of a given twist and can
be directly computed from first principles in lattice QCD or
approximated in low-energy model calculations. Various sum
rules, such as the Bjorken [41], Gerasimov-Drell-Hearn [72],
or Burkhardt-Cottingham [30] sum rules, can then provide
important tests of QCD and its applications to nucleon
structure. Sum rules involving moments of neutron structure
functions (for example, the Bjorken sum rule, which relates
the isovector combination g

p
1 − gn

1 to the axial charge, gA)

require the nuclear corrections to be known to a sufficient level
of accuracy.

The effect of the nuclear corrections on the neutron 
(n)
1

and 
(n)
2 moments are illustrated in Fig. 8 for the n = 1 and

n = 5 moments from Q2 = 1 to 5 GeV2. For the g1 moments
the DSSV [44] and MAID [57] parametrizations are used for
the proton and neutron structure functions in the DIS and
resonance regions, respectively, while the g2 moments assume
the WW relation (12) for the DIS region and the MAID fit
for the resonance component. For the lowest, n = 1 moment
computed within the EPA with nucleon contributions only,
the neutron effective polarization P n

1 reduces the magnitude
of the (negative) neutron moment by ∼15%. However, while
the total proton polarization is small, 2P

p
1 ∼ −5%, the much

larger value of the (positive) proton moment 
p(1)
1 more than

compensates, rendering the overall correction to the 3He mo-
ment negative (∼20% larger magnitude). Because the lowest
moment is dominated by the small-x contributions, the effects
of nuclear smearing are negligible, with only small differences
visible between the full, Q2-dependent smearing and that in
the Bjorken (γ = 1) limit. More important is the contribution
from the � resonance, which is assumed in the EPA calculation
of Sec. III C to be present at all x. This gives a negative
contribution to the 3He moment which is comparable in
magnitude to that from the effective nucleon polarization
correction.

Small-x contributions are suppressed for higher moments,
as seen in Fig. 8(b) for the n = 5 moment of g1. In this
case the relative effect of the nuclear smearing is enhanced,
although not significantly, while the effect of the � resonance
correction is reduced compared with the lowest moment. Note
that because of the suppression of the small-x region by the
factor x4 in Eq. (9), the magnitude of the 

(5)
1 moment is

smaller by at least an order of magnitude compared with 
(1)
1 .

The behavior of the g2 moments in Figs. 8(c) and 8(d) is
qualitatively similar to the g1 moments. Generally, the sign of
the g2 structure function and its moments are opposite from that
of g1, but the overall effects of the various approximations for
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FIG. 8. (Color online) Moments of the neutron and 3He g1 structure functions, 
(n)
1 [(a) and (b)], and of the corresponding g2 structure

functions, 
(n)
2 [(c) and (d)], for n = 1 and n = 5. The 3He moments are computed in the EPA with nucleons only (dot-dashed lines) and with

� components (dashed lines), and with Fermi smearing for γ = 1 (dot-dot-dashed lines) and at finite Q2 (solid lines). The g1 moments are
computed from the DSSV [44] and MAID [57] parametrizations of the proton and neutron structure functions in the DIS and resonance regions,
respectively, while the g2 moments assume the WW relation (12) for the DIS region and the MAID fit for the resonance part.

the nuclear corrections are analogous. Namely, the EPA raises
the magnitude of 

(n)
2 for 3He from the neutron value owing

to the overall positive proton contribution (because the proton


(n)
2 is negative), with the � resonance contribution giving an

additional small increase. The effect of the latter is reduced for
the n = 5 moment, and the effects of the smearing are again
relatively small. Note that the smearing effects preserve the

vanishing of the lowest (n = 1) moment of g2, 
3He(1)
2 |WW = 0,

so that the nonzero values of 
(1)
2 in Fig. 8(c) are entirely

attributable to the resonance contributions, which need not
satisfy the WW relation.

Because the moments of structure functions are formally
defined as integrals over the entire range of x between 0 and 1,
they, in principle, contain contributions from elastic scattering
at x = 1 for the nucleon and from QE scattering at x ≈ 1 for
3He. The elastic and QE contributions are strongly suppressed
with increasing Q2, but can be significant at Q2 = O(1 GeV2),
as Fig. 9 illustrates for the 

(1)
1 and 

(5)
1 moments. As in Fig. 5,

the electromagnetic form factors of the proton are taken from
the parametrization of Ref. [59], and the neutron form factors
from Ref. [60], although the dependence on the form factor fit

is small. For higher moments, the magnitude of the inelastic
contributions (at x < 1) is suppressed by the factor xn, whereas
the elastic contribution (at x = 1) remains the same for all
moments. The QE contribution to the 

(5)
1 moment is therefore

significantly larger than the inelastic, especially at low Q2

values, and for clarity in Fig. 9(b) the sum of the inelastic and
elastic (or QE) is scaled by a factor 1/10.

Finally, to estimate the nuclear corrections to the d2

moment of the neutron defined in Eq. (11), in Fig. 10 we
show the d2 moments for 3He computed using the various
approximations for the nuclear effects discussed above. The
d2 moment is of interest because of its unique sensitivity to
higher twist contributions to the g2 structure function [the
leading twist contribution from the WW relation vanishes, as
seen from Eqs. (11) and (12)]. The d2 moment of the 3He
structure functions was recently measured at Jefferson Lab in
the E06-014 experiment [28]. The data are currently being
analyzed and are expected to have a statistical precision of
± 0.4 × 10−3 over the Q2 range between 2 and 5 GeV2, with
an average 〈Q2〉 ≈ 4 GeV2 [73].

Using the MAID and DSSV parametrizations for g1 and
g2 for the nucleon-resonance and DIS regions, respectively,
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FIG. 9. (Color online) Contributions from elastic and QE scattering to the neutron and 3He g1 moments, for (a) 
(1)
1 and (b) 

(5)
1 , compared

with the inelastic contributions. The elastic and QE components are scaled by a factor 1/10 for clarity.

as in Fig. 2, for instance, only the former makes a nonzero
contribution to the d2 moment (the DSSV fit is performed
exclusively in terms of leading twist PDFs). The MAID
resonance fit gives rise to d2 values which drop precipitously
with Q2. The nuclear corrections to d2 are small in absolute
terms, but increase dramatically with Q2 for the ratio d

3He
2 /dn

2

for all the models considered, such that d
3He
2 is ≈2 times larger

than dn
2 at Q2 ≈ 3 GeV2, and ≈4 times larger at Q2 ≈ 4 GeV2.

The effect of the nuclear smearing is minimal compared with
the EPA, although the possible � resonance component of the
3He wave functions makes a non-negligible contribution to
the ratio in Fig. 10(b). Nucleon off-shell effects may also give
rise to corrections to dn

2 ; however, these are difficult to estimate
using the (leading twist) quark models discussed in Sec. III D.
At low Q2, the QE contribution in Fig. 10(a) is significantly
larger than the inelastic and remains sizable at larger Q2 also.
Accurate extraction of dn

2 from the 3He data will therefore
require precise knowledge of the nuclear effects and the elastic
nucleon form factors over the Q2 range considered here.

V. CONCLUSION

For the foreseeable future, polarized 3He targets will remain
an essential tool for studying the spin structure of the nucleon,
providing the most direct means of probing the spin-dependent
quark and gluon distribution in the free neutron. With the ever-
increasing levels of precision attained in new generations of
polarized DIS experiments, including in previously unexplored
regions of kinematics, comes the need for correspondingly
better understanding of the nuclear effects that differentiate
between the structure of the free neutron and that bound in the
3He nucleus.

In this paper we have performed a comprehensive analysis
of nuclear corrections to the spin-dependent g1 and g2 structure
functions and their moments, as well as the A1 and A2 polar-
ization asymmetries which are also sensitive to nuclear effects
in unpolarized 3He structure functions. We have contrasted
various methods of accounting for the nuclear corrections,
including through the use of effective polarizations and nuclear
smearing functions computed in the framework of the WBA.
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FIG. 10. (Color online) (a) d2 moment of the neutron (dotted line) and 3He, with the latter computed in the EPA with nucleons only
(dot-dashed line) and with � components (dashed line), and with Fermi smearing for γ = 1 (dot-dot-dashed line) and the full smearing at finite
Q2 (solid line). The d2 moment for 3He including the QE contribution (scaled by a factor 1/50) is shown for comparison (long-dashed line).
(b) Ratio of the d2 moments for 3He and the neutron, with the 3He moments computed using the various approximations in (a).
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Generally, the effective polarization approximation does not
provide a reliable means of describing the differences between
the 3He and neutron structure functions, especially in the
low-W region dominated by nucleon resonances and in the
DIS region at large values of x. In these regions in particular
it is important to treat the Q2 dependence in the smearing
functions correctly, as the comparison with the smearing
computed in the Bjorken (γ = 1) limit illustrates that the
latter significantly underestimates the strength of the effect.
However, at intermediate x values and at W above the
resonance region, where the structure functions are smooth
and slowly varying, nuclear smearing provides only a relatively
minor improvement over the EPA approach.

In addition to the corrections arising from the incoherent
nucleon impulse approximation, we have also examined
contributions from non-nucleonic degrees of freedom in the
nucleus, specifically the � resonance. Following Bissey et al.
[13], we relate the strength of this correction to the Bjorken
sum rule in A = 3 nuclei and confirm sizable contributions
at small and intermediate values of x, which consequently
have the greatest impact on the lowest moments of the g1

and g2 structure functions. Corrections associated with the
nucleon off-shell structure have also been estimated in a
covariant spectator model, with the magnitude determined by
the change in the size of the nucleon radius in the 3He nucleus,
as well as from a QMC model. In both cases the off-shell
corrections were found to cancel somewhat the effects of the �
contribution, although these corrections at present are difficult
to quantify model independently.

Our analysis complements earlier studies of nuclear cor-
rections to spin-dependent structure functions, where some of
these effects were partially explored. It also provides estimates
of the nuclear corrections to the d2 moment of the neutron,
measured recently in the E06-014 experiment at Jefferson
Lab [28], which offers a direct window on the higher twist
component of the g2 structure function. The QE contribution
to the d2 moment of 3He is found to be significant, requiring
this component to be determined to a high level of accuracy
when extracting the neutron d2 results.

Measurement of the QE contributions to the polarized
inclusive 3He cross sections can, in the future, provide an
important test of the nucleon smearing functions in 3He. We
have found nontrivial cancellations between QE proton and
neutron contributions to the g1 structure function of 3He, which
is particularly striking at intermediate values of Q2 ∼ 1 GeV2.

While the goal of many 3He DIS experiments is ultimately
the extraction of information on the structure of the free neu-
tron, this is relatively straightforward only for moments of the
structure functions. Our calculations of the nuclear corrections

should provide a reliable estimate of the size of these correc-
tions and their uncertainties. Extraction of the neutron polar-
ization asymmetries An

1,2 and structure functions gn
1,2 is more

challenging, however, especially in the nucleon-resonance
region. Here this will require unfolding the neutron structure
information by making use of a deconvolution procedure, step-
ping through several iterations until convergence is achieved.
As found by Kahn et al. [58], typically this involves just a hand-
ful of iterations, depending on the level of accuracy required
in the reconstruction, although precision data are needed to
obtain errors comparable to those for the free proton [74].

Definitive tests of the nuclear correction methods would
be possible through independent determination of the free
neutron structure in experiments where the nuclear effects
are minimal or absent altogether [75]. Examples of such
processes include the polarized version of the MARATHON
proposal [76] at Jefferson Lab, which will measure the ratio
of inclusive 3He to 3H structure functions, from which the
d to u quark PDF ratio will be extracted. For unpolarized
scattering, nuclear corrections were found [77] to cancel to
within ≈1% up to x ≈ 0.85, and similar effects are expected
for the spin-dependent case. An alternative approach would
be to perform semi-inclusive DIS from polarized 3He, with
detection of correlated pp pairs that would indicate scattering
from the bound neutron. Detection of such pairs with low
momentum at backward angles would minimize the degree
to which the struck neutron was off-shell and eliminate
contamination from final-state interactions, in analogy with
the BONuS experiment at Jefferson Lab with an unpolarized
deuteron target [78]. A more challenging method that would
be completely free of nuclear contamination would be parity-
violating DIS of unpolarized leptons from polarized protons
[79,80]. The polarization asymmetry here would be sensitive to
the spin-dependent γZ interference structure functions, thus
providing an independent combination of the polarized �u
and �d PDFs at large x from which the free neutron structure
function could be unambiguously reconstructed.
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[12] A. Kievsky, E. Pace, G. Salmè, and M. Viviani, Phys. Rev. C 56,

64 (1997).

054001-16

http://dx.doi.org/10.1088/1742-6596/299/1/012005
http://dx.doi.org/10.1088/1742-6596/299/1/012005
http://dx.doi.org/10.1103/RevModPhys.85.655
http://dx.doi.org/10.1103/RevModPhys.85.655
http://dx.doi.org/10.1016/0375-9474(83)90518-3
http://dx.doi.org/10.1103/PhysRevC.29.538
http://dx.doi.org/10.1016/0375-9474(89)90122-X
http://dx.doi.org/10.1103/PhysRevC.46.R1591
http://dx.doi.org/10.1103/PhysRevC.46.R1591
http://dx.doi.org/10.1103/PhysRevC.48.R968
http://dx.doi.org/10.1103/PhysRevC.48.R968
http://dx.doi.org/10.1103/PhysRevC.51.1108
http://dx.doi.org/10.1103/PhysRevC.51.1108
http://dx.doi.org/10.1016/S0370-2693(97)00576-5
http://dx.doi.org/10.1016/0370-2693(90)90434-8
http://dx.doi.org/10.1103/PhysRevC.48.38
http://dx.doi.org/10.1103/PhysRevC.56.64
http://dx.doi.org/10.1103/PhysRevC.56.64


COMPARATIVE STUDY OF NUCLEAR EFFECTS IN . . . PHYSICAL REVIEW C 88, 054001 (2013)

[13] F. R. P. Bissey, A. W. Thomas, and I. R. Afnan, Phys. Rev. C 64,
024004 (2001).

[14] C. Boros, V. A. Guzey, M. Strikman, and A. W. Thomas, Phys.
Rev. D 64, 014025 (2001).

[15] F. R. P. Bissey, V. A. Guzey, M. Strikman, and A. W. Thomas,
Phys. Rev. C 65, 064317 (2002).

[16] S. Scopetta, Phys. Rev. C 70, 015205 (2004).
[17] S. Scopetta, Phys. Rev. D 75, 054005 (2007).
[18] W. Melnitchouk, G. Piller, and A. W. Thomas, Phys. Lett. B

346, 165 (1995).
[19] G. Piller, W. Melnitchouk, and A. W. Thomas, Phys. Rev. C 54,

894 (1996).
[20] R.-W. Schulze and P. U. Sauer, Phys. Rev. C 56, 2293 (1997).
[21] S. A. Kulagin, G. Piller, and W. Weise, Phys. Rev. C 50, 1154

(1994).
[22] S. A. Kulagin, W. Melnitchouk, G. Piller, and W. Weise, Phys.

Rev. C 52, 932 (1995).
[23] S. A. Kulagin and W. Melnitchouk, Phys. Rev. C 77, 015210

(2008).
[24] S. A. Kulagin and W. Melnitchouk, Phys. Rev. C 78, 065203

(2008).
[25] L. Frankfurt, V. Guzey, and M. Strikman, Phys. Lett. B 381, 379

(1996).
[26] V. Guzey and M. Strikman, Phys. Rev. C 61, 014002 (1999).
[27] B. Budick, J. S. Chen, and H. Lin, Phys. Rev. Lett. 67, 2630

(1991).
[28] S. Choi, X. Jiang, Z.-E. Meziani, and B. Sawatzky (spokesper-

sons), Jefferson Lab experiments E06-014.
[29] S. Wandzura and F. Wilczek, Phys. Lett. B 72, 195 (1977).
[30] H. Burkhardt and W. N. Cottingham, Ann. Phys. 56, 453

(1970).
[31] G. Piller and W. Weise, Phys. Rep. 330, 1 (2000).
[32] S. A. Kulagin and R. Petti, Nucl. Phys. A 765, 126 (2006).
[33] J. L. Friar, B. F. Gibson, G. L. Payne, A. M. Bernstein, and

T. E. Chupp, Phys. Rev. C 42, 2310 (1990).
[34] A. Stadler, W. Glockle, and P. U. Sauer, Phys. Rev. C 44, 2319

(1991).
[35] M. Ericson and A. W. Thomas, Phys. Lett. B 128, 112 (1983).
[36] L. P. Kaptari, A. I. Titov, E. L. Bratkovskaya, and A. Yu.

Umnikov, Nucl. Phys. A 512, 684 (1990).
[37] L. P. Kaptari and A. Yu. Umnikov, Phys. Lett. B 272, 359 (1991).
[38] W. Melnitchouk and A. W. Thomas, Phys. Rev. D 47, 3783

(1993).
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