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Low-energy E1 strength in select nuclei: Possible constraints on neutron skin and symmetry energy
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Correlations between low-lying electric dipole (E1) strength and neutron-skin thickness are systematically
investigated with a fully self-consistent random-phase approximation by using the Skyrme energy functionals.
The presence of a strong correlation among these quantities is currently under dispute. We find that a strong
correlation is present in properly selected nuclei, namely, in spherical neutron-rich nuclei in the region where the
neutron Fermi levels are located at orbits with low orbital angular momenta. A significant correlation between the
fraction of the energy-weighted sum value and the slope of the symmetry energy is also observed. A deformation
in the ground state seems to weaken the correlation.
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The isospin-dependent part of the nuclear equation of
state, especially the symmetry energy, is receiving current
attention. Although the symmetry energy at the saturation
density Esym(ρ0) is relatively well known, its values at other
densities, which have a strong impact on the description of
neutron stars and stellar explosions, are poorly determined
at present. Information on the density dependence of the
symmetry energy might be obtained from the neutron-skin
thickness �rnp since the skin thickness was found to be
strongly correlated with the slope L of the symmetry energy
L = 3ρ0E

′
sym(ρ0) [1,2]. However, the large uncertainties in

measured neutron-skin thickness have practically prohibited
us from performing an accurate estimate on L.

The electric dipole (E1) response is a fundamental tool
for probing the isovector property of nuclei. The giant dipole
resonance (GDR), which is rather insensitive to the structure of
an individual nucleus, provides information on the magnitude
of the symmetry energy near the saturation density ρ0. In
contrast, the low-energy E1 modes, which are often referred
to as pygmy dipole resonances (PDRs), are sensitive to the
nuclear structure, such as the existence of loosely bound
nucleons. Thus, the PDR, which is currently of significant
interest in the physics of exotic nuclei, may carry information
on the symmetry energy Esym(ρ) at densities away from ρ0.

Among many issues on the PDR, the correlation between
the PDR and the neutron skin is one of the important
subjects currently under dispute. If a strong correlation exists,
the PDR may constrain both �rnp and slope parameter
L. The calculation by Piekarewicz with the random-phase
approximation (RPA), based on the relativistic mean-field
model, predicted a linear correlation for Sn isotopes [3]. By
utilizing similar arguments, the neutron-skin thickness and
the slope parameter were estimated from available data in
208Pb, 68Ni, 132Sn, and so on [4,5]. However, Reinhard and
Nazarewicz performed a covariance analysis that investigated
the parameter dependence for the Skyrme functional models,
which concluded that the correlation between PDR strength
and �rnp is very weak [6]. Recently, they have extended their
studies to the E1 strength at finite momentum transfer q [7].
It should be noted that these conclusions, which seemed to

contradict to each other, were given from RPA calculations
for specific spherical nuclei by using different methods of
analysis.

Recently, we have performed a systematic RPA calculation
on the PDR for even-even nuclei [8] by using the finite
amplitude method [9–13]. The calculation is self-consistent
with the Skyrme energy functional and fully takes into
account the deformation effects. We found that a significant
enhancement of the PDR strength takes place in regions of
specific neutron numbers. The main purpose of the present
Rapid Communication is to show that the quality of the
correlation between PDR strength and �rnp also is sensitive
to the neutron number of the isotopes. Namely, a strong
correlation exists only in particular neutron-rich nuclei. This
may provide a possible suggestion for future measurements to
constrain �rnp and L.

Numerical calculations. We perform an analysis similar to
Ref. [6] to investigate the Skyrme parameter dependence of the
RPA results for nuclei of many kinds (mostly with Z � 40),
which include stable, neutron-rich, spherical, and deformed
nuclei. The fully self-consistent RPA equation is solved by
using a revised version of the RPA code in Ref. [14]. The size of
the RPA matrix is reduced by assuming the reflection symme-
try of the ground state with respect to x = 0, y = 0, and z = 0
planes. We adopt the representation of the three-dimensional
adaptive Cartesian grids [15] within a sphere of the radius
Rbox = 15 fm. The real-space representation has an advantage
over other representations, such as the harmonic-oscillator
basis, on the treatment of the continuum states. The Skyrme
functional of the SkM∗ parameter set [16] is used unless
otherwise specified. The residual interaction in the present
calculation contains all terms of the Skyrme interaction, which
include the residual spin-orbit, the residual Coulomb, and the
time-odd components. The pairing correlation is neglected for
simplicity, which has little impact on E1 modes [17].

Definition of PDR strength, PDR fraction, and correlation
coefficient. We define the PDR strength as

SPDR ≡
∫ ωc

0
S(E1; E)dE =

En<ωc∑
n

B(E1; n), (1)
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with the PDR cutoff energy ωc. The PDR fraction fPDR is the
ratio of the integrated photoabsorption cross section below ωc

to the total integrated cross section,

fPDR =

∫ ωc

σabs(E)dE

∫
σabs(E)dE

=

En<ωc∑
n

EnB(E1; n)

∑
n

EnB(E1; n)
. (2)

In Eqs. (1) and (2), we fix the cutoff at ωc = 10 MeV. Many
former papers adopted the same definition [6,8] because of
its simplicity. In light spherical neutron-rich nuclei, the value
of ωc = 10 MeV can reasonably separate the PDR peaks from
the GDR. However, for heavier nuclei, the separation becomes
more ambiguous. It is especially difficult for deformed nuclei.
Later, we introduce another definition of the PDR strength by
using a variable ωc to check the validity.

To quantify the correlation between two quantities, we use
the correlation coefficient r . When we have data points for
(xi, yi) with i = 1, . . . , Nd , it is defined by

r ≡

Nd∑
i=1

(xi − x̄)(yi − ȳ)

√√√√ Nd∑
i=1

(xi − x̄)2

√√√√ Nd∑
j=1

(yj − ȳ)2

, (3)

where x̄ and ȳ are the mean values of xi and yi , respectively.
The absolute value of r does not exceed the unity. A perfect
linear correlation, yi = axi + b, corresponds to r = ±1 with
the same sign as that of parameter a. In the following, the
correlation with r > 0 (r < 0) is referred to as “positive”
(“negative”) correlation.

Neutron-skin thickness in 208Pb. First, we confirm the result
in Ref. [6]. Reference [6] reported that the SPDR for 132Sn only
has a weak correlation with the neutron-skin thickness defined
by �rnp ≡

√
〈r2〉n − √〈r2〉p of 208Pb. In Fig. 1, the SPDR for

132Sn is shown as a function of the neutron-skin thickness �rnp

of 208Pb. The plotted 21 points are obtained by calculating �rnp

0.14 0.15 0.16 0.17 0.18 0.19
0.1

0.2

0.3

0.4

0.5

0.6

13
2 S

n,
 S

P
D

R 
(e

2 f
m

2 )

208Pb, Skin thickness (fm)

0.14 0.15 0.16 0.17 0.18 0.19
0.1

0.2

0.3

0.4

0.5

0.6

r = 0.55

 (1± 0.01) t0
 (1± 0.10) t1
 (1± 0.10) t2
 (1± 0.10) t3
 (1± 0.10) W0
 (1± 0.05) α
 (1± 0.02) x0
 (1± 0.10) x1
 (1± 0.10) x2
 (1± 0.02) x3

FIG. 1. (Color online) Correlations between the PDR strength
SPDR in 132Sn and the neutron-skin thickness �rnp in 208Pb. The cross
denotes a result obtained with the original SkM∗ parameter set. Other
symbols represent results with the modified parameter set as shown
in the right panel. The solid line indicates a linear fit. The correlation
coefficient for these parameter sets is also shown. See the text for
details.
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FIG. 2. (Color online) (a)–(c) Correlations between SPDR and
�rnp in 68,78,84Ni. See the caption of Fig. 1. Calculated correlation
coefficients are also shown. (d) fPDR as functions of �rnp for
even-even Ni isotopes, calculated with the SkM∗ parameter set. See
the text for details.

and SPDR with the SkM∗ functional and with slightly modified
values of 10 Skyrme parameters (t0,1,2,3, x0,1,2,3, W0, and
α). It seems to indicate some correlation, however, that the
calculated points are somewhat scattered.

Using these 21 sample values (Nd = 21), the correlation
coefficient r is calculated according to Eq. (3). In the present
case of Fig. 1, we obtain the coefficient r = 0.55. The
correlations between �rnp in 208Pb and SPDR in 68Ni and 78Ni
also are weak with r = 0.5–0.6. Thus, the PDR strength in
these spherical (magic) nuclei indicates a positive correlation
with the skin thickness in 208Pb, however, the correlation is
weak. This is qualitatively consistent with the result in Ref. [6].

Correlation between SPDR and �rnp. Next, we discuss the
same correlation but between �rnp and SPDR in the same
nucleus. In Fig. 2, we show the results for 68Ni (N = 40),
78Ni (N = 50), and 84Ni (N = 56). The scattered data points
in Fig. 2(a) suggest a relatively weak correlation in 68Ni,
whereas, the correlation becomes moderately strong for 78Ni.
The calculated correlation coefficients are r = 0.69 and 0.76
for 68,78Ni, respectively. In contrast, a very strong linear
correlation with r = 0.94 for 84Ni is observed in Fig. 2(c). It
is apparent that the linear correlation is qualitatively different
among the isotopes.

The qualitative difference in SPDR among the isotopes
was previously observed in the PDR photoabsorption cross
section [8]. In Ref. [8], we systematically calculated, for
even-even nuclei up to Z = 40, the PDR fraction fPDR. Then,
we found that fPDR significantly increases as a function of
neutron number in regions where the neutron Fermi levels are
located at the weakly bound low-� shells, such as s, p, and
d orbits. In Ni isotopes, this corresponds to the region with a
neutron number beyond 50 as illustrated in Fig. 2(d). Thus, the
present result [Figs. 2(a)–2(c)] indicates that the neutron shell
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FIG. 3. (Color online) Same as Fig. 2 but for 52,54Ca.

effect also has a significant impact on the linear correlation
between the neutron-skin thickness and the PDR strength.

We confirm the same neutron shell effect in other light
spherical isotopes; AO and ACa. For Ca isotopes, the PDR
strength appears beyond N = 28 [8]. Accordingly, a strong
linear correlation can be seen for 52Ca and 54Ca in Fig. 3. The
calculated correlation coefficients are r = 0.91 and 0.96 for
52,54Ca, respectively. These nuclei have more than 28 neutrons,
and the neutron Fermi level is located at the p shell. They
are predicted to have PDR peaks around E = 8 MeV with
fPDR ≈ 0.03–0.04 [8]. In contrast, nuclei with N � 28 have
very small values of fPDR < 0.01, and the linear correlation in
48Ca (N = 28) indicates r = 0.78, which is much weaker than
52,54Ca. For O isotopes, because of the neutron occupation of
the 2s orbit, 24O (N = 16) provides another example to show
a significant jump in fPDR from 22O [8]. This nucleus has the
strongest linear correlation with r = 0.97.

We also calculate the correlation coefficient for 132Sn. It
indicates a relatively weak correlation with r = 0.68. Note
that 132Sn corresponds to a kink point similar to 78Ni in Fig. 2.
Namely, the PDR fraction in Sn isotopes will jump up beyond
N = 82 [18]. The correlation coefficients are summarized in
the second column of Table I for various nuclei.

Let us briefly comment on the effect of the pairing
and the continuum. For the effect of pairing, we compare
our result with that of the canonical-basis time-dependent
Hartree-Fock-Bogoliubov calculation [17,19]. The effect of
the continuum is examined by enlarging Rbox to 20 and
25 fm. We have confirmed that these effects do not affect
the present conclusion. It should be worth mentioning that,
in this Rapid Communication, we do not treat nuclei with a
neutron separation energy smaller than 3 MeV.

Deformed nuclei. The deformation effect seems to some-
what weaken the correlation. Figure 4 shows two deformed
nuclei, 58Cr with the quadrupole deformation of β2 = 0.17
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FIG. 4. (Color online) Same as Fig. 2 but for deformed nuclei
58Cr and 110Zr. See text for details.

and 110Zr with a larger deformation of β2 = 0.36. The 58Cr
nucleus has the same number of neutrons as 54Ca, which
carries a comparable PDR strength to 52Ca [8]. Nevertheless,
the correlation in 58Cr, r = 0.80, is significantly weaker than
that in spherical 52,54Ca. 110Zr has an even larger deformation
and a weaker correlation r = 0.74, although it has sizable PDR
strength. The ground-state deformation is expected to produce
a peak splitting both in the PDR and in the GDR. Due to
the complicated characters in the E1 strength distribution, the
PDR strength SPDR may be contaminated by the low-energy
tail of the GDR strength.

Universal behaviors. The property of the linear correlation
is very robust with respect to the choice of Skyrme energy
functionals. In Fig. 5, we show the same correlation plot as
Fig. 2 calculated with the parameter set of SkM∗ replaced by
SIII [20] and SGII [21]. All three Skyrme functionals yield a
relatively weak correlation for 68Ni with r = 0.65–0.75 and
a strong linear correlation for 84Ni with r > 0.94. A strong
correlation with r ≈ 0.95 is also confirmed for 24O and 54Ca.

The slope of the straight line, obtained by linear fit, turns
out to be universal too, with respect to different Skyrme
energy functionals. All these three parameter sets (SkM∗,
SGII, and SIII) produce the similar slope of dSPDR/d(�rnp) =
13–16 e2 fm for 84Ni. We observe the linear correlation of
fPDR instead of SPDR as well with respect to �rnp. However,
in this case, the slope obtained by the linear fit has a sizable
dependence on the functionals.

Correlation among different energy functionals. Instead of
slightly modifying the Skyrme parameters, we next examine
the correlation that adopts many different Skyrme functionals
that correspond to a variety of values of the L parameter; SIII,
SGII, SkM∗, SLy4 [22], SkT4 [23], SkI2, SkI3, SkI4, SkI5
[24], UNEDF0, and UNEDF1 [25]. From these 11 different

TABLE I. Calculated correlation coefficients r between �rnp and SPDR for selected nuclei. The SkM∗ parameter set is adopted for the
central values. The values of variable ωc also are listed. Note that we cannot identify a prominent PDR peak for 48Ca. r (v)’s are obtained with
the variable cutoff energies ωc in the fourth row. The correlation coefficients larger than 0.9 are shown in boldface.

24O 26Ne 48Ca 52Ca 54Ca 68Ni 78Ni 84Ni 58Cr 110Zr

r 0.97 0.83 0.78 0.91 0.96 0.69 0.76 0.94 0.80 0.74
r (v) 0.97 0.88 0.92 0.94 0.77 0.92 0.96 0.80 0.84
ωc (MeV) 8.29 9.95 10.49 9.41 11.48 8.73 8.59 9.82 8.36
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FIG. 5. (Color online) Same as Fig. 2 but for 68,84Ni with SGII
and SIII interactions.

parameter sets, we estimate the correlation coefficient r in
Eq. (3) with Nd = 11. Again, we have found a weak correlation
with r = 0.47 for 68Ni and a strong correlation r = 0.89 for
84Ni.

We also examine the correlation between the slope param-
eter of the symmetry energy L and the PDR fraction fPDR in
68Ni and 84Ni. This leads to the similar coefficients r = 0.37
and 0.84 for 68Ni and 84Ni, respectively. Thus, to quantitatively
constrain �rnp and L, the measurement of the PDR in the very
neutron-rich 84Ni is more favored than in 68Ni.

The small correlation coefficient between L and fPDR for
68Ni (r = 0.37) turns out to be due to the fact that the choice of
ωc = 10 MeV has different meanings for different functionals.
Namely, the different energy functionals produce different
PDR peak energies, some of which are below 10 MeV, but
some are above that. The tail of the GDR strength also depends
on the choice of the energy functionals. Therefore, to perform
a more sensible analysis for this study, we should use the
variable cutoff ωc. This will be discussed below.

Use of variable ωc. The PDR strength (1) and PDR fraction
(2) based on variable ωc are, hereafter, referred to as S

(v)
PDR and

f
(v)
PDR, respectively. The variable ωc is determined according

to the following procedure: The calculated (discrete) B(E1)
values are smeared with the Lorentzian with a width of γ =
1 MeV. By plotting this smeared E1 strength S(E1; E) as
a function of energy, if we can find a distinguishable PDR
peak and its energy Epeak, ωc is defined as the energy that
corresponds to the minimum value of S(E1; E) at E > Epeak.
In Fig. 6, as an example, the determination of ωc is shown
for 84Ni. Since the determination of the variable ωc requires a
noticeable PDR peak structure, it is difficult to define S

(v)
PDR for

most of the stable isotopes.
The values of ωc vary from nucleus to nucleus within a

range of 10 ± 2 MeV for those listed in Table I. Note that
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According to the procedure described in the text, the cutoff energy is
determined as ωc = 8.59 MeV.

ωc may also change when we slightly modify the Skyrme
parameters. Although the correlation is slightly enhanced
by replacing SPDR with S

(v)
PDR in most cases, they are ap-

proximately similar, r (v) ≈ r . In Table I, there are a few
exceptions; 78Ni (r = 0.76 → r (v) = 0.92), 68Ni (r = 0.69 →
r (v) = 0.77), and deformed 110Zr (r = 0.74 → r (v) = 0.84).
In these cases, we found that the separation between PDR
and GDR is somewhat ambiguous, and the results depend on
the choice of ωc. On the other hand, isotopes that indicate
r > 0.9 with fixed ωc = 10 MeV show r (v) ≈ 1 with the
variable ωc as well. In Ni isotopes, although the values
of r (v) are slightly different from r , it is confirmed that
the linear correlation is significantly stronger in 84Ni than
in 68Ni.

For eleven different parameter sets, the correlation between
S

(v)
PDR and �rnp for 68,84Ni is shown in the upper part of Fig. 7. A

strong positive correlation (r (v) > 0.9) between PDR strength
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among 11 different Skyrme functionals.
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S
(v)
PDR and �rnp can be seen in 84Ni. In contrast, it is significantly

weaker for 68Ni (r (v) = 0.48). The bottom part of Fig. 7 shows
the correlation between f

(v)
PDR and slope parameter L of the

symmetry energy. Again, the correlation is stronger for 84Ni
with r (v) = 0.87 than 68Ni with r (v) = 0.80. The correlation
between �rnp and L has a similar trend, r (v) = 0.88 for 84Ni
and r (v) = 0.84 for 68Ni. Basic features of the correlation with
the variable ωc are consistent with those obtained with ωc fixed
at 10 MeV. Thus, the PDR strength in 84Ni with many excess
neutrons can provide a better constraint on L and the neutron
skin compared to 68Ni.

Summary. We have studied the correlation of the PDR
and the neutron-skin thickness for nuclei with Z � 40 and
132Sn. We have found that a strong linear correlation is seen
only in particular nuclei. The PDR strength has a very strong
linear correlation with the neutron-skin thickness in spherical
neutron-rich nuclei with 14 < N � 16, 28 < N � 34, and
50 < N � 56. In these regions, the neutron Fermi levels are lo-
cated at the loosely bound low-� shells, and the PDR strengths
significantly increase as the neutron numbers increase. Nuclei

outside of these regions have weaker correlations. This linear
correlation is robust with respect to the choice of the energy
functional parameter set. This suggests that the experimental
observation of PDR in properly selected neutron-rich nuclei
could be a possible probe of the neutron-skin thickness �rnp

and a constraint on the slope parameter L of the symmetry
energy. The linear correlation seems to be weakened by
the deformation due to the peak splitting of the PDR and
the GDR. The present result may provide a solution for the
controversial issue on the correlation between the PDR and
the neutron skin for which different conclusions previously
were reported [3,4,6,26].

This work was partly supported by HPCI System Research
Projects (Projects No. hp120192 and No. hp120287), by
PACS-CS project (Projects No. 13a-33, No. 12a-20, and No.
11a-21), and by JSPS KAKENHI Grants No. 21340073, No.
24105006, No. 25287065, and No. 25287066. The numerical
calculations were partially performed on the RIKEN Super
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