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Quadrupole-octupole coupling in the light actinides
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The relevance of coupling of quadrupole and octupole collective degrees of freedom in physical observables
is explored in calculations with the Gogny force for the light radon, radium, and thorium isotopes. The results
of the generator coordinate method calculations for the properties of negative parity states show an improvement
over the traditional ones that consider just the octupole moment.
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Introduction. Permanent octupole deformed shapes, pre-
dicted long ago to be present in the intrinsic ground state of
several light actinides [1], can be inferred by combining the
two signatures of octupole deformation, namely, low-lying
negative parity states and strong E3 strengths. Information on
E3 strengths in this mass region has recently been extended
by Coulomb excitation measurements of 220Rn and 224Ra [2].
These results can be nicely understood from a theoretical
perspective by using sound theoretical methods including
parity projection and configuration mixing based on Hartree-
Fock-Bogoliubov wave functions [3,4] and the Gogny class of
energy density functionals [5]. It turns out that the intrinsic
states showing octupole deformation in the light actinides also
have quadrupole deformation with the deformation parameter
β2 in the range 0.05–0.25 which is a small value for a well
deformed nucleus. According to the accumulated theoretical
knowledge, small ground state β2 values at the mean field
level usually entail a relevant role of quantum fluctuations.
The impact of them on nuclear properties can eventually wash
out the original mean field description. In those cases, it is
advisable to explore the quadrupole degree of freedom in a
framework where its quantum fluctuations can be properly
addressed: the generator coordinate method (GCM) [3]. The
purpose of this paper is to present the results obtained for
the low energy dynamics of several light actinides by exploring
the axially symmetric quadrupole and octupole degrees of free-
dom in a mean field framework including configuration mixing
and using the well known and reputed Gogny functionals. The
two parametrizations considered, D1S [6] and D1M [7], have
been applied before to describe octupole properties in a variety
of cases [4,8–11]. On the other hand, the quadrupole-octupole
coupling with Skyrme or Gogny forces has been treated before
in a similar framework [9,12–14]. Our study includes results
for the even-even isotopes of radon, radium, and thorium with
neutron numbers in the range N = 130–142. The evolution
with mass number of several observables, like the excitation
energies of 1− and 3− states, the dipole E1 and octupole E3
transition strengths as well as properties of the quadrupole
vibrational states are discussed and compared to experimental
data.
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Methods. The starting point for the theoretical description
of the quadrupole-octupole dynamics is the mean field Hartree-
Fock-Bogoliubov (HFB) method [3] with the Gogny energy
density functional (EDF) [5]. Two parametrizations of the
Gogny EDF will be considered: the more traditional D1S
parametrization [6] that has been tested in a variety of
different physical scenarios, and the recently proposed D1M
parametrization [7] aimed at improving the poor performance
of D1S in describing nuclear masses. An important simpli-
fication of the model is the restriction to axially symmetric
shapes that limit the number of relevant degrees of freedom
to just two: the ones corresponding to the K = 0 component
of the quadrupole Q20 and octupole Q30 operators. A set of
HFB wave functions |φ(Q20,Q30)〉 is obtained by solving the
constrained HFB equation for different values of Q20-Q30

in a mesh with N2 = 50 (N3 = 29) points along the Q20

(Q30) directions and the ranges Q20 ∈ [−20 b, 30 b] and
Q30 ∈ [−7.5 b3/2, 7.5 b3/2] (wave functions with negative Q30

values are obtained from the positive Q30 ones by application
of the parity operator). As the number of HFB configurations
involved is large [N2(N3 + 1)/2 = 750], a well performing
and robust algorithm to solve the HFB equation is required.
We have used the approximate second-order gradient method
described in [15] and implemented in the HFBAXIAL code
developed by one of the authors [16]. The intrinsic and
correlated wave functions |�σ 〉 of the generator coordinate
method [3] kind are linear combinations of the HFB states

|�σ 〉 =
∫∫

dQ20dQ30fσ (Q20,Q30)|φ(Q20,Q30)〉.

The GCM amplitudes fσ (Q20,Q30) are the solution of the
Hill-Wheeler (HW) equation which is the Schrödinger equa-
tion in the subspace spanned by the HFB states |φ(Q20,Q30)〉.
Along with the GCM amplitudes, the HW equation also
provides the energies Eσ of each correlated state σ . As
the parity operator reverses the sign of Q30 in the HFB
states, the parity πσ of |�σ 〉 is determined by the one in
fσ (Q20,−Q30) = πσfσ (Q20,Q30). Mean values and overlaps
of observables are computed following the rules of quantum
mechanics

〈�σ |Ô|�σ ′ 〉 =
∫∫

dQdQ′ f ∗
σ (Q)fσ ′(Q′)〈φ(Q)|Ô|φ(Q′)〉.
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Overlaps are required in the evaluation of electromagnetic
transition strengths, where the validity of the rotational formula
is assumed for strongly quadrupole deformed states. For
instance, if |�0〉 and |�1〉 are the intrinsic states corresponding
to the 0+ and 3− physical states, the E3 transition strength is
given by

B(E3, 3− → 0+) = e2/(4π )|〈�0|Q̂30|�1〉|2.

As discussed in [17] the use of the rotational formula to
obtain transition strengths is not well justified in weakly
deformed systems like some of the lighter Rn and Ra isotopes
considered here. The main conclusion of the study is that
the use of angular momentum projected wave functions in
the calculation of the transition strengths for near spherical
systems leads to increases in the B(E3) strengths as large as
a factor of 7 with respect to the rotational formula results.
For correlated GCM wave functions the situation is more
complex as it requires transition strengths between different
intrinsic states that are subsequently weighted by the collective
amplitudes. As no general conclusions can be extracted in
this case, the use of the fully-fledged projected calculations is
recommended. However, the large number of configurations
to consider render the calculations computationally expensive.
Exploratory results indicate that the projected strengths get in
fact reduced in all the cases (probably as a consequence of
configuration mixing) by around 10%. More on this issue will
be presented elsewhere.

In the discussion of the results below the probability
amplitudes of the correlated states |�σ 〉 will be required. The
fσ (Q) amplitudes are not the proper quantities because they
are associated with a non-orthogonal basis where the norm
overlap N (Q, Q′) = 〈φ(Q)|φ(Q′)〉 is not a δ function. Instead,

one has to consider the amplitudes

gσ (Q) =
∫

dQ′ N 1/2(Q, Q′)fσ (Q′),

which are the real probability amplitudes for the configuration
with deformation Q.

The evaluation of the Hamiltonian overlaps that enter
the HW equation pose a problem when density dependent
interactions are considered. A prescription is used to compute
those overlaps that is at the same time consistent [18] with the
underlying mean field and free from pathology [19].

Results. Calculations along the line described above have
been carried out for the even-even isotopes of Rn, Ra,
and Th species with neutron numbers in the range between
N = 130 and N = 142. Two sets of calculations with Gogny
D1S and D1M have been considered in order to assess the
uncertainties in the predictions with respect to the details of
the interaction. Previous calculations in the context of the
collective Schrödinger equation (an approximation to the full
GCM) were reported in the past [9]. In Fig. 1 the HFB energies
E(Q20,Q30) and the collective amplitudes |gσ (Q20,Q30)|2 for
the ground state and the first negative parity excited state are
plotted for four representative nuclei: 220Rn, 224Ra, 228Th, and
232Th. The nucleus 220Rn is a typical example of a weakly
deformed quadrupole and octupole nucleus with a HFB energy
which is soft along the quadrupole and octupole directions. The
224Ra isotope is another typical example of a weakly deformed
quadrupole nucleus but with a well developed octupole
deformed minimum. The isotope 228Th is well deformed in the
quadrupole degree of freedom and weakly octupole deformed.
Finally, 232Th is an example of a well deformed nucleus which
is reflection symmetric and very stiff along the quadrupole
direction. The energies have a parabolic behavior around the
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FIG. 1. Upper row (a1 to a4): contour plots of the HFB energy surfaces E(Q20, Q30) obtained with the Gogny D1M interaction are depicted
for several nuclei considered in this work. The position of the ground state minimum is signalled by a bullet. In the middle row (b1 to b4) the
ground state collective amplitudes |gσ (Q20, Q30)|2 are shown. In the bottom row (c1 to c4), the corresponding amplitudes for the first negative
parity excited state are given. In this mass region a Q20value of 1b corresponds to a β2 = 0.022 and a Q30 of 1 b3/2 to β3 = 0.035. All quantities
are symmetric under the Q30 → −Q30 exchange. For the HFB energies, contour lines (full and dashed) are plotted every 250 keV up to 4 MeV
and from there on (dotted) every 1 MeV up to 8 MeV.
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minimum which is not easy to reconcile with some recent
models of quadrupole-octupole coupling [22] that require
potential energies resembling an infinite depth square well
potential. The ground state collective amplitudes obtained in
the GCM calculation are shown in the middle row of Fig. 1.
They follow closely the shape of the HFB energy with maxima
correlated with the positions of the HFB energy minima. They
look like two-dimensional Gaussian functions centered at the
position of the HFB minima. Finally, the collective amplitudes
of the first negative parity state are presented in the bottom
row. Their shapes are rather similar to the ones of the ground
state except for the symmetry requirement that the collective
amplitude is zero along the Q30 = 0 line. It favors the shifting
of the maxima to Q30 values larger than the ones observed in
the ground state amplitudes. Only in the 224Ra case, and to a
lesser extent in 228Th, both the ground state and first negative
parity state amplitudes have a large overlap, favoring a small
energy splitting and strong E3 transition probabilities, typical
signatures of octupole deformed systems.

The concept of quantum phase transitions (QPTs) is often
called for to interpret the behavior of physical observables in
isotopic or isotonic chains. In the octupole case, it is argued
that those nuclei with a well deformed octupole minimum
could signal the transition point of such a QPT as a function of

neutron number, and the example of 226Th is often mentioned
in the literature. Although the results of Fig. 1 do not include
the whole thorium chain, its main features can be discussed
because 224Th and 226Th both look rather similar to 224Ra.
From the figure we conclude that the three quantities, HFB
energies, and the collective amplitudes |gσ (Q20,Q30)|2 for
the ground and first negative parity states, behave smoothly
as a function of neutron number for the Th isotopes. As the
collective amplitudes determine the final values and evolution
of the physical observables, see below, we conclude that no
discontinuities are expected in the thorium chain (see below),
as it would be required by a QPT.

The physical quantities obtained in the GCM calculations
are the intrinsic energy of the lowest lying negative parity state,
various mean values of operators and transition strengths. As
typical moments of inertia are rather large in the region, the
rotational energy associated with the physical 1− and 3− states
is much smaller than the splitting with the ground state and will
not be considered explicitly here. In Fig. 2 the results for the 1−
excitation energy and B(E1) and B(E3) transition strengths
to the ground state (in Weisskopf units) are given for the
three isotopic chains considered. Both the results of the two-
dimensional calculation Q20-Q30 and the one-dimensional one
of [4] are presented for comparison. The consequences of
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FIG. 2. (Color online) Excitation energies of the 1− state (panels a1 to a3) and transition strengths to the ground state B(E1) (panels b1 to b3)
and B(E3) (panels c1 to c3) (in Weisskopf units) are depicted for the radon, radium, and thorium isotopic chains. Experimental results are
represented by bullets whereas the theoretical predictions obtained with the two-dimensional Q20-Q30 GCM calculations are plotted as full
(dotted) black lines for Gogny D1S (D1M). Results of the one-dimensional GCM calculation with Q30 as collective coordinate are represented
by red (gray) lines. Experimental results are from [2] for 220Rn and 224Ra and from other sources [20,21] for the other nuclei.
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including the coupling to the quadrupole degree of freedom
are an increase of the 1− excitation energy and a decrease of the
B(E3) transition strength from the 3− to the 0+. Both effects
are characteristic of a quenching of octupole correlations. For
B(E1) the impact is more nucleus dependent as a consequence
of the much less collective character of the dipole operator (see
[11] for a recent discussion). In fact, the minimum observed
at N = 134 for B(E1) in the one-dimensional calculation
of [4] is shifted to N = 136, worsening the agreement with
experiment. It is also a systematic effect that the D1S and D1M
results in the Q20-Q30 calculation are much closer to each other
than in the calculation with Q30 alone. The comparison with
experiment is rather satisfactory as both excitation energies
and transition strengths are well reproduced. Perhaps the
theoretical excitation energies are a bit too high for the heavier
isotopes but this seems to be a common deficiency of GCM
calculations [4,23] for vibrational-like states.

The proton-neutron interaction [24] is often invoked in
order to understand structural changes along isotopic chains
[25,26]. For instance, the binding energy filter

Vpn(Z,N ) = 1
4 [B(Z,N ) − B(Z − 2, N) − B(Z,N − 2)

+B(Z − 2, N − 2)]

has been used to signal the transition to an octupole defor-
mation regime in the ground state as well as the relevance of
additional quantum correlations [27,28]. To test this concept
we have represented this quantity in Fig. 3 as a function of
neutron number N. Only the results with D1M are presented
because D1S is well known to poorly reproduce binding
energies. For both Ra and Th we observe a large discrepancy
with experiment at N = 132, which corresponds to octupole
deformed nuclei but with very swallow minima. The addition
of correlations improve the agreement with experiment. The
Ra isotopes with N = 138 and 140 show large discrepancies
between the mean field results (both reflection symmetric and
asymmetric) and the experiment. Again, considering correla-
tions improves the agreement substantially. These nuclei are
octupole deformed but with potential wells not well developed.
A similar situation is observed for the Th isotopes with neutron
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FIG. 3. The proton-neutron energy Vpn defined in the text is
plotted as a function of neutron number N for the radium (b) and
thorium (a) isotopes.

TABLE I. Comparison between experimental [2] and theoretical
values of different physical observables.

220Rn 224Ra

Q20-Q30 Expt. Q20-Q30 Expt.

E1− (MeV) 0.618 0.645 0.234 0.216
B(E1) (Wu) 2.4 × 10−5 <1.5 × 10−3 2.4 × 10−4 <5 × 10−5

B(E3) (Wu) 26.50 33 ± 4 45.74 42 ± 3
E2+ (Vib) 1.860 0.938 1.746 0.966
B(E2) (Wu) 48.47 48 ± 3 92.75 98 ± 3

numbers N = 136 and 138. Here, contrary to the Ra case, the
octupole deformed HFB calculation already provides good
agreement with experiment and this is only improved slightly
by the inclusion of correlations. A discrepancy between
experiment and theory in Vpn, like the one at N = 132, signals
that some physics is missing, but we cannot conclude from that
discrepancy alone whether it is a mean field effect (breaking
of symmetries) or a quantum correlation effect.

Another relevant piece of experimental information ob-
tained in [2] is the excitation energy of the vibrational 2+
state and the B(E2) transition strength from the 2+ member
of the ground state rotational band to the ground state. The
experimental results for 220Rn and 224Ra are compared in
Table I with the theoretical results obtained with Gogny
D1M (the results with D1S are similar). We observe a good
agreement between calculations and experimental data except
for the excitation energy of the β vibration that comes out
a factor of 2 larger. This is a well known problem in the
theoretical description of the β vibrations. However, for 224Ra,
the inclusion of the quadrupole-octupole coupling improves
the description of this state as compared with that obtained
using a one-dimensional GCM calculation with only the
quadrupole degree of freedom. We go from the 2.45 MeV
obtained in the one-dimensional case to the 1.75 MeV shown
in the table, showing the relevance of the quadrupole-octupole
coupling in the description of this observable.

Conclusions. We have analyzed the onset of octupole
collectivity in several isotopes of Rn, Ra, and Th using ad-
vanced models of nuclear structure. A two-dimensional GCM
calculation to deal with the quadrupole-octupole coupling
and using two variants of the Gogny force is performed
for each isotope. The results for excitation energies and
transition strengths agree quite well with recent experimental
findings. The impact of correlations on the behavior of the
proton-neutron interaction as a function of neutron number
is found to be small but it always goes in the direction
of improving the agreement with experiment. The potential
energy surfaces show a parabolic behavior around the mini-
mum that differs from commonly used ones in simple models
of quadrupole-octupole coupling. The behavior of physical
quantities and probability amplitudes do not show any of the
abrupt discontinuities which are characteristic of QPT.
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