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Limits on tensor coupling from neutron β decay
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Limits on the tensor couplings generating a Fierz interference term b in mixed Gamow-Teller Fermi decays can
be derived by combining data from measurements of angular correlation parameters in neutron decay, the neutron
lifetime, and GV = GFVud as extracted from measurements of the F t values from the 0+ → 0+ superallowed
decay data set. These limits are derived by comparing the neutron β-decay rate as predicted in the standard model
with the measured decay rate while allowing for the existence of beyond the standard model (BSM) couplings.
We analyze limits derived from the electron-neutrino asymmetry a, or the beta asymmetry A, finding that the most
stringent limits for CT/CA under the assumption of no right-handed neutrinos is −0.0026 < CT/CA < 0.0024
(95% C.L.) for the two most recent values of A. The derived limits on scalar and tensor couplings have the useful
property that they are independent of BSM extensions with vector or axial-vector symmetry to first order.
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In the following we present an analysis of a “lifetime-
consistency test” for neutron β decay, from which we derive
relevant limits for beyond the standard model physics, in
particular for new scalar and tensor couplings. Our analysis
utilizes high precision data from 0+ → 0+ decays and neutron
decay and does not supplant a more general fitting procedure
to obtain limits from all β-decay data [1–3]. We note, however,
that our limits are comparable to those obtained from fits to
the entire β-decay set when similar assumptions are made
(no right-handed neutrinos). This brief report was inspired by
comments in Bhattacharya et al. [4] and begun as a part of
thesis research [5]; however, we note that additional details
have subsequently been published by Ivanov, Pitschmann, and
Troitskaya [6].

The general method compares the measured value of the
neutron lifetime, whose current particle data group (PDG)
value is τn = 880.1 ± 1.1 s, to a prediction of the neutron
lifetime using the measured weak coupling strength from
0+ → 0+ and the value of the axial-vector coupling constant,
λ ≡ gA/gV, extracted from angular correlations measure-
ments. Because this comparison requires the interpretation
of specific angular correlation measurements to consistently
extract limits, we analyze some specific cases of interest
associated with the electron-neutrino correlation a, and the
β asymmetry A. As discussed in more detail later in the
text, these limits are independent of beyond standard model
extensions with vector or axial-vector symmetry to first order.
We understand that this treatment is not exhaustive, nor should
it supplant direct limits on the Fierz term in the neutron system,
but it is intended to indicate the utility of these limits.

Derivation of impact of the Fierz term on the neutron decay
rate. β decay can be represented, using all possible Lorentz-
invariant couplings, by the Hamiltonian density,

H =
∑

i

(p̄Oin)(ēOi(Ci + C
′
iγ5)ν) + H.c., (1)
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where Oi corresponds to the standard Dirac operators
(1, γμ, γμγ5, γ5, σλμ), σλμ = −i/2(γλγμ − γμγλ) and p, n,
e, and ν represent the hadronic and leptonic fields [7]. The
strength of each type of interaction in the lepton current is given
by a coupling constant Ci and C

′
i where i ∈ {V,A, S, T , P } are

the vector, axial-vector, scalar, tensor, and pseudoscalar inter-
actions, respectively. In the scenario where |Ci | = |C ′

i |, parity
is maximally violated, and in the standard model |CV | = |C ′

V |
and |CA| = |C ′

A| and CS = C
′
S = CT = C

′
T = CP = C

′
P = 0.

These restrictions are experimentally determined, leaving
the possibility for deviations below the current experimental
precision.

Limits on tensor couplings can be derived by noting that
the decay rate for neutron β decay can be written as (ignoring,
at present, the possibility of a Fierz term)

1

τn

= G2
V

2π3h̄
(1 + 3λ2)fn(1 + 	RC), (2)

where, under the conserved vector current hypothesis, GV =
GF|Vud |, fn is the statistical rate function for the neutron
defined as

fn = I0(x0)(1 + 	f ) = 1.6887, (3)

Ik(x0) =
∫ x0

1
x1−k(x0 − x)2

√
x2 − 1 dx, (4)

and where x and x0 are the electron total energy and end-
point energy in terms of the electron rest mass, and 	f is
the Coulomb and recoil correction for the phase-space integral
I0(x0) = 1.6299. The standard model electroweak radiative
corrections are denoted by 	RC = 3.90(8) × 10−2 [8]. GF is
the Fermi coupling constant as extracted from muon decay
[9], and Vud is the first element of the Cabibbo-Kobyashi-
Maskawa (CKM) quark mixing matrix. One can also predict
the neutron decay rate from 0+ → 0+ decays, by using the
extracted value of G̃V from the average F t0+→0+ and λ from
neutron angular correlation measurements, where if the Fierz
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TABLE I. The statistical weighting and ratio of the phase-space factors is presented for each of the 13 isotopes used in the 0+ → 0+

superallowed data set to calculate the average F t value. Ik(x̃0) are the statistical rate functions defined in Eq. (4) and calculated by Towner and
Hardy [10,11].

Isotope F t I0(x̃0) I1(x̃0) I1(x̃0)/I0(x̃0)

10C 3067.7(4.6) 2.3004(12) 1.42401(74) 0.6190(5)
14O 3071.5(3.3) 42.772(23) 18.743(10) 0.4382(3)
22Mg 3078.0(7.4) 418.39(17) 128.948(52) 0.3082(2)
34Ar 3069.6(8.5) 3414.5(1.5) 724.56(32) 0.2122(1)
26Alm 3072.4(1.4) 478.237(38) 143.662(11) 0.3004(1)
34Cl 3070.6(2.1) 1995.96(47) 466.26(11) 0.2336(1)
38Km 3072.5(2.4) 3297.88(34) 701.459(69) 0.2127(1)
42Sc 3072.4(2.7) 4472.24(1.15) 895.34(23) 0.2002(1)
46V 3073.3(2.7) 7209.47(90) 1317.17(16) 0.1827(1)
50Mn 3070.9(2.8) 10745.97(57) 1816.07(10) 0.1690(1)
54Co 3069.9(3.3) 15766.6(2.9) 2470.63(45) 0.1567(1)
62Ga 3071.5(7.2) 26400.2(8.3) 3719.7(1.2) 0.1409(1)
74Rb 3078.0(13.0) 47300.0(110) 5884.1(1.4) 0.1244(4)
Average 3072.08(79) 0.2579(1)

term is zero G̃2
V = G2

V,

1

τ0+
= G̃2

V

2π3h̄
(1 + 3λ2)fn(1 + 	RC). (5)

A nonzero Fierz term will alter the neutron decay rate τn

via a 〈me/E〉 term in the phase-space integral and modify the
value of GV extracted from superallowed Fermi decays to

G̃2
V = G2

V〈1 + bFγ I1(x̃0)/I0(x̃0)〉, (6)

where γ =
√

1 − (Zα)2, Z is the atomic number, α is the
fine structure constant, and x̃0 is the end-point energy for
the superallowed Fermi decay isotopes, and I1(x̃0)/I0(x̃0)
corresponds to the ratio of phase-space integrals over the
superallowed decay used in the determination of Vud and
bF = 2 Re(CS/CV) [10]. For the moment we will ignore the
changes in λ induced by b; this will be addressed in detail
after presenting an outline of our approach. In Table I, the 13
isotopes included in the determination of the average F t are
listed with the absolute uncertainty on the measurement and
the statistical rate function and the ratio I1(x̃0)/I0(x̃0) [10]. The
reported values include both recoil and Coulomb corrections.
Writing Eqs. (2) and (5) in terms of GV, bF and b, we have

1

τn

= G2
V

2π3h̄
(1 + 3λ2)fn(1 + 	RC)(1 + κb), (7)

and

1

τ0+
= G2

V

2π3h̄
(1 + 3λ2)fn(1 + 	RC)(1 + ζbF), (8)

where κ = I1(x0)/I0(x0), κ̃ = I1(x̃0)/I0(x̃0), and ζ = 〈γ κ̃〉 ∼
0.2560. In Eq. (7), the term (1 + κb) arises from the neutron
phase-space integral when b 	= 0, and the (1 + ζbF) term in
Eq. (8) is from substitution of measured GV using Eq. (6).
Taking the difference between the measured neutron decay
rate and the decay rate predicted from 0+ → 0+ decays in

terms of measured quantities gives

τnK(1 + 3λ2) = 1 + ζbF

1 + κb
, (9)

where all the constants have been combined into K =
G̃2

Vfn(1 + 	RC)/(2π3h̄) = 1.934(2) × 10−4 s−1, we express
Eq. (9). Critically, leading order differences in the predicted
versus measured decay rates must come from scalar and
tensor-induced couplings in the Fierz term, and any new
physics which adjusts the value of GV and λ affects both rates
uniformly (such as right-handed currents). Additionally, the
impact of the scalar coupling determined in the superallowed
decays is suppressed by ζ because of the much higher
end-point energy of these decays relative to neutron β decay.

Under the assumptions of this analysis the Fierz inference
term can be approximated in terms of the scalar CS/CV and
tensor CT/CA couplings [1]:

b = 2
√

1 − α2

1 + 3λ2

[
Re

(
CS

CV

)
+ 3λ2Re

(
CT

CA

)]
. (10)

At this point, we already have a reasonably strong constraint
on new physics by using Eqs. (9) and (10), and the definition
of bF,

CT

CA
(6λ2γn) = δb

τnKκ
− 2γn

CS

CV
− (1 + 3λ2)κ−1 (11)

where δb = 〈1 + 2γ (CS/CV)κ̃〉 and γn = √
1 − α2. Using

the PDG values for λ = −1.2701(25), τn = 880.1(1.1) s,
and Vud = 0.97425(40) [12] and limits on scalar couplings,
CS/CV = 0.0011(13), from the superallowed data set [10],
one can place a limit on the tensor coupling. This results in
2-σ (95% C.L.) limits of −0.0009 < CT/CA < 0.0125. Note
that if only the Perkeo II result for λ = −1.2739(19) [13] is
used, then limits shift to −0.0012 < CT/CA < 0.0065.

b dependence of λ. The limits obtained from Eq. (11)
have ignored the fact that λ is determined experimentally
by measuring correlation coefficients, which typically are
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TABLE II. Experimental results for λ from measurements of A using a single parameter fit to energy dependence of the asymmetry are
summarized. For each measurement the reported analysis window and the phase-space integral ratios over that range are listed. The last column
estimates the change in the asymmetry where b = 0.001.

Experiment A λ Energy range I0(x1, x2)/I0(x0) I1(x1, x2)/I0(x0) 	A (%)

Perkeo [19] −0.1146(19) −1.262(5) >200 keV 0.801 0.581 0.06
Perkeo II [13] −0.11951(50) −1.2755(13) 325–675 keV 0.843 0.534 0.05
Ill TPC [20] −0.1160(9)(12) −1.266(4) 200–700 keV 0.807 0.583 0.06
UCNA [18] −0.11952(110) −1.2756(30) 275–625 keV 0.828 0.557 0.06
Yerozolimsky [21] −0.1135(14) −1.2594(38) 250–780 keV 0.824 0.561 0.06

modified by the existence of a Fierz term as in

Xm(Ee) = X0(Ee)

1 + b me/Ee

, (12)

where Xm(Ee) ∈ {a,A,B, ...} is the measured value of the
coefficient as a function of electron energy. For this analysis
we will focus on a and A because closed form expressions
can be obtained for limits on tensor couplings and they have
the highest sensitivity to λ. The method used to extract the
correlation coefficient and the energy range of the analysis will
impact the sensitivity to b, as will be shown explicitly in the
case of a. Note that we are also explicitly ignoring imaginary
couplings and the affect of tensor and scalar couplings on the
angular correlations a and A, which are second order in CS

and CT.
λ derived from the measured β-asymmetry parameter Am.

Single parameter fits to the energy dependence of the β
asymmetry will modify the measured quantity by A0/(1 +
b〈I1(x1, x2)/I0(x1, x2)〉), where x1 and x2 are the limits of the
energy range used in analysis. Table II shows the ratio of the
phase-space integrals over the reported analysis energy range
for several of the experiments that measure the asymmetry
and would be subject to the type of dilution analyzed here.
The leading order expression of Ao (where one has already
corrected the measured asymmetry for small radiative and
recoil order corrections [7]) in terms of λ is

A0 = 2|λ| 1 − |λ|
1 + 3λ2

, (13)

which, combined with Eqs. (10)–(12), gives

3λ2 =
[

h

CT/CAγnκ + 1

]

= 3

⎛
⎝−1 −

√
1 − A2

m(3C̃T + 2/Am)C̃S

3AmC̃T + 2

⎞
⎠

2

. (14)

In Eq. (14), we have made the following substitutions: C̃x =
Cxγn + 1 and h = (δb/τnK) − γnκ(CS/CV) − 1. We assume
here that the BSM scalar and tensor couplings make negligible
contributions to the radiative and recoil-order corrections. For
BSM couplings at the ≈0.01 level, this should certainly be
true, as can be seen by inspecting radiative corrections, which
are precisely defined in Refs. [14–16]. Equation (14) can be

solved in closed form, producing three roots:

CT/CA =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−s/(3Amγn),
[h(Am{s + 3Am/κ}C̃S − 2)
−Am(sh2 + 3C̃2

S/κ)
±2hγn

√
1 − Am(s − 3Am/κ)h̃]

×(3A2
mγnh̃

2)−1,

(15)

where h̃ = (1 + h + Csγ ) and s = 2 + 3Am, two of which
predict large values of CT/CA and are ruled out by current
experimental limits,

CT

CA
=

{
4.67 ± 0.05, (first root)

25.8 ± 0.9, (negative root)
. (16)

The remaining solution gives a 2-σ limit on the tensor coupling
of −0.0015 < CT/CA < 0.0079, using the PDG values for the
measured parameters.

The PDG value of λ includes the result of Mostovoi et al.
[17], which is determined by simultaneous measurement of
the β asymmetry A, and the neutrino asymmetry B, and
would therefore require careful analysis to determine the
impact a nonzero Fierz term would have on the extracted λ.
Using the results from Perkeo II [13] and UCNA [18], Am =
−0.11931(46), we then obtain −0.0026 < CT/CA < 0.0024
(95% C.L.). Note that the 30% reduction in the limit is in
large part because of the increased error bar on A0 used by the
PDG to account for the variations in the current measurements;
including this factor would increase the limit to 2σ = 0.0039.
Future prospects for reducing this limit via increasing the
precision of Am are shown in Fig. 1, where we see that next
generation experiments will reduce the uncertainty on Am to
the point where δτn becomes the leading contribution to this
limit.

λ derived from the electron-neutrino correlation parameter
a0. Measurements of the electron-neutrino correlation parame-
ter a0 are being proposed and carried out at several cold neutron
facilities worldwide with the aim of significantly improving the
current precision of 3.9% to < 0.1% [22–24]. Determining
the a coefficient can be performed by directly measuring
the angular distribution of emitted electron and proton in
coincidence, in which case the a0/(1 + bme/Ee) scaling can
apply (directional method), or via a measurement of the proton
energy spectrum. Directly fitting the proton spectrum or using
discrete points from the spectrum (spectral fit method) as
in Stratowa et al. [25] will result in am = a0 + xf b, where
xf ∼ 0.09 as determined by Monte Carlo. An alternate method
of analyzing proton spectral data is an integral analysis, which
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has the advantage of being much less sensitive to the presence
of a Fierz term, as presented in [26]. In such an analysis one
compares the integral rate over a fixed energy range to the total
decay rate. This results in a linear scaling:

am = a0 + xIb = 1 − λ2

1 + 3λ2
+ xI b, (17)

where am = −0.103(4) is the measured value of the correlation
coefficient and xI ∼ 0.008 from [26], which was confirmed by
this analysis using Monte Carlo. Using Eqs. (10) and (11), and
the two expressions for the measured coefficient including a
Fierz term, we can find a solution for CT/CA in terms of
measurement quantities,

CT

CA
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h
(
a+ 1

3

)
−
(

1−am+xI γn
CS
CV

)
/κ

γn

(
1−am+xI γn

CS
CV

)
−xγnh

(Linear),

h
(

1+ 1
3am

)
−
(

1
am

−1−γnκ
CS
CV

)
/κ

γn

(
1

am
−1−κγn

CS
CV

−hκ
) (Inverse),

(18)

where we have made use of the substitutions defined previ-
ously. This approach is more straightforward because of the
fact that, unlike A, there are no terms which are linear in λ in
Eq. (17). Using the current PDG value for a0 = −0.1030(40)
(extracted using the spectral fit method, xf = 0.09) we find
limits of −0.0134 < CT/CA < 0.0324 (95% C.L.).

While this limit is not currently competitive with those
obtained through measurements of the β asymmetry, Fig. 1
shows that determining a from angular distributions is more
sensitive than the spectral fit method to tensor couplings,
and the next generation experiments should improve upon
current limits set by A0. (For example, a measurement such as
Nab [22], aiming for a precision of 	a/a � 10−3, could set
constraints of |CT/CA| < 0.0015 with the current uncertainty
on τn.)

We also note that the differing sensitivities to the Fierz
term afforded by the integral proton spectrum analysis and
directional distribution measurements afford an alternate
method to extract limits on the Fierz term.

Conclusion. In this analysis we have presented a self-
consistent derivation of limits to tensor couplings in the weak
interaction, using experimentally measured quantities from
neutron β decay and 0+ → 0+ superallowed Fermi decays.
By calculating the difference of the measured and predicted
neutron β-decay rate, we are able to derive a limit to the tensor
coupling −0.0026 < CT/CA < 0.0024, under the assumption
of maximal parity violation and no right-handed neutrinos,
where |CX| = |C ′

X|. Noting that a nonzero Fierz term would
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FIG. 1. (Color online) The 2-σ limits on CT/CA are shown
for the methods of extracting a discussed in the text, along with
those from fitting the energy dependence of the β asymmetry A.
Current limits on a are taken from the PDG2012 (Beringer [12]),
and future limits denote the proposed sensitivity of experiments such
as Nab (Poc̆anić [22]) (directional method), aCORN (Wietfeldt [24])
(directional method), and aSPECT (Baeßler [23]) (fit method). For
this analysis we consider the β asymmetry from UCNA (Mendenhall
[18]) and Perkeo II (Mund [13]), and the proposed limits are from the
PERC experiment (Dubbers [27]).

modify the experimentally reported value of λ, we have shown
that the measured correlation coefficients am and Am can be
used to set limits on the tensor couplings that are competitive
with those obtained from global fits to the available data [1–3].
If the precision of A or a reaches the 0.1% level, then
the accuracy of the neutron lifetime becomes the leading
contribution to the derived limits.

These results can be used to set constraints on the effective
couplings from Bhattacharya et al. [4], where the tensor
coupling is given as CT/CA = −4(gT εT /gA)/(1 + εL − εR)),
where εR(L) represent the effective right- and left-handed
couplings and both are zero in the SM. In general, this directly
leads to a limit of −5.8 × 10−4 < gT εT /(gA{1 + εL − εR}) <
6.4 × 10−4. However, under the assumption that BSM physics
arises from tensor couplings then εR = εL = 0, and this
simplifies to gTεT/gA.
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