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We explore the properties of medium-mass and heavy nuclear clusters embedded in a gas of nucleons with
the help of Skyrme-Hartree-Fock microscopic calculations at zero temperature. Two alternative representations
of clusters are introduced, namely coordinate-space and energy-space clusters. We parametrize their density
profiles in spherical symmetry in terms of basic properties of the energy density functionals used and propose an
analytical, Woods-Saxon density profile whose parameters depend, not only on the composition of the cluster, but
also on that of the nucleon gas. We study the clusters’ energies with the help of the local-density approximation,
validated through our microscopic results. We find that the volume energies of coordinate-space clusters are
determined by the saturation properties of matter, while the surface energies are strongly affected by the presence
of the gas. We conclude that both the density profiles and the cluster energies are strongly affected by the gas
and discuss implications for the nuclear equation of state and related perspectives. Our study provides a simple
but microscopically motivated modeling of the energetics of clusterized matter at subsaturation densities for
applications of astrophysical interest.
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I. INTRODUCTION

The understanding of the structure and evolution of neutron
stars and the cataclysmic events generating them is strongly
related to our knowledge of the microphysics of dense matter.
Additionally, the implementation of the equation of state
(EoS) in compact-star modeling presents a double challenge:
First, knowledge of the structure and dynamics of hadronic
matter over different domains of temperature, density, and
composition is needed, including important phase transitions
and interactions with leptons and photons; second, this
knowledge must be woven together and modeled in such
a way that numerical studies and simulations are feasible.
Terrestrial experiments on nuclei, including systems under
extreme conditions, are performed and analyzed worldwide
to meet the former challenge. It remains a nontrivial task to
model and tabulate the acquired information into usable form
for astrophysical applications.

In terms of relevant degrees of freedom, matter at low
temperature and at subsaturation density is not highly exotic:
It will primarily consist of nucleons, leptons, and photons
and therefore belong in the domain of low-energy nuclear
physics. Depending on the situation, baryonic matter may be
almost isospin-symmetric or extremely neutron rich, as in the
inner crust of a neutron star. A liquid-gas phase transition is
expected to occur at sub-saturation densities, from nonuniform
matter to unbound nucleons. Of particular interest in the
present work is the intermediate domain of clusterized matter,
where nuclei—as it were, nuclear droplets—coexist with free
nucleons, as well as leptons and photons, in thermal and
chemical equilibrium. Again depending on the conditions,
different nuclei may be found in this mixture: from very light
ones, such as deuterons and α particles, to iron-group nuclei
and much heavier or exotic species.

A common approach to the composition of clusterized
stellar matter, followed in the most widely used EoS’s, namely
those by Lattimer and Swesty [1] or Shen et al. [2], is
the so-called single-nucleus approximation (SNA): Besides
free nucleons, only one kind of light cluster (α particles)
and one kind of heavy cluster are assumed to exist. The
idea is to account in an average way for the properties of
the statistical cluster distribution. The SNA may not affect
very strongly thermodynamical properties of matter at certain
temperature and density domains of interest [3], but it may
have consequences for dynamical processes dependent on
reaction rates of specific nuclei [4] and for the gas-liquid
phase transition. Therefore, more modern approaches rely
on an extended nuclear statistical equilibrium (NSE) concept,
where the distribution of clusters over, in principle, all mass
numbers is taken into account and obtained self-consistently
under conditions of statistical equilibrium [5–8].

Originally, the NSE was introduced to describe the reaction
network taking place at the end of the evolution of massive stars
in red supergiants. Being very diluted, nuclei interact weakly
and are almost not modified by the surrounding medium. These
conditions naturally lead to the Saha equations. The NSE in the
dense and hot matter in the core of supernovae was first applied
in the EoS of Hillebrandt and Wolff [9]. In recent NSE imple-
mentations [10–13] the interactions between a cluster and the
surrounding gas is treated in the so-called excluded-volume
approach. The clusters and the gas of light particles do not
overlap in space and the clusters’ binding energy is kept as in
the free limit. It is known, however, from quantal approaches,
that the cluster properties are modified by the coexistence with
a gas [14]. Such approaches are presently limited to a system of
light nuclei. It is clear that in-medium modifications of larger
clusters would also change the composition of matter and
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the related EoS. It is therefore important to take such effects
into account.

This work provides a microscopically based modeling of
in-medium properties of medium-mass and heavy nuclei. More
precisely, we focus on the modification of their ground-state
properties owing to the presence of a nucleon gas. Other
in-medium effects owing to the interaction of nuclei with light
clusters, as well as in-medium modifications of light-cluster
properties, are expected at finite temperature [14,15]. Such
effects are beyond the scope of the present work.

First, we study clusters microscopically through Hartree-
Fock calculations. Clustering emerges from the quantal cal-
culation because a dense cluster can be distinguished from a
dilute phase. Two different types of clusters can, however,
be defined: a representation in coordinate space, pertinent
in excluded-volume approaches; and another representation
in energy space, conceptually similar to existing quantal
approaches for light clusters. Next, we study the energies of
clusters embedded in a gas, with the help of the local-density
approximation (LDA), which we validate using our micro-
scopic results. Thanks to the LDA and our analytical model for
the density, configurations away from those accessible within
Hartree-Fock or other variational calculations can be studied
and the in-medium modified self-energies can be directly
used in the EoS modeling at finite temperature. Indeed,
the formalism to include excited states in finite-temperature
calculations has been already developed by authors of the
present paper [11,13], as well as by other groups [10,12]. These
finite-temperature calculations require as input the cluster
energies as a function of the cluster mass and charge and
the external neutron and proton gas density. Vacuum energies
are used in the present applications, while the in-medium
energies obtained in this work can be implemented with no
extra numerical effort. This implementation will be the object
of a forthcoming paper.

For the microscopic calculations we employ the SLy4
Skyrme functional, but our in-medium densities and energies
explicitly depend on the isoscalar and isovector properties of
the underlying interaction and can thus readily be computed
for different functionals.

The outline of our paper is as follows. In Sec. II, basic
information is provided on our theoretical methods, namely the
Skyrme-Hartree-Fock model, the LDA, and the Woods-Saxon
functions. In Sec. III, we analyze our microscopic results and
define two types of clusters. In Sec. IV, we present and validate
our analytical model for the density profiles of clusters in a
gas. In Sec. V we study their energies within the LDA. We
conclude in Sec. VI.

II. THEORETICAL METHODS AND CONSIDERATIONS

A. Microscopic calculations

Our modelization of clusters embedded in a nucleon
gas will initially be informed by microscopic Hartree-Fock
calculations using Skyrme functionals. The Hartree-Fock
equations are solved self-consistently in spherical symmetry
in a mesoscopic volume. Implicit here is the assumption that
the heavy clusters are sufficiently far from each other to not
interact. The purpose of the mesoscopic volume in its present

use is to allow for the formation of a uniform gas around
the cluster. Its radius is not chosen via a condition of charge
neutrality. It is simply an auxiliary quantity which is eliminated
from the final results. To avoid spurious effects owing to the
boundary conditions, its radius Rcell must be much larger than
that of a typical nucleus. Here we use Rcell = 35 fm and we
have checked that our results do not change by increasing this
value further. As already stated in the Introduction, correlations
beyond mean field would lead to light-cluster formation in the
gas with an extra correction to the heavy-nucleus properties,
with respect to the vacuum densities and energies presently
assumed in supernova EoS modeling. This second-order effect
can be of importance at finite temperature, but lies beyond the
scope of the present work.

The equations are solved with mixed boundary conditions:
Dirichlet boundary conditions are imposed on odd single-
particle states and von Neumann conditions on even states.

In principle, Hartree-Fock-Bogolyubov calculations could
be performed to include pairing [16]. Superfluidity is an
essential property of dilute star matter [17–19], but we expect
the in-medium modifications owing to pairing to be small
in comparison with the in-medium modifications owing to
the mean field. As we show, these latter can be recast into
in-medium modified bulk and surface terms of the cluster
energy functional. To correctly constrain such terms from the
microscopic calculations and disentangle them from possible
pairing terms, we therefore prefer to neglect pairing and stick
to a Hartree-Fock modeling.

The energy density for a traditional Skyrme functional is
given by [20]

H(r) = h̄2

2mp

τp + h̄2

2mn

τn + C0ρ
2 + C3ρ

α+2 + Ceffρτ

+D0ρ
2
3 + D3ρ

αρ2
3 + Deffρ3τ3 + C12ρ∇2ρ

+D12ρ3∇2ρ3 − W0

4
[3ρ �∇ · �J + ρ3 �∇ · �J3], (1)

where

C0 = 3
8 t0, C3 = 1

16 t3,

Ceff = 1
16 [3t1 + t2(4x2 + 5)],

D0 = − 1
8 t0(2x0 + 1), D3 = − 1

48 t3(2x3 + 1),

Deff = 1
16 [−t1(2x1 + 1) + t2(2x2 + 1)],

C12 = 1
64 [−9t1 + t2(5 + 4x2)],

D12 = 1
32

[
3t1

(
1
2 + x1

) + t2
(

1
2 + x2

)]
,

and ti , xi are the usual Skyrme parameters. In the above,

ρ = ρp + ρn, ρ3 = ρn − ρp, (2)

are the isoscalar and isovector densities, while

τ = τp + τn, τ3 = τn − τp, (3)

give the isoscalar and isovector expectation-value densities of
the momentum-squared operator and

�J = �Jp + �Jn, �J3 = �Jn − �Jp, (4)
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are the current densities. The above densities are functions
of the radial variable r and the subscript p or n specifies the
densities of protons or neutrons, respectively.

As is customary in this kind of calculations, the direct
part of the Coulomb interaction is included exactly, while
the exchange part is treated within the Slater approximation.
Because we are interested in in-medium modifications of
the nuclear self-energy, the Coulomb contribution is sys-
tematically subtracted in the presented results, even if it
obviously affects the equilibrium density profiles. Concerning
the nuclear functional, the SLy4 Skyrme functional [21,22]
has been chosen at present for the microscopic calculations.
This functional is widely used to calculate ground and excited
states of nuclei and it is particularly interesting in studies of
dense matter, because is has been adjusted to a realistic EoS
of symmetric and neutron matter, obtained variationally using
the UV14 and UVII potentials [23,24]. We stress, however,
that our modeling is general in scope so that it can be easily
applicable to different functionals and interactions.

In practice, we study isotopic chains ranging from Z = 20
(Ca) to Z = 82 (Pb). For each Z we vary the neutron number
from Z to approximately 3000. We thus obtain a variety of
solutions, from stable nuclei to very neutron-rich clusters
embedded in a neutron gas of density up to, approximately,
0.02 fm−3. We are therefore able to study microscopically
neutron-rich clusterized matter before the onset of deformation
and pasta phases. The energies and density profiles obtained
from the microscopic calculations are used to validate our
analytical models. The mass and charge domain explored lies
well within the validity domain of the Skyrme-Hartree-Fock
model and covers most of the domain explored by dilute
neutron star and supernova matter, with the exception of
clusters too light to be correctly addressed within a mean-field
formalism, especially deuterons and α particles.

The Coulomb interaction among protons in stellar matter
is screened by the neutralizing electron background. The
associated modification to the cluster Coulomb energies is an
important in-medium effect which is already accounted for in
all EoS-NSE-based models [10,11]. Because it is well known,
it is not further discussed here.

A possible indirect effect of Coulomb screening on the
nuclear part of the energy functional could be present. Indeed,
the Coulomb screening could, in principle, modify the density
profile, leading to a modification of the energy. However, the
diffuseness of the nuclear surface is known to depend very
weakly on the Coulomb interaction [25], especially in the very
neutron-rich nuclei that constitute our microscopic sample
[26]. This is explicitly demonstrated in Sec. IV C. For this
reason, in the microscopic calculations we neglect this second-
order effect and we retain the Coulomb interaction as usual.

B. Energy in the local-density approximation

Within the LDA, the local energy density is determined
by the proton and neutron densities and their gradients, while
current densities are ignored. The LDA is closely related to the
Thomas-Fermi approach whereby the ground-state properties
can be determined by minimizing the energy with respect to
variations of the density. For our purposes, using the LDA

will transpose the problem of determining the cluster energy
in-medium correction towards the determination of the nuclear
density profile in the Wigner-Seitz cell.

Within the LDA, the kinetic energy density is also written in
terms of the local density, being replaced by its value in nuclear
matter of the corresponding density. In spherical symmetry we
thus write

τp,n(r) = 3
5ρp,nk

2
F p,n(r), (5)

where kF p,n = (3π2ρp,n)1/3 is the Fermi momentum of protons
and neutrons in infinite matter of density ρp,n. With these
considerations, the energy density in the LDA (1) is given by

HLDA(r) = h̄2

2mp

τp + h̄2

2mn

τn + C0ρ
2 + C3ρ

α+2

+Ceffρτ + D0ρ
2
3 + D3ρ

αρ2
3 + Deffρ3τ3

+C12ρ∇2ρ + D12ρ3∇2ρ3, (6)

where

τp,n = 3
5 (3π2)2/3ρ5/3

p,n (7)

and τ, τ3 are given by Eq. (3). The total energy in a spherical
cell of radius Rcell is given simply by

ELDA = 4π

∫ Rcell

0
HLDA(r)r2dr. (8)

All that is needed for computing the energy of the system is
then its density profile, both the isoscalar and the isovector
components.

C. Nuclear density profiles

Density profiles of medium-mass and heavy nuclei are
known to be well described by Woods-Saxon profiles,

ρWS(r) = ρ0

1 + exp[(r − RWS)/a]
, (9)

where RWS is the radius and a is the diffuseness parameter of
the Woods-Saxon profile. Other analytical forms have been
considered in the literature [27,28] and results marginally
depend on the chosen form. We note that Hartree-Fock calcu-
lations yield density profiles with small ripples in the bulk, but
those are to a large extent artifacts of the mean-field approach
and are expected to be washed out by correlations, with the
obvious exception of exotic bubble-shaped nuclei [29].

A straightforward generalization of the above expressions
for nuclei in the presence of a homogeneous gas with density
ρgas in spherical symmetry is given by

ρWS
cell (r) = ρ0

1 + exp[(r − RWS)/a]

+ ρgas

1 + exp[−(r − RWS)/a]

= ρ0 − ρgas

1 + exp[(r − RWS)/a]
+ ρgas. (10)

It is straightforward to show that

a = − ρ0 − ρgas

4ρ ′(RWS)
(11)
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FIG. 1. (Color online) (Top) A typical microscopic density profile (triangles), corresponding to 50 protons and 1900 neutrons. The solid
gray line corresponds to the Woods-Saxon fit of the total density, the green dashed line to the cluster density (left, r-cluster; right, e-cluster),
and the blue short-dashed line to the gas. The density of unbound nucleons, localized or nonlocalized, is also shown. (Bottom) Number of
particles in volume elements as indicated for the density profiles shown on top. The vertical lines indicate radial elements dr = 0.6 fm.

and

ρWS
cell (R

WS) = ρ0 + ρgas

2
. (12)

Analogous expressions may be introduced separately for the
proton and neutron densities.

The density profiles of ordinary nuclei existing on Earth
or produced in nuclear facilities have been analyzed before in
semiclassical Thomas-Fermi models in terms of Woods-Saxon
functions (see, for instance, Ref. [30]), corresponding in our
case to setting the external density ρgas to zero. Application of
the Extended Thomas-Fermi model for dilute nuclei in neutron
stars has also been considered on the basis of Woods-Saxon
functions in Ref. [31]. In the case where only one kind
of particle is dripping out of the cluster—the neutrons, for
instance—the external proton density ρgas,p is zero. In this
work we mostly analyze neutron-rich nuclei where ρgas,p = 0.
However, our approach can also be applied in cases where
there are protons in the gas. This point is essential to allow an
implementation in classical or quantum statistical models for
the equation of state at finite temperature in the near future.

III. ANALYSIS OF THE DENSITY PROFILE

In this section we analyze the density profiles obtained
microscopically and we define two kinds of representations
for the in-medium clusters. Simple relations between these two
representations also are derived. At first we fit the microscopic

Hartree-Fock profiles with Woods-Saxon functions to deter-
mine useful parameters, e.g., the bulk density and asymmetry.

The microscopic density profile of nucleonic matter ρcell(r)
is represented in the top part of Fig. 1 in the specific case of
1950Sn (triangles). On the bottom part of the figure we show
also the profile of the number of particles 4πρcell(r)r2dr from
which is obtained the total number of particles in the cell,

Acell = 4π

∫ Rcell

0
r2ρcell(r) dr. (13)

It is clearly visible from the top part of Fig. 1 (left and right)
that there is a dense nuclear cluster in the center of the cell
and a dilute neutron gas in its outer part. However, the central
cluster contains only a fraction of the number of particles, as
is shown in the bottom part of Fig. 1, and in this case, most of
the particles are in the noncentral region.

There is an ambiguity on how to define dilute clusters,
related to the overlap of the cluster with the gas: Does the
external gas penetrate inside the cluster, or is it excluded from
the cluster? These two representations of the same system
are depicted in Fig. 1, where the two panels on the left show
how to build up the microscopic cell density ρcell(r) from two
excluded subdensities, while the two panels on the right show
how the penetration of the external gas inside the cluster can
be taken into account. We name these two representations
the coordinate-space clustering (left of Fig. 1) and the
energy-space clustering (right of Fig. 1), respectively. The
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coordinate-space clustering is the representation of clusters
which naturally emerges if the density is taken as the relevant
degree of freedom, as in the density functional theory. In this
picture, clusters are recognized as density fluctuations on top
of a homogeneous medium and occupy a volume in space.

In the following, we aim at providing a global model for the
density profile, but first we discuss the two types of clustering.

A. Coordinate-space clustering

Clusters defined in coordinate space occupy a volume in
space and are surrounded by a gas of light particles. In the
following, these clusters are referred to as the r-clusters and
the gas as the r-gas. The frontier between the r-cluster and
the r-gas is located in space at the place where the nucleonic
density changes drastically. Hereafter, it is referred to as the
surface of the r-cluster. Because the r-cluster has a surface
diffuseness, the frontier cannot be sharp. At the surface of
the r-cluster, there is therefore a narrow region in space where
the r-cluster and the r-gas overlap, with a typical size of 1–2
fm, as illustrated in the left part of Fig. 1.

The coordinate-space clusters have been mostly used to
set up semiclassical EoS’s such as the Lattimer-Swesty EoS
[1] or other modelings of the crust of neutron stars. We note
that in the semiclassical EoS [1], the separation between the
r-cluster and the r-gas is sharp in coordinate space, but it is
not so in the microscopic calculations. The idea of clusters as
spatial structures in Wigner-Seitz cells was already put forth
in the earliest studies of clusterized matter [32]. We propose in
the following a method to relate this semiclassical modeling
with the microscopic calculations where we use Woods-Saxon
functions to fit the microscopic density in the cell.

In the r-clustering representation, the density profile of the
nucleons represented in Fig. 1 is decomposed in terms of an
inside Woods-Saxon function,

ρWS
r-cl (r) = ρ0

1 + exp[(r − RWS)/a]
, (14)

surrounded by an outside gas density defined as

ρWS
r-gas(r) = ρgas

1 + exp[−(r − RWS)/a]
, (15)

so that the sum of the two profiles gives the total profile ρWS
cell (r),

introduced in Eq. (10). The parameters of the Woods-Saxon
density profile are the r-cluster bulk density ρ0, the radius RWS,
the surface diffuseness a , and the asymptotic gas density ρWS

gas .
The same quantities can be introduced separately for neutrons
and protons, namely,

ρWS
r-cl,q(r) = ρ0,q

1 + exp
[(

r − RWS
q

)/
aWS

q

] , (16)

and

ρWS
r-gas,q(r) = ρgas,q

1 + exp
[−(

r − RWS
q

)/
aq

] . (17)

In Eqs. (16) and (17) the index q stands for neutrons (n) or
protons (p.) The Woods-Saxon parameters entering Eqs. (14)–
(17) can be obtained with the help of fits on microscopic
nucleon, neutron, and proton density profiles, as we describe

in the Appendix. An analytical model for the parameters is
introduced in Sec. IV.

Because the sum of two Woods-Saxon functions with
different radii and diffuseness parameters is no longer a
Woods-Saxon function, only two of the three density profiles
defined above (for protons, neutrons, and nucleons) can
be employed simultaneously. In this work we consider the
nucleon and proton densities as the independent functions.
The nucleon and proton densities in the cell are defined as

ρWS
cell (r) = ρWS

r-cl (r) + ρWS
r-gas(r), (18)

and

ρWS
cell,p(r) = ρWS

r-cl,p(r) + ρWS
r-gas,p(r), (19)

respectively, while for the neutrons we choose

ρWS
cell,n(r) = ρ

WS(1)
cell,n (r) = ρWS

cell (r) − ρWS
cell,p(r), (20)

to be compared with

ρ
WS(2)
cell,n = ρWS

r-cl,n(r) + ρWS
r-gas,n(r), (21)

obtained from a separate fit on the neutron density.
On the left of Fig. 1 is shown the result of the fit for

the nucleon density (18) as a solid line, as well as the
contributions of the cluster density ρWS

r-cl (r) and gas density
ρWS

r-gas(r) represented, respectively, by the dashed and dotted
lines.

In the following we drop the label “WS” from our notations.
The number of nucleons in the r-cluster, Ar-cl, and the

number of nucleons in the gas, Ar-gas, are defined as

Ar-cl =
∫

d3rρr-cl(r), Ar-gas =
∫

d3rρr-gas(r). (22)

We have similarly for the number of protons in the cluster,
Zr-cl, and in the gas, Zr-gas,

Zr-cl =
∫

d3rρr-cl,p(r), Zr-gas =
∫

d3rρr-gas,p(r), (23)

the latter being zero in the case of Fig. 1. Finally, the number
of neutrons in the cluster, Nr-cl, and in the gas, Nr-gas, are

Nr-cl = N
(1)
r-cl = Ar-cl − Zr-cl,

(24)
Nr-gas = N (1)

r-gas = Ar-gas − Zr-gas.

Alternatively,

N
(2)
r-cl =

∫
d3rρr-cl,n(r), N (2)

r-gas =
∫

d3rρr-gas,n(r), (25)

from a separate fit on the neutron density.
We have checked that our numerical results, for which there

is no proton gas, are practically the same (differences by less
than 1%) if we treat the neutron distribution as independent
or as the difference of the total and the proton ones. We chose
to work with the difference (i.e., with only two independent
density distributions) to ensure exact conservation of the total
number of particles. This way we also avoid ambiguities in the
definition of the cluster volume.

045805-5



P. PAPAKONSTANTINOU et al. PHYSICAL REVIEW C 88, 045805 (2013)

B. Energy-space clustering

The energy-space clustering is an alternative representation
of the density profile where clusters are defined as a collection
of bound particles, independent of their localization. As a
consequence, the external gas is allowed to penetrate inside
the cluster. At variance with r-clustering, this representation
allows extending the concept of clustering to supercritical
densities [33].

This representation appears natural in quantum mechanics,
where wave functions with various quantum numbers can
overlap. Because the separation between the cluster and the gas
is described in terms of quantum single-particle wave functions
mainly characterized by their energies, as we discuss below,
we refer to these two ensembles of particles as the e-cluster
and the e-gas.

Before we discuss the microscopic origin of e-clustering,
we begin with an analytical parametrization of the e-cluster
and e-gas density profiles, based on Woods-Saxon functions.
The density of the e-cluster is defined as

ρWS
e-cl (r) = ρ0 − ρgas

1 + exp[(r − RWS)/a]
, (26)

and the e-gas density, ρWS
e-gas(r), is set to be constant in the

coordinate variable r ,

ρWS
e-gas(r) = ρgas. (27)

The various parameters are the same as in the case of
r-clustering. It is readily verified that the total density in the
energy representation,

ρWS
cell (r) = ρWS

e-cl (r) + ρWS
e-gas(r), (28)

is the same as in the case of r-clustering and yields Eq. (10).
Therefore, the fit does not depend on the representation.
Comparing Eqs. (14) and (26), we obtain

ρWS
e-cl (r) =

(
1 − ρgas

ρ0

)
ρWS

r-cl (r), (29)

implying

Ae-cl =
(

1 − ρgas

ρ0

)
Ar-cl, (30)

where Ae-cl is defined hereafter.
Completely analogous densities ρWS

e-cl,q(r) and related quan-
tities can be defined for the neutron and proton densities
separately. The neutron density profile and the number of
neutrons in the e-cluster can be obtained in two ways, as in the
case of the r-cluster; cf. Eqs. (24) and (25). Here we adopt

Ne-cl = N
(1)
e-cl = Ae-cl − Ze-cl,

(31)
Ne-gas = N (1)

e-gas = Ae-gas − Ze-gas,

in analogy to Eq. (24).
The density profiles (26) and (27) are represented in

the right panels of Fig. 1 by the dashed and dotted line,
respectively. The nucleon density in the cell obtained from
the fit is represented by the solid line and is identical to the
one on the left panel. Equations (29)–(31) show that there is an
exact and analytical mapping between the two representations,
and we therefore use both in the following.

To get an insight on the physical meaning of e-clustering,
it is possible to extract the density associated to the bound
states, the resonant states and the continuum states from
the microscopic quantum calculation. We have classified the
wave functions into three groups depending on their single-
particle energies and space extension inside the cell. First
we define the quantity uext

mf as the external mean field, at a large
distance from the cluster. A bound wave function is considered
to have, by definition, a single-particle energy εi < uext

mf ;
otherwise, the wave function belongs either to the resonant
states or to the continuum states. Because in the microscopic
calculation the states with εi > uext

mf are expanded in a discreet-
box basis, it is difficult to unambiguously distinguish the
resonant states from the continuum states. In our case they are
differentiated according to their coordinate-space extension:
unbound wave functions populating substantially the cell
outside the cluster, with an amplitude comparable (within
30%) to normalized plane waves, are nonlocalized and are set
to be in the continuum; otherwise, they are considered resonant
states. The accuracy of this geometric method is limited by the
wave functions close to the centrifugal barrier, which remain
difficult to identify. There is an ambiguity of few nucleons in
this method, which is enough for our discussion.

On the right side of Fig. 1 we show the density profile of
the continuum, or nonlocalized unbound states (squares) and
that of the resonant or localized unbound states (dots). It is
interesting to notice that the density owing to continuum states
penetrates well inside the cluster, which confirms that the gas is
not excluded from the central part of the cell. Additionally, one
can notice that the continuum-state density slightly increases
inside the cluster compared to the asymptotic density. This
property possibly is related to the attractive nature of the
proton-neutron interaction. The simpler approximation for the
density of the gas inside the cluster is simply to set it constant
and defined by the asymptotic density, as anticipated with
Eq. (27). The error introduced in the population of the cluster
is small.

The density of the resonant, or localized, unbound states
is also shown in Fig. 1. There is a clear overlap in coordinate
space between the density of the resonant states and the cluster.
If we want to define an e-cluster in terms of its single-particle
states, an ambiguity exists concerning resonant states. These
could be attributed to the gas, because they are unbound, or to
the cluster, because in the e-clustering concept the gas consists
of an homogeneous background, i.e., by single-particle plane
waves, while resonant states are clearly affected by the cluster
mean field. To reach a decision, we analyze further our
microscopic calculations on a large number of systems in
Fig. 2. The number of neutrons in the energy-space cluster
Ne-cl is first estimated from the fit of the cell density and proton
density via Eq. (31). Ne-cl is represented by the red line in
Fig. 2. The number of bound and resonant states are calculated
from the bound and resonant state densities deduced from the
microscopic calculation as explained before. The points in
Fig. 2 with the lower Ncell correspond to isolated nuclei where
the resonant states are not occupied. The dripping point is
marked with a vertical line. Up to that point one observes
a perfect matching between the three quantities represented
in Fig. 2, namely Ne-cl, the number of bound states Nbound,
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FIG. 2. (Color online) For a given number of protons (isotopic
chain) and as a function of total amount of neutrons in the cell, the
following are shown: the number of neutrons in the energy-space
cluster, computed as the integral of the e-cluster density profile and
assuming a uniform gas, Ne-cl; the number of neutrons in bound states,
Nbound; and the number of neutrons in bound or in “resonant,” i.e.,
localized unbound states, Nbound + Nreson.

and the sum of the bound and resonant states. When the first
neutrons drip out of the clusters these three quantities become
different. The number of states in the cluster is slightly larger
than the number of bound states, and in general close to the
sum of bound and resonant states, indicating that resonant
states should be included in the definition of the energy-space
cluster.

Notice that the coordinate-space representation induces
naturally the idea of an excluded volume for the external gas,
while the energy-space representation allows the cluster and
the gas to overlap and there is no excluded volume.

To summarize, both representations have their own
advantages and disadvantages. They can be exactly mapped
onto each other, and we take advantage of that in the next
section. However, the chosen representation has important
consequences in terms of allowed excited states and excluded
volume, meaning that all these aspects have to be treated
consistently in the implementation of these representations
in a statistical modeling of supernova matter.

IV. ANALYTICAL MODELING OF THE DENSITY

In Sec. III, the coordinate-space and the energy-space
clustering were introduced and illustrated in the case of 1950Sn.
In this section, we make a broader analysis of the results of the
fit and we propose an analytical modeling which reproduces
the parameters of the fit with an accuracy of the order of
roughly 5% or better.

In the analytical model the parameters of the Woods-Saxon
function, namely ρWS

0 , RWS, and a , are expressed as functions
of the following variables: (Ar-cl, Zr-cl, ρgas, ρgas,p) or (Ae-cl,
Ze-cl, ρgas, ρgas,p). The dependence is not always direct, but
goes through the bulk asymmetry δr-cl or δe-cl. The populations
of the e-cluster and the r-cluster are related via Eq. (30). Next
we explore these dependencies to complete the modelization

of the density profiles. For this purpose we have performed
a large number of microscopic calculations for a selection of
nuclei and cells (Ca, Ni, Zr, Sn, Pb), varying the number of
neutrons in the cell from stable nuclei to approximately 3000
for a cell of fixed size, with radius Rcell = 35 fm.

A. The bulk density

We first relate the bulk density in the clusters to the
saturation property of nuclear matter. The saturation density
ρ0 is defined as the density for which the binding energy of
nuclear matter is maximized or where symmetric matter is
mechanically stable, P (ρ0, δ = 0) = 0. The saturation density
is usually defined in symmetric nuclear matter, for which the
isospin asymmetry δ = (N − Z)/A = 0. The saturation den-
sity can, however, be generalized to asymmetric nuclear matter
as the density for which asymmetric matter is mechanically
stable: P (ρ0(δ), δ) = 0. Apart from fluctuations arising from
quantum shell structure, ordinary isolated nuclei aim at having
a bulk density close to the saturation property of nuclear matter
for an asymmetry that corresponds to their bulk asymmetry. In
the following, it is shown that the bulk density in dilute nuclear
clusters also tends to the same saturation density.

Considering the generalized liquid-drop model (GLDM)
[34,35], the binding energy is expressed as a systematic ana-
lytical expansion around the saturation density �0 = ρ0(δ = 0)
as

B(x, δ) =
∑
n�0

1

n!
(CIS,n + CIV,nδ

2)xn, (32)

where x = (ρ − �0)/(3�0) and the coefficients CIS,n and CIV,n

stand for the n-derivative of the binding energy with respect to
the density ρ in the isoscalar (IS) and isovector (IV) channels.
We have the following relations: CIS,0 = B(0, 0) = B0 (bind-
ing energy), CIS,1 = 0 (pressure), and CIS,2 = K∞ (incom-
pressibility modulus) for the isoscalar channel and CIV,0 = J0

(symmetry energy), CIV,1 = L (slope of the symmetry energy),
and CIV,2 = Ksym (curvature of the symmetry energy) in the
isovector channel. The nuclear coefficients CIS,n and CIV,n give
a characterization of the nuclear properties around saturation
density. Much effort has therefore been invested in giving
accurate experimental values. For instance, the binding energy
is estimated to be B0 = −16 ± 0.5 MeV, K∞ = 240 ± 40
MeV, J0 = 32 ± 4 MeV, L = 65 ± 20 MeV [36]. For the SLy4
functional, in particular, the following values are reported
in [37]: B0 = −15.972 MeV, K∞ = 229.97 MeV, Ksym =
−119.74 MeV, J0 = 32 MeV, L = 45.94 MeV.

In the following, we write for the bulk asymmetry parameter

δr-cl = 1 − 2ρ0,p/ρ0

or

δe-cl = 1 − 2(ρ0,p − ρgas,p)/(ρ0 − ρgas)

inside the cluster and

δr-gas = δe-gas = 1 − 2ρgas,p/ρgas

in the gas. We note that the bulk asymmetry parameter is not
equal to the total asymmetry

Ir-cl = 1 − 2Zr-cl/Ar-cl
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FIG. 3. (Color online) Central (bulk) density of clusters from
the fits of microscopic density profiles (points), compared with the
saturation density of nuclear matter at a given asymmetry, and given
by the following: an exact numerical calculation, solid red line;
approximation (33), short-dashed blue line; and approximation (34),
dotted gray line.

or

Ie-cl = 1 − 2Ze-cl/Ae-cl

and is more complicated to calculate because of the presence
of a neutron or proton skin at the surface. A model for the bulk
asymmetry parameter is presented in Sec. IV B.

Setting the first density-derivative of Eq. (32) equal to zero,
the saturation density in asymmetric matter ρ0(δr-cl) can be
related to the nuclear coefficients CIS,n and CIV,n. Limiting the
series expansion in Eq. (32) to n = 2, one finds

ρ
GLDM,n=2
0 (δr-cl) = �0

(
1 − 3Lδ2

r-cl

K∞ + Ksymδ2
r-cl

)
, (33)

where �0 the saturation density of symmetric matter. A lowest-
order expression can be obtained with the limitation to n = 1
in Eq. (32),

ρ
GLDM,n=1
0 (δr-cl) = �0

(
1 − 3L

K∞
δ2

r-cl

)
, (34)

as it was obtained in Ref. [38], expression (64). Notice that,
because Eqs. (33) and (34) are obtained from considerations
in nuclear matter, the density and asymmetry are those of the
equivalent nuclear-matter system, which in our notation means
ρr-cl and δr-cl.

The accuracy of the expression (33) can be estimated from
the comparison to microscopic calculations. The bulk density
and asymmetry are extracted from the microscopic calculation
as the result of the fit described in Sec. III. The so-obtained
microscopic bulk density ρ0 is shown in Fig. 3 as a function of
the respective bulk asymmetry δr-cl, where the various types of
symbols are associated with various isotopic chains. These are
compared with the exact result for the SLy4 Skyrme functional
and with the analytical expression (33) ρ

GLDM,n=2
0 (δr-cl), where

the nuclear coefficients L, K∞, and Ksym are set to be those
of SLy4. The nuclear coefficients are given, for instance,
in Refs. [35,37]. The yellow band around the exact result
represents a variation of ±5%. The analytical expression
ρ

GLDM,n=2
0 (δ) reproduces the exact result accurately up to large

asymmetries, while the analytical expression ρ
GLDM,n=1
0 (δ)

is reliable only at moderate asymmetries. The microscopic
bulk densities follow the nuclear-matter saturation curve
within a deviation of the order of 5%. Close to symmetry,
the microscopic bulk density is systematically lower than
�0 = ρ0(δ = 0), due mostly to the Coulomb interaction.

To analyze whether the transition between isolated nuclei
and cells plays a role, the ratios of the microscopic bulk density
ρ0 over the analytical model ρ

GLDM,n=2
0 (δ) are shown in Fig. 4

with respect to the number of nucleons inside the coordinate-
space cluster Ar-cl (top panel) and with respect to the total
number of nucleon in the cell Atot (bottom panel). It is clear that
the analytical model ρ

GLDM,n=2
0 (δ) gives an equally accurate

estimation of the microscopic bulk density ρ0 for both isolated
nuclei (Atot � 50–300) and nuclei embedded in the gas (Atot �
50–300).

B. The bulk asymmetry parameter

Knowledge of the neutron and proton density profiles
requires the knowledge of the Woods-Saxon parameters ρ0,q ,
which are related to the bulk density and the asymmetry
parameter δr-cl as

ρ0,n = 1 + δr-cl

2
ρ0(δr-cl), (35)

ρ0,p = 1 − δr-cl

2
ρ0(δr-cl). (36)
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A model to estimate the isospin asymmetry δr-cl is therefore
needed.

In isolated nuclei, the bulk asymmetry δe-cl = δr-cl and
it is slightly different from the global asymmetry Ie-cl =
(Ae-cl − 2Ze-cl)/Ae-cl, owing to two effects: First the Coulomb
interaction pushes protons to the surface of heavy nuclei, and
the symmetry energy contributes to produce proton or neutron
skins at the surface of nuclei. The relation between Ie-cl and
δe-cl has been obtained from a liquid-drop model [39–41],

δe-cl =
Ie-cl + 3aC

8Q
(Ze-cl)2

(Ae-cl)5/3

1 + 9J0
4Q

1
(Ae-cl)1/3

, (37)

where Q is the surface stiffness coefficient extracted
from a semi-infinite nuclear-matter calculation and aC the
Coulomb parameter defined as aC = 3e2/(5r0). We have
r3

0 = 3/[4π�0]. In Ref. [41], a correlation pattern has been
obtained for a large number of nuclear models (Skyrme,
Gogny, RMF) between the symmetry energy J0, the slope
of the symmetry energy L0, and Q as L0 = 144.5J0/Q −
55.5 MeV. Using this relation, the value for Q can be estimated
for each nuclear interaction.

The bulk asymmetry inside the r-cluster, δr-cl = 1 −
2ρ0,p/ρ0, can be decomposed into the asymmetry of the
e-cluster δe-cl weighted by the fraction xe-cl = (ρ0 − ρgas)/ρ0

of the e-cluster in the r-cluster plus the asymmetry in the e-gas
δe-gas weighted by the fraction xe-gas = ρgas/ρ0 of the e-gas
inside the r-cluster, namely,

δr-cl =
(

1 − ρgas

ρ0(δr-cl)

)
δe-cl + ρgas

ρ0(δr-cl)
δgas. (38)

The asymmetry of the gas δgas is simply related to the variables
of the model, δgas = (ρgas,n − ρgas,p)/ρgas, and is independent
of the representation. The bulk density is given by expression
(33), and the cluster asymmetry δe-cl is obtained from Eq. (37).
Notice that ρ0 is a function of δr-cl and therefore Eq. (38)
is a self-consistent equation, to be solved by iteration as we
discuss later.

The bulk proton fraction yp,r-cl is obtained from the
asymmetry parameter δr-cl as yp,r-cl = (1 − δr-cl)/2. The ratio
of the proton fraction yp,r-cl obtained from the analytical model
over the microscopic one is shown in Fig. 5 with respect to
the total number of neutrons Ntot, shifted by the number of

neutrons at the drip line for each isotopic chain Ndrip (left
panel), and with respect to the number of neutrons inside the
coordinate-space cluster Nr-cl, shifted by Ndrip (right panel).
The results justify our approach. A deviation observed around
the drip point is cured as more neutrons are added to the gas.

One might consider to apply expression (37) to the r-cluster
instead. In such a case, we found that, compared to the
microscopic calculations, the asymmetry is overestimated as
the density of the neutron gas increases.

C. The surface diffuseness

In ordinary nuclei, the surface diffuseness a is of the
order of 0.55 ± 0.05 fm [42] and this value is different for
light nuclei and heavier stable nuclei. There is therefore
a dependence on the mass of the nuclei. We now turn to
show that this mass dependence can be largely absorbed in
a dependence on isospin, in the cases of both isolated nuclei
and nuclei embedded in a gas [43]. In Fig. 6 we show the
surface diffuseness obtained from the fit to microscopic density
profiles for the same set of nuclear systems as in Fig. 3,
which includes a few neutron-deficient nuclei, stable nuclei,
and neutron-rich nuclei or in-medium clusters. The diffuseness
of the nucleon density is shown in the left panel.

An almost linear correlation between the surface dif-
fuseness a and the bulk asymmetry (δr-cl)2 is apparent and
independent from whether we consider isolated nuclei (colored
shapes) or clusters embedded in a gas (black shapes in gray
disks). It has therefore been fitted as

a = α + βδ2
r-cl [fm]. (39)

The parameters α and β are given in Table I considering various
sets of nuclei in the fit—Ca, Ni, Zr, Sn, or Pb—and finally
taking into account all the nuclei in the set. Linear fits were
performed for the proton and neutron diffuseness parameters
too,

ap = αp + βpδ2
r-cl, an = αn + βnδ

2
r-cl [fm], (40)
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and the results are also given in Table I. In all cases the standard
deviation,

σ =
√√√√ 1

N − 1

N∑
i=1

[
ai − (

α + βδ2
r-cl

)]2
,

where N is the number of points in each sample and ai the
diffuseness, obtained at each point from the microscopic fit, is
equal to about 0.2 for ap and 0.3 for a, an. If the fit is performed
by excluding N < Z nuclei from the sample, very similar
results are obtained, namely α = 0.53, β = 1.06, αp = 0.53,
βp = 0.35, αn = 0.54, βn = 1.14.

The various parameters are very stable and depend only
weakly on the chosen set of input. This indicates that α, β and
the proton and neutron counterparts might be related to general
properties of the nuclear interaction. For comparison, we have
performed a fit also for a similar set of calculations using the
LNS interaction [44]. We found in that case α = 0.53 and β =
0.98, i.e., a somewhat smaller diffuseness, especially for the
neutron-rich systems. However, these values are still compati-
ble with the ones obtained with SLy4, considering the scatter-
ing of pseudodata points, quantified by σ . All values are com-
patible also with the values extracted from experimental data.

We notice from the values discussed above and from
the right panels of Fig. 6 that the diffuseness parameters
of the proton and neutron density profiles are different, in

TABLE I. Parameters in Eq. (39) from linear fits to various sets
of nuclear systems—Ca, Ni, Zr, Sn, Pb—and from all sets.

Parameters Ca Ni Zr Sn Pb All sets

α 0.52 0.53 0.54 0.53 0.53 0.54
β 1.23 1.09 1.19 1.01 0.96 1.04

αp 0.53 0.52 0.54 0.52 0.53 0.53
βp 0.36 0.37 0.34 0.35 0.32 0.33

αn 0.51 0.54 0.54 0.54 0.54 0.54
βn 1.29 1.19 1.30 1.11 1.03 1.13

concordance with a recent study of the difference between
the proton and neutron surface thickness [41]. The two
possible reasons are the presence of a neutron or proton skin
at large asymmetries and the Coulomb interaction spoiling
the symmetry between the species. The proton diffuseness
ap is, in general, lower than the neutron diffuseness an,
except for the smaller bulk asymmetries, which correspond to
neutron-deficient nuclei. The difference increases for neutron-
rich systems. We have checked that the strongest effect is
attributable to the nuclear interaction. We have performed
calculations and fits by switching off the Coulomb interaction
and obtained very similar results, as shown in Fig. 6. This
means that in proton-rich systems (negative bulk asymmetry)
the role of the protons and the neutrons would be roughly
reversed; i.e., the proton diffuseness parameter would be larger.

Note that for symmetric systems, and ignoring the effect of
the Coulomb interaction, the diffuseness parameter should not
depend on the nucleon species. All our results are consistent
with a rounded value α = αp = αn = 0.53. A dedicated
investigation of the dependence of all the parameters on the in-
teraction properties would be worth undertaking in the future.

D. The radius of the cluster

The radius parameter RWS entering the density profile is
obtained by

RWS = RHS

[
1 − π2

3

(
a

RHS

)2]
, (41)

from the equivalent homogeneous-sphere value, which is given
by

RHS =
(

3V HS

4π

)1/3

. (42)

The equivalent homogeneous-sphere volume, V HS, is simply
expressed as

V HS = Ar-cl

ρ0(δr-cl)
≡ Vcl (43)

and defines the volume of the cluster, Vcl.
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Equation (41) is a series expansion in the small parameter
a/RHS. To check the accuracy of Eq. (41) the ratio RWS/RHS

is shown in Fig. 7 as a function of (a/RHS)2 and for the whole
set of nuclei considered in this work. The various symbols
correspond to the isotopic chains for Ca, Ni, Zr, Sn, and Pb,
while the expression (41) is represented by the solid line. The
matching between the symbols and the solid line justify the
truncation in Eq. (41).

A parametrization of the radius of the Woods-Saxon profile
is obtained by injecting expressions (33), (42), and (43) inside
Eq. (41). This model is compared to the Woods-Saxon radius
in Fig. 8, where the ratio of the analytical radius (41) over
the Woods-Saxon radius from the microscopic calculations is
represented. For the completeness of the analysis, the ratio
is represented with respect to various quantities: δr-cl, Ar-cl,
and Atot. The same set of nuclei as in Fig. 3 is taken into
account. The yellow band gives a deviation of ±5% around
the analytical expression. The analytical radius (42) gives a
good estimation of the Woods-Saxon radius.

E. The analytical model in practice

We can now summarize the basic equations in the model
and how they are used in practice. The nucleon density profile
is determined by Eqs. (14), (15), and (18) or, equivalently,
Eqs. (26), (27), and (28). The variables which determine the
Woods-Saxon parameters are chosen to be the composition
of the cluster, which depends on the representation, and the

gas density, which does not. In particular, the variables are
either (Ar-cl, Zr-cl, ρgas, ρgas,p) for the r-cluster or (Ae-cl, Ze-cl,
ρgas, ρgas,p) for the e-cluster. Equivalently, the gas asymmetry
δgas = 1 − 2ρgas,p/ρgas may replace ρgas,p as a variable. The
corresponding density profiles are given by Eqs. (15) and (26),
respectively. For the various parameters we now have

ρ0(δr-cl) = �0

(
1 − 3L

K∞ + Ksymδ2
r-cl

δ2
r-cl

)
, (44)

a = α + βδ2
r-cl, (45)

RWS = RHS

[
1 − π2

3

(
a

RHS

)2]
, (46)

with

RHS =
(

3Ar-cl

4πρ0(δr-cl)

)1/3

. (47)

The r-cluster asymmetry entering the above expressions is
obtained self-consistently with the help of Eq. (44) and the
relations

Ae-cl =
(

1 − ρgas

ρ0(δr-cl)

)
Ar-cl, (48)

Ze-cl =
(

1 − ρgas,p

ρ0,p(δr-cl)

)
Zr-cl, (49)

δe-cl =
Ie-cl + 3aC

8Q
(Ze-cl)2

(Ae-cl)5/3

1 + 9J0
4Q

1
(Ae-cl)1/3

, (50)

δr-cl =
(

1 − ρgas

ρ0(δr-cl)

)
δe-cl + ρgas

ρ0(δr-cl)
δgas. (51)

The procedure depends on the chosen variables. If (Ar-cl, Zr-cl,
ρgas, ρgas,p) are given, we proceed as follows. We start with
the initial estimate δ

(0)
r-cl = 1 − 2Zr-cl/Ar-cl; we use Eq. (44)

to estimate ρ
(0)
0 ; then Eqs. (48) and (49) estimate the e-cluster

population and next Eq. (50) estimates its asymmetry; Eq. (51)
gives a new estimate for the asymmetry, δ

(1)
r-cl; and so on until

convergence. If (Ne-cl, Ze-cl, ρgas, ρgas,p) are given, one readily
obtains δe-cl from Eq. (50) and can proceed as follows. An
initial estimate for ρ0 is the saturation density of symmetric
matter, ρ

(0)
0 = �0. The r-cluster asymmetry is then estimated
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from Eq. (51). This leads to a new estimate ρ
(1)
0 via Eq. (44),

and so on until convergence.
The parameters determining the proton and neutron density

profiles are readily obtained. Proton and neutron bulk densities
are determined by the total bulk density and the bulk
asymmetry. Along with the numbers of neutrons and protons
in the cluster they yield the respective radii. Diffuseness
parameters are given by the approximation (40), with αp,n

and βp,n possibly depending on the interaction, but in general
close to the values given in Table I, as already discussed.
Note that for proton-rich systems (δr-cl < 0) the proton and
neutron diffuseness parameters are exchanged with respect to
the values given in the table.

In applications relying on an excluded volume, care must
be taken to define the volume of the cluster (both protons
and neutrons) uniquely. A straightforward strategy is to set
the proton and neutron r-gas inner radius equal to the total
nucleon r-gas inner radius. The proton and neutron density
profiles would still be determined by the above relations,
but a reshuffling of nucleons between the gas and the cluster
population might be necessary. In our numerical calculations
this ambiguity is avoided because there is no proton gas and
we do not treat the neutron density profile as independent; see
Eqs. (20) and (24).

V. ENERGY OF A CLUSTER IN A GAS

We now turn to the energies of clusters embedded in a
nucleon gas. We define these energies based on our two
representations for dilute clusters and then study them with
the help of the analytic density profiles and the LDA.

The LDA allows us to go beyond the restricted domain
of Hartree-Fock, namely to study combinations of cluster
and gas compositions that would not be generated through
energy minimization. It is well known from present EoS
models that a very large distribution of clusters of any size and
isospin is expected in the different thermodynamic conditions
relevant for supernova physics. Information on what are
essentially excited configurations is thus mandatory for the
treatment of clusterized matter at finite temperature. In fact,
we show that relying solely on Hartree-Fock or, in general,
variational calculations (similarly, existing nuclei) can be
highly misleading when attempting to generalize the results
to more exotic systems. Such results remain of value at certain
domains of low temperature, but, in general, one should keep
in mind the associated limitations when extrapolating.

With practical applications in mind, in particular NSE
implementations [11], where the energetics of the gas and of
the cluster (whether in energy or coordinate representation) are
treated separately, we partition the total nuclear energy of the
Wigner-Seitz cell into the nuclear energy of the cluster and that
of the gas. In particular, the energy owing to the interaction of
the two coexisting systems is conveniently assigned to the clus-
ter. The gas can then be treated as a uniform system, for exam-
ple, as is currently done in the statistical model of Refs. [13,45],
within the temperature-dependent Hartree-Fock method. Then
we need only be concerned with the energetics of the cluster.

We remark that our in-medium modified energy functional
can be directly implemented in a finite-temperature statistical

model as the one of Refs. [13,45], which consistently accounts
for the population of excited states.

Our first task is therefore to disentangle the energy of the
cluster from that of the gas. For that, let us call Ecell the nuclear
energy of the whole system (Ar-cl, Zr-cl, ρgas, δgas, Rcell), as
calculated from a microscopic approach. Because our aim is to
describe arbitrary configurations, that is excited states as well
as ground states, Ecell is given by the LDA approach in terms of
the analytical Woods-Saxon density profiles, developed above.
The total energy can be partitioned, without introducing any
ambiguity, as the sum of the bulk energy of the r-gas, the bulk
energy of the r-cluster, and a correction δE, which we identify
as the surface energy:

Ecell = (Vcell − Vcl)ε(ρgas, δgas) + Vclε(ρ0, δr-cl) + δE. (52)

Here ε(ρ, δ) is the energy density of homogeneous matter at
density ρ and asymmetry δ. In the Skyrme model it equals the
energy density of Eq. (6), with the gradient terms vanishing.
In the above, Vcl = 4

3πR3
HS is the volume of the cluster and

Vcell = 4
3πR3

cell is the volume of the cell.
As already argued, we may absorb δE into the energy of

the cluster, Er-cl, and henceforth be concerned only with this
quantity, i.e.,

Er-cl = Ecell − (Vcell − Vcl)ε(ρgas, δgas). (53)

For Skyrme functionals within the LDA, the above yields
readily an integro-analytical expression for the energy of
a cluster (A,Z) embedded in a gas of given density and
asymmetry,

Er-cl(Ar-cl, Zr-cl, ρgas, δgas)

= 4π

∫ Rcell

0
ε(ρWS

cell (r), δcell(r))r2dr

− 4

3
π{R3

cell − [RHS(Ar-cl, Zr-cl, ρgas, δgas)]
3}ε(ρgas, δgas),

(54)

where the local density ρWS
cell , as well as the local asymmetry,

δcell(r) = 1 − 2ρWS
cell,p(r)

/
ρWS

cell (r) (55)

[see also Eqs. (18) and (19)], are determined by
(Ar-cl, Zr-cl, ρgas, δgas) within our analytical model. Quite sim-
ilarly, we readily have an expression for the energy of the
e-cluster,

Ee-cl(Ae-cl, Ze-cl, ρgas, δgas)

= 4π

∫ Rcell

0
ρWS

cell (r; Ae-cl, Ze-cl, ρgas, δgas)r
2dr

− 4

3
πR3

cellε(ρgas, δgas), (56)

where the cluster-gas interaction energy in the region where
they coexist, namely Vcl, has been absorbed into the energetics
of the cluster. There is no ambiguity in this choice, because
the total energy in the cell is conserved by construction. In the
above expressions, the radius of the cell Rcell, chosen randomly
and much larger than the cluster’s radius, is relevant only to the
gas energy and therefore is an auxiliary quantity, not affecting
the energetics of the cluster, in either representation.
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FIG. 9. (Color online) Points connected with lines: Energy of
r-clusters, determined by subtracting the r-gas contribution from the
total Hartree-Fock energy in the cell. The points in the top panel
indicate the deviations when the total energy of the cell is computed
within the LDA and using the model density profiles.

Next we discuss our numerical results based on the above
derivations. First, we discuss the total cluster energy to validate
the LDA. Next, we discuss separately the bulk and surface
energy of the r-cluster.

A. Total cluster energy

In Fig. 9 we show the nuclear part of the cluster energies
resulting from the Hartree-Fock calculation as points con-
nected with lines. They are computed using Eq. (53) with Ecell

the Hartree-Fock nuclear energy of the cell. We notice that
the binding energies of the clusters decrease as the number of
nucleons in the system increases. Indeed, for a given isotopic
chain, Atot controls the total number of neutrons. The larger
its value, the more asymmetric is the cluster that is favored
by energy minimization, which is reflected in the decreased
binding. We return to the role of the asymmetry when we
discuss separately the volume and surface energy.

We now ask whether the LDA is an acceptable approx-
imation to the microscopic energy. Therefore, we compare
the Hartree-Fock energies of the clusters with their LDA
energies. The latter are computed from Eq. (53) with Ecell being
replaced by the LDA energy of the cell, using the analytical
density profiles-equivalently, Eq. (54). The difference of the
two energies per particle is also plotted in Fig. 9. It corresponds
to the points just above zero in the figure. We notice that the
difference remains roughly the same for all isotopic chains
and Atot (or asymmetries), and regardless of the presence of a
gas, at the level of half an MeV per cluster particle. This is a
very useful outcome: If we are to quantify additive in-medium
modifications to nuclear energies, the LDA will be as reliable
as Hartree-Fock at the very least.

B. Bulk energy

Even within the analytical density profiles in the LDA
approximation, the in-medium modified cluster energy func-
tional is a complex integral function of four variables, namely
the cluster atomic and mass number Z and A, as well as the
density ρgas and asymmetry δgas of the surrounding gas. To
simplify this expression and get an insight into its physical
meaning, we distinguish between the volume energy and the
surface energy of the cluster. A separation into surface and
volume terms will also help develop formal extensions of the
liquid-drop model, in the form of, e.g., δai(ρgas, δgas), where
ai a liquid-drop parameter and δai its correction, depending
on the composition of the gas at the very least. Such additive
corrections could be plugged into any mass table or model in
an intuitively simple manner.

The bulk (or volume) energy per particle of the r-cluster is
defined as

Evol(Ar-cl, δr-cl, ρgas, δgas) = Ar-cl

ρ0(δr-cl)
ε(ρ0(δr-cl), δr-cl). (57)

The bulk asymmetry of the cluster δr-cl, corresponding
to given variables (Ar-cl, Zr-cl, ρgas, δgas), can be computed
through our analytical model and determines uniquely the bulk
density as well. The calculation of the bulk energy with the
help of the Skyrme energy density is then straightforward.
The result is a function of the bulk asymmetry and is shown as
the solid line in Fig. 10. A quadratic function, corresponding
to a simple liquid-drop model for the volume energy and with
parameters which are consistent with the SLy4 functional [37],
is also plotted (dotted line). At low asymmetries the two curves
coincide. The role of higher-order terms in the asymmetry,
including those owing to the kinetic energy, becomes apparent
at large asymmetries.
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FIG. 10. (Color online) The lines show the volume energy per
particle in the r-cluster, for the SLy4 functional, according to our
model (red solid line) and according to a liquid-drop model, quadratic
in δr-cl (dotted line). The points show, for the various isotopic chains
studied in this work, the deviation of our model volume energy per
particle from the values obtained directly from the Hartree-Fock
calculations.
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We take the opportunity to perform one more test of our
analytical modeling of bulk cluster densities. In Fig. 10 the
points correspond to the cluster configurations that we obtained
within Hartree-Fock. They show the deviation between (a)
the bulk energy per particle, calculated through the analytical
density model as described above, and (b) the microscopic bulk
energy per particle, namely the one calculated using those
values for the bulk density and asymmetry, which resulted
from a fit to the microscopic density profiles. We notice that
the deviations are consistent with zero and, in general, there
are no systematic deviations as we go to large asymmetries.
Small deviations corresponding roughly to the drip point are
cured at higher asymmetries (cf. Sec. IV B and Fig. 5).

C. Surface energy

We now proceed to a study of the quantity δE, which is
the difference of the total energy and the bulk energy and
which we identify as the surface energy. We study this quantity
in terms of the r-cluster. Switching to e-cluster variables is
straightforward, thanks to the geometric relations between the
two types of clusters.

In principle, δE depends in unknown ways on the variables
(Ar-cl, Zr-cl, ρgas, δgas). If it is a proper surface quantity, how-
ever, it should scale as A

2/3
r-cl . We furthermore expect that δr-cl

can replace Zr-cl as the relevant cluster parameter. We are then
left with the variables (δr-cl, ρgas, δgas). Regarding the quantity

s(δr-cl, ρgas, δgas) = δE

A
2/3
r-cl

, (58)

the following limiting case should hold,

s(δr-cl, ρ0(δr-cl), δr-cl) = 0, (59)

because in the case where the cluster and the gas have the
same density and asymmetry we are in the limit of homoge-
neous matter and therefore the surface energy should vanish.
Furthermore, for relatively small absolute asymmetries,

s(δr-cl, ρgas, δgas) ≈ s(−δr-cl, ρgas,−δgas). (60)

The weak violation of this relation is attributable to Coulomb
effects.

We now focus on a neutron gas, δgas = 1, though very
similar studies can be performed in other cases. In short, we
are interested in the quantity

s(δr-cl, ρgas) = δE

A
2/3
r-cl

, (61)

assuming a neutron gas.
In principle, the functional dependence of s on the two

variables is not unique. Different clusters (Ar-cl, Zr-cl) may
correspond to the same combination of (δr-cl, ρgas). The
uniqueness will have to be demonstrated numerically. To
this end we proceed as follows. For given ρgas we obtain
the analytical density profiles corresponding to nuclei with
many different combinations of (Ar-cl, Zr-cl) and with a large
variation in particle number, namely from 50 to 400 particles.
This provides us with a value for the bulk asymmetry. We
also calculate δE as already demonstrated. We thus obtain,
for given δr-cl and ρgas, a number of surface-energy results
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FIG. 11. (Color online) Model surface energy for the SLy4
functional, obtained as described in the text, for given neutron-gas
density (values indicated in fm−3) as a function of bulk r-cluster
asymmetry. The secondary line for ρgas = 0.02 fm−3, marked (0.02),
corresponds to the ansatz (63).

corresponding to clusters of different populations. These “data
points” are displayed in Figs. 11 and 12 and discussed below.

Let us begin with Fig. 11, where s(δr-cl, ρgas) is plotted as a
function of δr-cl for the indicated values of gas density (given
in fm−3). For low gas densities the points form well-defined
lines, and even at higher gas densities the dispersion of points
is moderate. We conclude that the scaling with respect to
A

2/3
r-cl indeed holds to a satisfactory degree. This important

result means that the definition we have introduced, Eq. (57),
correctly represents the bulk part of the energy of the cluster.
We notice that Eq. (57) has no dependence on the external
gas. This means that the presence of a medium does not
influence the bulk term, which keeps being defined by the
local nuclear-matter saturation condition whatever the external
medium. This demonstrates that the energy increase of the
cluster with increasing neutron gas observed in Fig. 9 is not an
in-medium effect, but simply reflects the decreasing saturation
density (and increasing surface energy; see below) associated
with an increasing bulk asymmetry.
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FIG. 12. (Color online) Thick labeled bands of points: Model
surface energy for the SLy4 functional, obtained as described in
the text, for given bulk r-cluster asymmetry (values indicated) as
a function of neutron-gas density. Thinner lines: Ansatz (64), for
bulk asymmetries equal to 0, 0.2, and 0.4.
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The points forming the line for ρgas = 0.0 correspond to
isolated nuclei. For small asymmetries, a roughly quadratic
law is observed. Interestingly, the line is convex around zero
asymmetry, implying, in a liquid-drop picture, a positive
surface-symmetry coefficient, in qualitative agreement with
certain calculations in semi-infinite matter [46], but in contrast
with many evaluations from the literature [47,48], including
ones based on the SLy4 interaction [37]. Our result, which we
found quite robust with respect to approximations involved (for
example, the use of LDA instead of Hartree-Fock energies),
warrants further investigations in the future. To some extent
the discrepancies may be attributable to employing different
definitions for the nuclear surface and different partitions
between the volume and surface energies [40,47,48], as well
as to our use of the bulk asymmetry δ rather than the global
asymmetry I as the relevant parameter.

We observe that, as the neutron-gas density increases, the
surface energy decreases. On the neutron-rich side this is easy
to understand if we consider the limiting case of a gas with
the same density and asymmetry as the cluster, defined by
Eq. (59). Furthermore, we observe that the various lines are
not symmetric around zero. This should be expected, because
a proton-rich cluster in a neutron-rich gas is physically a very
different entity from a neutron-rich cluster in a neutron-rich
gas. It is worth noting that the functional dependence at low or
negative asymmetries could not have been inferred from our
Hartree-Fock calculations, which naturally favor neutron-rich
clusters. Only the analytical model for the density profiles
could probe this extended domain. The only assumption
related to energy minimization is that the bulk density of
the cluster equals the saturation density at the given value of
asymmetry. A different bulk energy would imply compression
(or decompression), which would cost too much energy to be
counterbalanced.

Of course, symmetric (not to mention, proton-rich) clusters
would not survive in a neutron gas in most situations of interest,
in particular low-temperature asymmetric matter in the crust of
a neutron star. At sufficiently high temperatures, though, such
configurations could become active and their correct treatment
might be important.

We now turn to Fig. 12, where the quantity s(δr-cl, ρgas) =
δE/A

2/3
r-cl is plotted for the indicated values of asymmetry as

a function of gas density. We notice again that it scales well
with A

2/3
r-cl and it generally decreases for higher gas densities.

We stress once more that the functional forms for the lower
asymmetries would not have been possible to obtain based on
an unconstrained variational calculation.

The functional form of the surface energy obtained here
goes beyond the somewhat heuristic approaches to the surface
energy introduced in Refs. [2,49]. As a general statement, it
appears that simple analytic estimations of surface corrections
can be largely inaccurate and the complete result from
the LDA has to be considered. As an example, one may
suppose that the in-medium corrections can be simply taken
into account through the transformation from r-clusters to
e-clusters. Indeed, we have seen that e-clusters can be
interpreted as the ensemble of single-particle wave functions
(bound and resonant) in the cluster region, with the exclusion

of the continuum states that represent the external gas. In this
picture, one should have

δE = as(δe-cl)A
2/3
e-cl, (62)

where as can depend on the cluster asymmetry but should not
depend on the gas. Because Ae-cl = [1 − ρgas/ρ0(δr-cl)]Ar-cl,
the uniform-matter limit (59) is automatically satisfied.
Replacing into Eq. (62) we get

s(δr-cl, ρgas) =
[

1 − ρgas

ρ0(δr-cl)

]2/3

s(δr-cl, 0). (63)

The results for s(δr-cl, ρgas = 0.02 fm−3) are shown in Fig. 11
[line marked “(0.02)”]. For extremely neutron-rich clusters
the ansatz works quite well, but, being symmetric around zero
asymmetry, it fails to reproduce the correct trends at lower
asymmetries.

Finally, it is worth commenting on an ansatz that we tried
at earlier stages of this work [50]. Inspired by the liquid-drop
formula and the conditions (59) and (60), it was proposed that

s(δr-cl, ρgas) =
(

1 − ρgas

ρ0(δr-cl)

)2[
as + assymδ2

e-cl

]

= as

(
1 − ρgas

ρ0(δr-cl)

)2

+ assym

(
δr-cl − ρgas

ρ0(δr-cl)

)2

,

(64)

where as and assym are liquid-drop constants such that the
surface energies for ρgas = 0 are reproduced. The surface-
symmetry parameter assym was therefore positive. An excellent
agreement of this ansatz with the Hartree-Fock results of
neutron-rich clusters in a neutron gas was observed [50]. We
now notice from its analytical form that this ansatz predicts
a larger surface energy for a proton-rich cluster than for a
neutron-rich one (in a neutron gas), i.e., the opposite effect
than what our LDA approach gave. This is not to say that
proton-rich clusters in a neutron gas are a particularly relevant
configuration; however, this outcome demonstrates the risks
of relying on Hartree-Fock results to derive general trends.
The disagreement between our ansatz and the LDA results
is further demonstrated in Fig. 12. The surface energy given
by Eq. (64) with as = 21.5 and assym = 32 corresponds to
the thinner curves (the scaling with A2/3 is respected by
construction) in Fig. 12. The choice of as and assym is such
that, for isolated nuclei, (ρgas = 0), the LDA and the ansatz
give the same result. For low gas densities, below 0.02 fm−3,
there is reasonable agreement. It is obvious, however, that
there are large deviations in various domains of gas density
and asymmetry.

VI. CONCLUSIONS

This work presents a quasianalytic modeling of the in-
medium modifications to the ground-state density profiles and
energies of medium-mass and heavy clusters, when those are
immersed in a dilute nucleon gas, as in the case of the stellar
matter produced in the core of supernovae and in the crust of
neutron stars.
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Our approach is valid, in principle, for all but the lightest
nuclei below carbon or oxygen, where there are not enough
nucleons to yield saturated matter. The density profile in a wide
number of nuclei and Wigner-Seitz cells, as obtained from
Hartree-Fock calculations with the SLy4 effective interaction,
have been analyzed and fitted through Woods-Saxon functions
showing a continuous description from isolated nuclei to nuclei
in a medium.

We have discussed two alternative possible representations
of clusters inside a medium, depending on the local density
(coordinate-space clusters) or on the energy of single-particle
states (energy-space clusters). Using these two representations
and the mapping between them, we have been able to propose
an analytical self-consistent model to relate the parameters of
the Woods-Saxon functions to the global variables of the EoS.

The energies of clusters in a neutron-rich gas were studied
with the help of the LDA, which allowed us to investigate
configurations which are not explored by the Hartree-Fock (in
general, variational) calculations, but are of importance in a
finite-temperature stellar environment.

The quality of the LDA approximation was tested on the
Hartree-Fock sample. Not surprisingly, this approximation
systematically overestimated the microscopic result. However,
the in-medium cluster energy shift is remarkably well repro-
duced, showing that the influence of the medium is essentially
owing to the modification of the local-density profile. We
have discussed in detail the in-medium effects owing to a
pure neutron gas, which is relevant for the physics of the
neutron star crust. For this case, we have demonstrated through
the comparison with the microscopic calculations that neither
the isoscalar nor the isovector part of the bulk energy of the
clusters in the coordinate-space representation are affected
by the external gas, and the bulk energy depends only on
the bulk asymmetry of the cluster. As a consequence, the
excluded-volume approach appears as a reasonable zero-order
approximation to account for bulk in-medium effects. An
important modification of the surface energy of the clusters
is observed, however. A decreasing surface tension with
increasing density of the gas is observed for all cluster
asymmetries. This leads to a sizable modification of the cluster
energy functional in a dense medium, which will have to be
taken into account to have reliable EoS’s for astrophysical
applications in the near future.

In the future, we plan to add the contribution of the
pairing correlations to the density profiles and the Wigner-Seitz
binding energies.
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APPENDIX: WOODS-SAXON FIT OF
THE MICROSCOPIC DENSITY

Here we describe how we fit a microscopic density profile,
corresponding to nucleons, protons, or neutrons, with a

Woods-Saxon analytical profile,

ρWS
cell (r) = ρ0 − ρgas

1 + exp [(r − RWS)/a]
+ ρgas (A1)

= ρ0

1 + exp [(r − RWS)/a]

+ ρgas

1 + exp [−(r − RWS)/a]
. (A2)

The microscopic density ρmic
cell (ri) is given on a radial mesh

of N points with ri = iRstep spanning a Wigner-Seitz cell of
radius Rcell = NRstep. During the fit we wish to conserve the
total number of particles,

Amic = 4π

[
N−1∑
i=1

r2
i ρmic

cell (ri) + 1

2
r2
Nρmic

cell (rN )

]
Rstep,

(A3)

within a given tolerance δA of, typically, half a particle,

|AWS − Amic|

=
∣∣∣∣∣4π

[
N−1∑
i=1

r2
i ρWS

cell (ri) + 1

2
r2
NρWS

cell (rN )

]
Rstep − Amic

∣∣∣∣∣
� δA. (A4)

The optimal profile, within this restriction, shall be determined
by minimizing the standard deviation,

σA =
√√√√ 1

N − 1

N∑
i=1

[
ρmic

cell (ri) − ρWS
cell (ri)

]2
. (A5)

The parameters to be determined are the bulk and gas densities
ρ0 and ρgas, the radius RWS, and the diffuseness parameter a.
At the beginning of the fitting procedure the standard deviation
is initialized at a large number.

The radius corresponds to the inflection point of the Woods-
Saxon profile,

d2

dr2
ρWS

cell (r)

∣∣∣∣
r=RWS

= 0, (A6)

and can be readily obtained by numerical differentiation of
the microscopic density. All radial derivatives are calculated
at five-point precision. The radius will lie between two points
for which the second derivative changes sign. Its precise value
is obtained by interpolating between the two points. We then
determine the value of the density as well as its derivative at
this point, by interpolation, ρmic

cell (R
WS) and dρmic

cell (r)/dr|r=RWS ,
respectively. The value of the radius, as well as the density and
its derivatives at that radius, are thus determined directly from
the microscopic density profile and remain fixed during the fit.

Next we vary ρ0 and ρgas within limiting values,
[ρ0,min, ρ0,max] and [ρgas,min, ρgas,max], respectively, determined
from the microscopic profile. The microscopic density outside
the cluster is not perfectly homogeneous, but shows weak
oscillations and more so towards the radius of the Wigner-
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Seitz cell. The oscillations are largely an artifact of the
microscopic calculation and the imposed boundary conditions.
We therefore determine the limiting acceptable values for
ρgas as the minimum and maximum numerical value of
ρmic(r) within a radius [2RWS, Rcell]: ρgas,min and ρgas,max,
respectively.

A typical density profile, determined through Hartree-Fock,
will show ripples in the interior of a nucleus or cluster. Initially,
we determine the minimum and maximum numerical value
of ρmic

cell (r) within a radius equal to 0.7RWS: ρ0,min,0.7RWS and
ρ0,max,0.7RWS , respectively. If we determine the minimal value
of the density up to a value too close to RWS, we run the
risk of accidentally accepting a too-low value of ρ0. However,
we wish to avoid that the minimal and maximal values are
too restricted, owing to their limitation up to 0.7RWS. Indeed,
it is likely that the shoulder of the density profile is critical
for a correct determination of ρ0. Therefore, we extend the
allowed interval by considering that, for genuine Woods-Saxon
profiles, we have

ρWS
cell (R

WS) = 1
2 (ρ0 + ρgas) ⇒ ρ0 = 2ρWS

cell (R
WS) − ρgas.

(A7)

Taking this into account, the minimum and maximum accept-
able values for ρ0 are determined by

ρ0,min = min{ρ0,min,0.7RWS , 2ρmic(RWS) − ρgas,max},
(A8)

ρ0,max = max{ρ0,max,0.7RWS , 2ρmic(RWS) − ρgas,min}.
Finally we vary, within the acceptable intervals and by
sufficiently small steps, both ρ0 and ρgas in nested loops. At
each step we proceed as follows. The diffuseness parameter is
estimated from Eq. (11). We can then calculate the number of
particles corresponding to the given Woods-Saxon profile. If
it deviates from the desired value by more than δA, we reject
the current values of ρ0, ρgas, a and continue. If it is close to
the desired value within δA, we calculate also the standard
deviation, σloop. If this is lower than the stored value of σ , then
σ is assigned the new value σloop and ρ0, ρgas, a are assigned the
corresponding new values, and so on, until all values have been
tried. It can happen that no combination of values satisfies the
criterion (A4). The reason may be, e.g., an anomalous decrease
or increase of the gas density close to the cell radius, owing
to the boundary conditions. Then the Hartree-Fock calculation
is rejected. This explains the seemingly random gaps in our
microscopic results (pseudo-data points) along isotopic chains.
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