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Surface tension and curvature energy of quark matter in the Nambu–Jona-Lasinio model
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In this article we study the surface tension and the curvature energy of three-flavor quark matter in equilibrium
under weak interactions within the Nambu–Jona-Lasinio model. We include the effect of color superconductivity
and describe finite size effects within the multiple reflection expansion framework. Our calculations result in
large values of the surface tension which disfavor the formation of mixed phases at the hadron-quark interphase
inside a hybrid star.
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I. INTRODUCTION

The study of the surface tension of deconfined quark matter
has attracted much attention recently [1–4] because a detailed
knowledge of it may contribute to a better comprehension of
the physics of compact star interiors. In fact, surface tension
plays a crucial role in quark matter nucleation during the
formation of compact stellar objects, because it determines
the nucleation rate and the associated critical size of the
nucleated drops [5,6]. It is also determinant in the formation
of mixed phases at the core of hybrid stars which may arise
only if the surface tension is smaller than a critical value of
the order of tens of MeV/fm2 [7–10]. Also, surface tension
affects decisively the properties of the most external layers
of a strange star which may fragment into a charge-separated
mixture, involving positively charged strangelets immersed in
a negatively charged sea of electrons, presumably forming
a crystalline solid crust [11]. This would happen below a
critical surface tension which is typically of the order of a
few MeV/fm2 [12].

However, in spite of its key role in compact star physics, the
surface tension is still poorly known for quark matter. Early
calculations by Berger and Jaffe gave rather low values for
the surface tension, below 5 MeV/fm2 [13]. However, larger
values within 10–50 MeV/fm2 were used in other works about
quark matter droplets in neutron stars [14,15]. More recently,
values around ≈30 MeV/fm2 have been adopted for studying
the effect of quark matter nucleation on the evolution of
protoneutron stars [16,17]. However, much larger values have
also been obtained in the literature. Estimates given in Ref. [7]
give values in the range 50–150 MeV/fm2 and values around
∼300 MeV/fm2 were suggested on the basis of dimensional
analysis of the minimal interface between a color-flavor locked
phase and nuclear matter [18].

In this article we study the surface tension and the curvature
energy of three-flavor quark matter in equilibrium under weak
interactions within the Nambu–Jona-Lasinio (NJL) model. We
include the effect of color superconductivity and describe finite
size effects within the multiple reflection expansion (MRE)
framework [19–22]. We consider only the two-flavor color
superconducting (2SC) phase, but we see that our conclusions
are quite general and the results for other superconducting

phases can be easily foreseen within the present model. Our
calculations result in large values of the surface tension which
disfavor the formation of mixed phases at hybrid star cores.

The article is organized as follows: in Sec. II we present
the quark matter equations of state without finite size effects.
Then, in Sec. III we introduce the MRE formalism for the
finite size effects. Finally, in Sec. IV we present our results
and conclusions.

II. THE MODEL IN THE BULK

In the present work we start from an SU(3)f NJL effective
model which also includes color superconducting quark-quark
interactions. The corresponding Lagrangian is given by

L = ψ̄(i/∂ − m̂)ψ + G

8∑
a=0

[(ψ̄ τa ψ)2 + (ψ̄ iγ5τa ψ)2]

+ 2H
∑

A,A′=2,5,7

[(ψ̄ iγ5τAλA′ ψC)(ψ̄C iγ5τAλA′ ψ)], (1)

where m̂ = diag(mu,md,ms) is the current mass matrix in
flavor space. In what follows we work in the isospin symmetric
limit mu = md = m, and for simplicity we do not include
flavor mixing effects. The matrices τi and λi with i = 1, . . . , 8
are the Gell-Mann matrices corresponding to the flavor and
color groups, respectively, and τ0 = √

2/3 1f . In addition, in
Eq. (1) we used the charge conjugate spinors ψC = Cψ̄T and
ψ̄C = ψT C, where ψ̄ = ψ†γ 0 is the Dirac conjugate spinor
and C = iγ 2γ 0.

The next step is obtaining the grand canonical thermody-
namic potential at finite temperature T and chemical potentials
μf c, where f and c stand for flavor and color, respectively.
Then, we are able to calculate the relevant thermodynamic
quantities. Note that first we show the thermodynamic potential
for the bulk system, and later on we derive the effective
potential for the finite size effects. For that purpose, start-
ing from Eq. (1), it is convenient to perform a standard
bosonization of the theory. Thus, we introduce the bosonic
fields σa , πa , and 	A corresponding to the sigma and pion
mesons, and scalar diquark fields, respectively, and integrate
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out the quark fields. In what follows we work within the
mean field approximation (MFA), in which these bosonic
fields are expanded around their vacuum expectation values
and the corresponding fluctuations are neglected. Since the
mean field values of the pion fields vanish due to symmetry
reasons, in what follows we only consider those of the sigma
and diquark fields. Then, σ̂ = σaτa = diag(σu, σd, σs) and
πa = 0. Regarding the diquark mean field, in the present
work we assume that in the density region of interest only the
2SC phase might be relevant. Moreover, because of the color
symmetry, one can rotate in color space to fix 	5 = 	7 = 0,
	2 = 	. Finally, in the framework of the Matsubara and
Nambu-Gorkov formalism we obtain the following MFA
thermodynamic potential 
MFA(T ,μf c, σu, σd, σs, |	|) per
unit volume (further calculation details can be found in
Refs. [23–30]):


MFA

V
= 2

∫ �

0

k2dk

2 π2

9∑
i=1

ω(xi, yi)

+ 1

4G

(
σ 2

u + σ 2
d + σ 2

s

) + |	|2
2H

, (2)

where � is the cutoff of the model and ω(x, y) is defined by

ω(x, y) = −x − T ln[1 + e−(x−y)/T ]

−T ln[1 + e−(x+y)/T ], (3)

with

x1,2 = E, x3,4,5 = Es, (4)

x6,7 = ([E ± (μur + μdg)/2]2 + 	2)1/2, (5)

x8,9 = ([E ± (μug + μdr )/2]2 + 	2)1/2, (6)

y1 = μub, y2 = μdb, y3 = μsr , (7)

y4 = μsg, y5 = μsb, (8)

y6,7 = (μur − μdg)/2, y8,9 = (μug − μdr )/2. (9)

In the above expressions E = √
k2 + M2 and Es =√

k2 + M2
s , with Mf = mf + σf . Because we are working in

the isospin limit, σu = σd = σ , which gives Mu = Md = M .
In principle one has nine different quark chemical potentials,
corresponding to the three quark flavors (u, d, and s) and three
quark colors (r , g, and b). Nevertheless, as discussed above,
with our particular election of the orientation of the gap 	 in
the color space, there is a residual color symmetry (between
red and green colors). Moreover, if we require the system to
be in chemical equilibrium, it can be seen that all chemical
potentials are not independent from each other, as discussed
in the next section.

The total thermodynamic potential is obtained by adding to

MFA the contribution of the electrons and a vacuum constant.
Namely,


 = 
MFA + 
e − 
vac, (10)

where 
e is the thermodynamic potential of the electrons. For
them we use the expression corresponding to a free gas of
ultrarelativistic fermions,


e(T ,μe)

V
= −2

(
μ4

e

24π2
+ μ2

eT
2

12
+ 7π2T 4

360

)
. (11)

It is important to notice that in Eq. (10) we have subtracted the
constant 
vac ≡ −PvacV in order to have a vanishing pressure
at vanishing temperature and chemical potentials. However,
this conventional prescription is merely an arbitrary way to
uniquely determine the equation of state (EOS) of the NJL
model without any further assumptions [31]. In the MIT bag
model for instance, the pressure in the vacuum is nonvanishing.
In view of this, 
vac is taken as a free parameter in Ref. [31],
having in mind that tuning this constant is an easy way to
control the splitting between the chiral restoration density and
the deconfinement density. Nevertheless, we see below that

vac does not have a direct influence on the values of the
surface tension and the curvature energy.

III. FINITE SIZE EFFECTS

A. MRE formalism

Now we are ready to introduce the effects of finite size
in the thermodynamic potential. For doing so we consider
the multiple reflection expansion formalism (see Refs. [19–
22] and references therein), which consists of modifying the
density of states for the case of a finite spherical droplet as
follows:

ρMRE(k,mf ,R) = 1 + 6π2

kR
fS + 12π2

(kR)2
fC, (12)

where the surface contribution to the density of states is

fS = − 1

8π

(
1 − 2

π
arctan

k

mf

)
, (13)

and the curvature contribution is given in the Madsen ansatz
[20]

fC = 1

12π2

[
1 − 3k

2mf

(
π

2
− arctan

k

mf

)]
(14)

to take into account the finite quark mass contribution.
The density of states of MRE for massive quarks is

reduced compared with the bulk one, and for a range of
small momenta becomes negative. These nonphysical negative
values are removed by introducing an infrared (IR) cutoff in
momentum space [22]. Thus, we have to perform the following
replacement in order to obtain the thermodynamic quantities:∫ �

0
· · ·k

2 dk

2π2
−→

∫ �

�IR

· · ·k
2 dk

2π2
ρMRE. (15)

The IR cutoff �IR is the largest solution of the equation
ρMRE(k) = 0 with respect to the momentum k.

After the above replacement, the full thermodynamic
potential for finite size spherical droplets reads


MRE

V
= 2

∫ �

�IR

k2dk

2 π2
ρMRE

9∑
i=1

ω(xi, yi)

+ 1

4G

(
σ 2

u + σ 2
d + σ 2

s

) + |	|2
2H

− Pe + Pvac. (16)

Multiplying on both sides of the last equation by the volume
of the quark matter drop and rearranging terms we arrive at
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the following form for 
MRE:


MRE = −PV + αS + γC, (17)

where the pressure P , the surface tension, and the curvature
energy density are defined as [6]

P ≡ −∂
MRE

∂V

∣∣∣∣
T ,μ,S,C

= −2
∫ �

�IR

k2dk

2 π2

9∑
i=1

ω(xi, yi) − 1

4G

(
σ 2

u + σ 2
d + σ 2

s

)

− |	|2
2H

+ Pe − Pvac, (18)

α ≡ ∂
MRE

∂S

∣∣∣∣
T ,μ,V,C

= 2
∫ �

�IR

k dk fS

9∑
i=1

ω(xi, yi), (19)

and

γ ≡ ∂
MRE

∂C

∣∣∣∣
T ,μ,V,S

= 2
∫ �

�IR

dk fC

9∑
i=1

ω(xi, yi), (20)

respectively. We consider a spherical drop; i.e., the area is
S = 4πR2 and the curvature is C = 8πR.

As mentioned above, once we have the grand thermo-
dynamic potential 
MRE then we can obtain the relevant
thermodynamic quantities. We can readily obtain the number
density of quarks of each flavor and color,

nf c ≡ 1

V

∂
MRE

∂μf c

, (21)

and the number density of e− (assumed to be massless),

ne ≡ 1

V

∂
MRE

∂μe

. (22)

Then, the corresponding number densities of each flavor,
nf , and of each color, nc, in the quark phase are given by nf =∑

c nf c and nc = ∑
f nf c, respectively. The baryon number

density reads nB = 1
3

∑
f c nf c = (nu + nd + ns)/3.

B. Neutrality conditions and β decay

To derive the EOS from the above formalism it is necessary
to impose a suitable number of conditions on the variables
{μf c}, μe, σ , σs , and 	. The first three of these conditions arise
from the fact that the thermodynamically consistent solutions
correspond to the stationary points of 
MRE with respect to σ ,
σs , and 	. Then, we have

∂
MRE

∂σ
= 0,

∂
MRE

∂σs

= 0,
∂
MRE

∂|	| = 0. (23)

For the remaining conditions one must specify the physical
situation in which one is interested. In this work we are
interested in the study of finite size color superconducting
droplets in β equilibrium that may form, e.g., within the mixed
phase of a hybrid star. In such a case, chemical equilibrium
is maintained by weak interactions among quarks; e.g.,
d ↔ u + e− + ν̄e, s ↔ u + e− + ν̄e, u + d ↔ u + s. Here

we consider the situation of no neutrino trapping. Then, the
lepton number is not conserved and we have four independent
conserved charges, namely the electric charge nQ = 2

3nu −
1
3nd − 1

3ns − ne and the three color charges nu, nd , and ns .
It is more convenient to use the linear combinations n =
nr + ng + nb, n3 = nr − ng , and n8 = 1√

3
(nr + ng − 2nb),

where n = 3nB (the total quark number density) and n3

and n8 are related with color asymmetries. Thus, conserved
charges {nj } = {n, n3, n8, nQ} are related to four independent
chemical potentials {μj } = {μ,μ3, μ8, μQ} such that nj =
−∂
MRE/∂μj . The individual quark chemical potentials μf c

are given by

μf c = μ + μQ

[
1

2
(τ3)ff + 1

2
√

3
(τ8)ff

]

+μ3(λ3)cc + μ8(λ8)cc, (24)

where, as before, τi and λi are the Gell-Mann matrices in flavor
and color space, respectively.

From the β-equilibrium conditions we have

μdc = μsc = μuc + μe (25)

for all colors c. Then, the electron chemical potential is μe =
−μQ. Finally, the rest of the conditions we need to impose for
electrically and color neutral matter are

nQ ≡ − ∂


∂μQ

= 0, n8 ≡ − ∂


∂μ8
= 0. (26)

(Note: Remember that we choose a particular orientation of
the gap in the color space, which introduces the r-g symmetry.
Thus, we trivially satisfy n3 = 0, and then μ3 is automatically
equal to zero.)

In summary, in the case of neutron star quark matter without
neutrino trapping, for each value of μ (or μB) and T one can
find the values of σ , σs , 	, μe, and μ8 by solving Eqs. (23)
and (26) supplemented by Eq. (25). This allows us to obtain
the quark matter EOS in the thermodynamic region of interest
and we can evaluate the curvature energy and surface tension
of the color superconducting droplets.

It is important to remark that, in general, when we
numerically solve the set of equations related with all the
conditions discussed above, there might be regions for which
there is more than one solution for each value of T and μ. To
choose the stable solution among all of them, we require it to
be an overall minimum of the thermodynamic potential.

C. Parametrization

The set of parameters we use in the present work is the
following (those in Ref. [29] but without ’t Hooft interactions):
mu,d = 5.5 MeV, ms = 112.0 MeV, � = 602.3 MeV, and
G�2 = 4.638. Moreover, we considered the ratio H/G =
3/4 obtained from Fierz transformations of the one-gluon
exchange interactions.

Because we impose vanishing pressure at vanishing temper-
ature and chemical potentials for Fermi momentum kF → 0
(when R → ∞) [21], P0 is the same as in the bulk case. For
the set of parameters we used, we found 
vac/V = −Pvac =
−4301 MeV/fm3. However, we emphasize that the values
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of the surface tension α and the curvature energy γ are not
changed by the choice of Pvac.

As we previously mentioned, the value of �IR is the largest
root when solving ρMRE = 0 with respect to k, depending on
mf and R. We find that these solutions can be fitted through
the following rule:

�IR = a Rb (27)

with R in femtometers and �IR in MeV. The coefficients for
mu = 5.5 MeV are a = 135.45 and b = −0.85. For ms =
112 MeV we have a = 228.60 and b = −0.87.

IV. RESULTS AND CONCLUSIONS

In Fig. 1 we show our results for the surface tension α
and curvature energy γ of the color superconducting droplets
as a function of the quark chemical potential, for two differ-
ent temperatures and four different radii. The temperatures
30 MeV and 5 MeV are representative, respectively, of the
conditions prevailing at the beginning and at the end of
the cooling or deleptonization phase of protoneutron star
evolution. We checked that the results for T = 5 MeV are
almost indistinguishable from those for zero temperature;
thus, in practice they also represent old and cold neutron
stars. We show results for drops with radii ranging from very
small values of 5 fm, which have a large energy cost due to

surface and curvature effects, to the bulk limit of R = ∞.
For given values of R, T , and μ there may exist more than
one solution of the equations. If more than one solution is
found, the one that minimizes the thermodynamic potential
is chosen. As explained in the figure caption, the left-hand
branches correspond to the chiral symmetry broken phase and
the right-hand curves after the discontinuity to the 2SC phase.
For the curves presenting negative pressures we introduced a
dot indicating the zero pressure point. The part of the curve
to the left of the dot corresponds to P � 0. Note that, as
previously mentioned, we subtracted 
vac to have vanishing
pressure at vanishing T and μ for R = ∞. However, 
vac can
be taken as a free parameter as in Ref. [31]. In this case, the dot
in the figures can move along the curves. However, it is clear
from Eqs. (19) and (20) that a nonstandard choice for 
vac

does not change the numerical values of α and γ for given R,
T , and μ.

Our results show that the surface tension is in the range
α ∼ 145–165 MeV/fm2 and the curvature energy is in the
range γ ∼ 95–110 MeV/fm. The large values of the sur-
face and curvature energies are due to the linear term in
the expression for ω(x, y) in Eq. (3), which is not present
in the thermodynamic potential of, e.g., the MIT bag model.
For a given μ, the surface tension is an increasing function
of R. The curvature energy behaves differently at constant μ:
for very small radii (∼5–10 fm) it increases with R, but in
the range from 10 fm to ∞ it is a decreasing function of R.

FIG. 1. Surface tension α and curvature energy γ for different radii and temperatures. In all panels, the left-hand branches correspond to
the solutions in which the chiral symmetry broken phase is more favorable and the right-hand curves, after the discontinuity, correspond to the
2SC solutions.
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Of course, both the surface and curvature contributions to the
free energy per unit volume 
MRE/V tend to zero as R → ∞,
as can be checked from Eq. (17). The different behavior with
R for α and γ is a consequence of the functional form of the
integrand together with the R dependence of the IR cutoff.
The integral for the surface tension has a fixed upper limit (the
ultraviolet cutoff �), but the lower limit (�IR) decreases with
R. Then, as R increases, �IR decreases, the area under the
curve increases, and, as a result, the surface tension increases.
For the curvature energy the effect is different. The integrand
is positive for large k but negative for small k. For small
R, �IR falls in the positive region of the integrand. Thus, as
�IR decreases, the positive area under the curve increases,
and the curvature energy increases. For larger R, �IR falls
in the negative region of the integrand. Consequently, as
�IR decreases, the negative part of the area under the curve
increases, and the curvature energy decreases. The results in
Fig. 1 show that the temperature dependence of α and γ is very
weak for the values of T that are relevant for protoneutron stars
and cold neutron stars. Note also that these results are of the
same order as those obtained within the NJL model for just
deconfined quark matter out of chemical equilibrium under
weak interactions [5,6].

The present equation of state can support a two-solar-mass
neutron star such as the pulsars PSR J1614-2230 [32] and
PSR J0348-0432 [33] if a sufficiently stiff hadronic equation
of state is employed for the outer layers of the star (see, for
example, Fig. 4 of Ref. [31]). Adding a vector interaction to the
NJL model, it is possible to stiffen the EOS and obtain larger
stellar masses. The vector term affects the surface tension in
a nontrivial way. The chemical potentials gain an extra term
μu,d,s − 4gv〈ψ†ψ〉u,d,s that shifts chemical equilibrium and
the pressure gains a term proportional to the square of the
density. The combined effect is difficult to estimate without
a full calculation, which will be addressed in future work.
According to recent work [34], within a geometric approach
to the surface tension evaluation, the surface tension can be

lowered by the presence of a repulsive vector term and for
magnetized quark matter the value is further lowered [35].
However, within the MRE formalism the behavior may be
different and deserves further study.

The large values of α and γ have strong consequences
for the physics of neutron star interiors, because the energy
cost of forming quark drops within the mixed phase of hybrid
stars would be very large. According to Ref. [7], beyond
a limiting value of α ≈ 65 MeV/fm2 the structure of the
mixed phase becomes mechanically unstable and local charge
neutrality is recovered. Therefore, our results indicate that the
hadron-quark interphase within a hybrid star should be a sharp
discontinuity.

The consequences of the large values of α and γ for
the triggering of the deconfinement transition in neutron
and protoneutron stars were studied in Refs. [5,6]. The
main difference from the present study of the quark-hadron
interphase is the condition of chemical equilibrium. The
nucleation (deconfinement) of the first quark matter drop that
triggers the conversion of the core of a hadronic star is driven
by strong interactions and consequently it happens out of
chemical equilibrium under weak interactions. As shown in
Ref. [6] the nucleation of quark matter is possible during the
protoneutron star phase even for large values of the surface
tension, because large drops (with a size of hundreds of
femtometers) may have a huge nucleation rate. These large
drops are charge neutral because flavor is conserved during
the deconfinement transition [6] and therefore they can be
considerably larger than the Debye screening length λD of the
stellar plasma, which is typically 5–10 fm. Since these drops
can be very large (R � 200 fm [5,6]), surface and curvature
effects tend to vanish. This is not the case for droplets of
quark matter in the hypothetical mixed phase of a hybrid
star. Because they are electrically charged their size cannot
exceed ∼λD (i.e., few femtometers) and therefore surface
and curvature have a significant energy cost, inhibiting the
formation of the mixed phase.
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