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Fractal structure of near-threshold quarkonium production off cold nuclear matter
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We investigate near-threshold production of quarkonium resonances in cold nuclear matter through a
phenomenologically motivated scaling theory with two exponents, which are fixed by existing data on
near-threshold J/ψ production in proton-nucleus collisions. Interestingly, it seems possible to extend one of
the exponents to the production of other mesons in cold nuclear matter. The scaling theory can be tested and
refined in experiments at the upcoming high-intensity Facility for Antiproton and Ion Research (FAIR) accelerator
complex at GSI.
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Quantum chromodynamics (QCD) is a very well estab-
lished theory for strong interactions, but it is hard to generate
predictions from first principles using it. As a result, a large
body of data remains to be integrated into the theory. One
exception has been the near-threshold production of light
mesons. An effective field theory, called chiral perturbation
theory, has been very successfully applied to this set of
problems, and at the same time also connected to lattice QCD.
In the last two decades there has been enormous progress in the
theory and increased clarity in observations of the production
of light mesons in inelastic pp collisions below the threshold
for double meson production. This has had repercussions in
related fields such as the exploration of CP violations in decays
of hadrons. In this paper we suggest that there are interesting
open questions in the near-threshold production of charmonia,
which may similarly benefit from the coming experiments at
the Facility for Antiproton and Ion Research (FAIR).

The near-threshold production of J/ψ and other charmonia
is of great interest today. Since the mass of the proton, Mp =
0.938 GeV, and the mass of the J/ψ , MH = 3.097 GeV, the
threshold energy for production of J/ψ in pp collisions, in the
center of mass of the colliding particles,

√
S0 = 4.973 GeV.

Unfortunately this is not small enough to apply any of the usual
hadron effective theories, since there are too many hadron
states with masses below the J/ψ , and all of them would have
to be accounted for in an appropriate effective theory. On the
other hand,

√
S0 is too small for quantitatively accurate use of

perturbative QCD along with nonrelativistic QCD (NRQCD)
or other models, a procedure which has seen some success at
higher energy [1–4].

In this paper we explore the problem using a tool which
has been useful for the discovery of effective field theories in
the past: the investigation of power laws in data. If power law
scaling works as the description of some data then the nonper-
turbative content is codified into a very small set of parameters.
This in itself is a gain. Moreover, in the past, the exponents,
called either fractal dimensions or anomalous dimensions,
according to the context, have suggested description through
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effective field theories. The reason is that such exponents are
eigenvalues of renormalization group transformations [5]. In
the Appendix we briefly review the arguments which connect
power laws with scaling symmetries.

We are interested in the production of the J/ψ , in pp and
pA collisions near the threshold energy

√
S0. We follow the

convention of writing the center-of-mass (CM) energy,
√

S,
in the equivalent pp system; for a fixed target configuration
this means S = 2Mp(Eb + Mp), where Eb is the beam energy.
The total inclusive cross section, σ , can only be a function of√

S, MH , Mp, and the nuclear mass MA. Then, a dimensional
argument allows us to write

S0σ = f (Y,A, h), where Y = 1

2
ln

(
S

S0

)
,

A = MA

Mp

, h = MH

Mp

, (1)

and f is a dimensionless function. In this definition of A, we
neglected the effects of nuclear binding, which are expected to
be less than 1%, and isospin effects, which could be slightly
larger. We take masses and branching ratios from [6]. Since we
discuss only the J/ψ , we will lighten the notation by dropping
h from the list of arguments of f .

In this paper we report a scaling analysis of J/ψ cross
sections in a dilepton channel in pp and pA collisions from the
lowest up to ISR energies [7–22], but not beyond. Within this
data corpus, corrections for kinematic acceptance limitations
of each experiment needed for global analyses are discussed
in [3,23]. We decided to examine Bσ rather than σ , where
B is the branching ratio in the dielectron or dimuon channel.
The reason is that over the years the value of B has moved
by more than its error bar. When the inclusive cross section
in one of these dilepton channels is measured, this uncertainty
does not affect the result. Some experiments correct their data
for nuclear effects according to a formula Aα , with α obtained
from their data. To start with, we undid this correction, since
this power is part of our global analysis.

Extremely close to threshold the variable Y is small and
close to zero. In proton-nucleus scattering, we expect some
Fermi motion: even though the CM of the nucleus is at rest,
individual nucleons may be moving. The typical energy of
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this movement is of the order of the binding energy per
nucleon [24], and hence comparable to other effects which
we have neglected. Clearly, Fermi motion can be detected with
experiments close to threshold since the cross section vanishes
otherwise. However, for Y > 0.1, the effect can be neglected.

Notice that even at the smallest Y for which data is available
there are many inelastic channels open. In the hadronic
language, the J/ψ may be produced through intermediate
ψ ′, or χc states, or through virtual D̄D states, or along
with multiple light mesons. In the partonic language, there
may be colored intermediate states which exchange soft
gluons with the rest of the hadronic system, especially near
threshold, thereby spoiling QCD factorization. In any case,
these different channels may give rise to different dependence
in transverse and longitudinal momentum of the J/ψ . As
always, the analysis of total inclusive cross sections, which
involve summing over all intermediate states, is much simpler
and more robust than the analysis of each channel separately.

The form of the function f (Y,A, h) eventually has to be
computed from QCD, and it may be arbitrarily complicated.
For example, one expects to be able to compute it using
perturbative QCD when h is large and Y small [25] or h is
small and Y large [1–4]. An important prerequisite for this
is the factorization of the initial state into parton distribution
functions, which are nonperturbative matrix elements in QCD,
which have always been extracted from experiments, and
are only now becoming amenable to lattice computations. If
the factorization theorems were valid then certain kinematic
scalings could be expected to hold [26] which are seen to
fail for Y ≈ 1 [22]. So, in the near-threshold region for J/ψ
perturbative QCD inspired models for quarkonium production
is not viable. Alternatively, in the region where both Y and
A are large, there is now some possibility of computing the
function using the color glass condensate picture [27]. Given
the complexity of the full problem, we do not seek a model
description which might be valid for all Y and A, but restrict
our attention to O(10−2) � Y � O(100).

Very close to threshold, where all the particles are moving
nonrelativistically, Y ∝ v2, where v is the velocity of the
lightest particle. In this region, one expects to be able to
perform a partial-wave expansion of the amplitude, and hence
write f as a Taylor expansion in v, and hence

√
Y . For Y > 0.1

such a Taylor expansion may not be exactly valid, but it might
still be interesting to investigate a power law in Y . In pp
collisions, with A = 1, we find that the data admits a simple
power-law fit with

Bf (Y, 1) = Bf1Y
β,

with Bf1 = (2.0 ± 0.4)S0 nb, β = 3.20 ± 0.26, (2)

where the covariance of the parameters is −0.934. The
quality of the description is shown in Fig. 1. In [16] a
different phenomenological parametrization was suggested,
using intuition based on perturbative QCD and widely used
forms of parton distributions. Fitting this form to the pp data,
we find

Bf (Y, 1) = K(1 − exp(−Y ))ν,

where K = (59 ± 5)S0 nb, ν = 6.5 ± 0.6, (3)
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FIG. 1. (Color online) Cross section for the production of J/ψ

in pp collisions. The band in red encloses the 68% confidence limits
of the two-parameter fit of Eq. (2), and that in blue of Eq. (3). We
also show the pull from the data for each fit color-coded similarly.
For the former the largest contributions to χ 2 come from Y > 1; for
the latter, from Y < 1.

with covariance of the parameters being 0.823. Overall, the
quality of fit is similar to the power law. It is instructive to
examine the pull on these fits from various pieces of data. First,
we note that for both fits there is a tension between the NA51
measurement [17] and that at the lowest ISR energy [11]. As
a result, future high-precision experiments in the range 1 �
Y � 2 would be very welcome. We also find that the largest
contributions to χ2 for the form in Eq. (2) come from Y > 1,
whereas the largest contributions to the fit form in Eq. (3) come
from Y < 1. This is consistent with the argument for the latter
form from the parton language, and supports a preference for
the power law for small Y . Precision experiments in the range
Y � 0.6 will certainly help in deciding between these models.

We return to the scaling form and try a power law
parametrization for the dependence on A. Such a power
law, Aα , has been attempted by all experimental groups.
However, both the NA50 [19,20] and NA60 [22] experiments
independently seem to show that a parametrization of this kind,
with α independent of Y , is inadequate at the two energies
where each experiment has taken data. To accommodate this,
we can write

f (Y,A) = f YβAα(Y ). (4)

We explain in the Appendix the origin of such a multifractal
scaling. The data corpus supports a particularly simple
dependence on Y :

α = (0.76 ± 0.02) + (0.10 ± 0.01)Y, (5)

with covariance −0.984 between the two coefficients. The data
from CERN-PS [10] were not used in this fit, because of the
large errors in this measurement; its inclusion does not change
the central values of the fit significantly but increases the errors.
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FIG. 2. (Color online) The dependence on A of the inclusive J/ψ production cross section measured in [20] (left panel) and [22] (right
panel). Note that the power-law parametrization is an excellent description of the data for A > 50 (full line) but is substantially worse when
applied to all A (dashed line) in the NA50 data. The errors in the NA60 data are too large for this discrimination, although the trend is similar.
The bands enclose the 68% confidence limits of the fits.

It would be interesting to test in future experiments whether
this exponent is modified near Y = 0.1 as the thresholds for
ψ(2S) and the χs are approached.

However, we would like to examine this parametrization in
some more detail. Recall that the scaling theory naturally has

f (Y,A) � Yβf (Ã) � f YβAα, (6)

where Ã is a renormalized parameter, and the power laws
are asymptotic expressions. We have already argued that
the function f (Y,A) may be a complicated function of its
arguments when it is fully computed in QCD. However, for
this analysis, we are interested in power laws which arise
when one or more of these parameters go to zero or infinity.
For this reason, we will not be very perturbed if data for all
A are not explained by a single power α. It is sufficient for
the purposes of a scaling analysis if the power law is valid
for A � 1. The extensive data taken by NA50 [20] are able
to test this accurately. Since all the data in this set were taken
for fixed Y , we can simply fit f (Y,A) = f Aα . For A > 50
we find α = 0.883 ± 0.005 and Bf = (6.9 ± 0.2)S0 nb, with
χ2/DOF = 1.08 (where DOF denotes degrees of freedom).
In contrast, if data for all A are taken into account, then one
obtains a substantially worse fit with χ2/DOF = 20. This is
shown in Fig. 2.

It is of interest to compare the above parametrization
with a widely used model of cold nuclear effects in J/ψ
production. When the Glauber model is treated in the eikonal
approximation, then one obtains the stretched exponential
form

f (Y,A) = A exp
( − γA1/3)f (Y ). (7)

In the model, the dimensionless number γ = ρσabsλ, with ρ
being the nuclear density, σabs having the interpretation of a
cross section for absorption of J/ψ in cold nuclear medium,
and λA1/3 being the path length of the J/ψ in the nucleus (see,
for example, [28]). A Glauber model of this kind supposes
multiple incoherent collisions off a large number of nuclei

along a classical path followed by the J/ψ . This is unlikely
to be correct for all A. If we apply it only to A > 50 from
the data set of [20], then we find χ2/DOF = 2.4 for a fit
which gives γ = 0.071 ± 0.005. Clearly the goodness of fit is
marginally acceptable, but is worse than the power law.1 Using
the values ρ = 0.16/fm3 and λ = 1.1 fm, the above fit for γ
gives σabs = (4.0 ± 0.3) mb. This is consistent with the values
extracted for the same Y in [22]. Extending this model to all
A definitely lowers the quality of the fit, with χ2/DOF = 5.

If we wish to test the scaling for large A, then the only
experimental data one can use are NA38 [14], NA50 [19,20],
HERA-B [21], and NA60 [22]. The HERA-B data are not
available in a form suitable for reanalysis. The errors in the
NA38 data are substantially larger than the other two remaining
sets. The power-law parametrization of the NA60 data shown
in Fig. 2 for A > 50 gives α = 0.76 ± 0.02. However, NA60
has another data set [22] taken at the same Y as the data in [20].
This data set is compatible with the data at the lower energy
in the same experiment at the 95% confidence level, and with
the data in [20] at the 68% level. So, the systematic errors
in α seem to be such that there is little dependence on Y . In
agreement with this, it turns out that the data from [19] yields
a best-fit value of α = 0.79 ± 0.02, using only the data for
A > 50, and this is compatible with α which is independent
of Y . A simple fractal power law

α � 0.76 ± 0.02 (8)

could be supported by data, provided one takes into account
only heavy nuclei with A > 50 when modeling the data by
Eq. (6). Distinguishing between the behaviors in Eqs. (5)
and (8) is something that experiments with Y < 1 could also
contribute to the study of J/ψ .

1A three-parameter fit to a stretched exponential p1 exp(−p2A
p3 )

gives a best fit, with p3 � 1/2, which is indistinguishable from the
power law.
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Optical models of shadowing in very-low-energy nucleon-
nucleus scattering predict α = 2/3 for pions, in agreement
with measurements [29]. If we want to extend the scaling
theory to other mesons, using h as a perturbative param-
eter, then one could write α = 2/3 + 0.0317h, in order to
accommodate the result in Eq. (8). Using this formula one
finds for the ϒ a value α = 0.98 ± 0.02, in agreement with
the value α = 0.962 ± 0.006 ± 0.008 reported by E772 [30].
Coincidentally, the formula is also in agreement with the
measured values of α for K , ρ, and ω production at low
energy [31]. Since we do not have a theory of nuclear effects
near threshold, this fact is, for now, merely an interesting
phenomenological observation.

The scaling theory is inadequate to relate the values of f (̃h)
in experiments with different initial states: for example pA,
pA, π±A, etc. If some form of the factorization theorems were
valid, then there could be relations such as

f (pA → H )

f (pA′ → H )
= f (πA → H )

f (πA′ → H )
, (9)

where f (ab → h) = σS0 and σ is the total inclusive scattering
cross section for the reaction ab → h at a fixed Y . Such tests
could also be performed with light ions instead of pions. The
validity of factorization would be an interesting investigation
especially since it is often used in crossed near-threshold
reactions to make a connection between hadron decays and
the CKM matrix elements.

Proceeding beyond total inclusive cross sections near
threshold is hard due to the paucity of data. There is scattered
evidence for cold nuclear effects in 〈p2

T
〉, from NA38 [14] and

HERA-B [21]. However, there is too little data for a systematic
study of the effect. The sparse corpus shows a roughly linear
rise of 〈p2

T
〉 with Y , from a vanishing value at Y = 0. Clearly,

high statistics studies of pT and xF distributions of the J/ψ
near threshold would be very welcome.

Since data with beam energy Eb < 100 GeV are very
sparse [7,10,12], the SIS-100 accelerator at FAIR in GSI
presents an opportunity to probe the region of Y � 0.4 very
thoroughly with modern statistics. With a beam luminosity of
1 Hz/nb, fair event rates could be obtained, and these scaling
laws can be tested well. This would make the FAIR an ideal
test bed for exploring the near-threshold production process for
J/ψ as well as cold nuclear effects, including questions about
factorization and pT and xF distributions. A wish list would
contain measurements with pp and a variety of pA collisions
to check the scaling of Eq. (5). The pp data could also be
used to check the scaling exponent of Eq. (2) and whether it is
compatible with the pA result. A range of A can be used to test
the region of validity of the power law Aα . A systematic study
of pT and xF distributions would also be extremely useful.

In summary, we have extracted a power law parametrization
of the cross section for J/ψ production in pA collisions for
Y < 2 and A > 50 in the form

Bσ = f AαY β with f = (2.1 ± 0.1) nb,

α = 0.76 ± 0.02, and β = 3.20 ± 0.26. (10)

The exponent α could be a simple fractal dimension as above,
or a multifractal dimension as in Eq. (5). This parametrization
works at least as well as, and marginally better than, other

parametrizations for the near-threshold production of J/ψ .
Our analysis uncovered some gaps in the data which upcoming
experiments are in a position to fill. With such data it should be
possible to decide between power-law parametrizations of the
data and more complex behavior. Such data can also decide
between a simple fractal dimension for α or a multifractal
dimension. Interestingly, the fractal dimension α can be
extended to other mesons such as the π , K , and ϒ . Apart
from being useful parametrizations of data, such power laws
also reveal dynamical symmetries which equate a physical
system with one Y and A to another with different Y and A.
Such identities should eventually be computable from QCD.
Since these scaling laws present fundamental restrictions on
QCD, they should be of priority in upcoming low-energy and
high-intensity experiments at the SIS-100/300.
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APPENDIX: SCALING, FRACTALS, AND
MULTIFRACTALS

Meaningful relations between variables relevant to a
physical system can be expressed in terms of dimensionless
variables. If they are denoted π0, π1, π2, π3, etc., then one can
write

π0 = f (π1, π2, π3, . . . ). (A1)

In the limit when π1 → 0, one may have the simplification
that f (π1, π2, . . . ) → f (π2, . . . ). This special case is called
the scaling limit. An example is that of structure functions
in deep-inelastic scattering, F (x, αS), where x is the Bjorken
variable and αS the strong coupling [32]. In the limit αS → 0
one obtains scaling, i.e., F (x, αS) → F (x). Since π1 is not
uniquely defined, one may have instead chosen to work with
1/π1. So one may examine asymptotic scaling for either π1 →
0 or ∞.

In other cases one may find a behavior known as broken
scaling. Then as π1 → 0, one finds

f (π1, π2, . . . ) → π
μ1
1 f (π̃2, . . . ), (A2)

where μ1 is called an anomalous (or fractal) dimension and
the π̃2 = r(π1, π2, . . . ), etc. are called renormalized variables.
One often encounters multiplicative renormalization in the
form π̃2 = π2/π

ν
1 , but additive terms such as π̃2 = π2/(�1 +

π1)ν are also known. Multiplicative renormalization implies
an invariance under scaling: a change π2 → λπ2 can be
absorbed into the multiplicative change π1 → λ1/νπ1. This
is an asymptotic invariance of the function f (π̃2, . . . ). For
additive renormalization the invariance consists of a change
π2 → λπ2 implying π1 → λ1/ν(π1 − �1).

One may now examine the behavior of the function as
π̃2 → 0 (or ∞). If there is broken scaling in this variable, then
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one has

f (π1, π2, π3, . . . ) → π
μ1
1 π̃

μ2
2 f (π̃3, . . . ). (A3)

Multiplicative renormalization implies two independent and
constant powers, called fractal dimensions. However, for
additive renormalization, μ2 depends on π1. This is called
multifractal scaling.
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