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Shear viscosity of hadrons with K -matrix cross sections
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Shear viscosity η and entropy density s of a hadronic resonance gas are calculated using the Chapman-Enskog
and virial expansion methods using the K-matrix parametrization of hadronic cross sections which preserves
the unitarity of the T matrix. In the π -K-N -η mixture considered, a total of 57 resonances up to 2 GeV were
included. Comparisons are also made to results with other hadronic cross sections such as the Breit-Wigner (BW)
and, where available, experimental phase shift parameterizations. Hadronic interactions forming resonances are
shown to decrease the shear viscosity and increase the entropy density leading to a substantial reduction of η/s

as the QCD phase transition temperature is approached.
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I. INTRODUCTION

Experimental data from high-energy nucleus-nucleus col-
lisions at the Relativistic Heavy-Ion Collider (RHIC) [1–8]
and the Large Hadron Collider (LHC) [9–18] indicate that
a significant amount of collective flow is being developed
during the partonic or quark-gluon plasma stage of the evolving
system. The collective flow is manifested in particle spectra
which are blue shifted and exhibit an anisotropy with respect
to the event plane. The anisotropy in the spectra, which is often
referred to as anisotropic flow, is due to collective expansion
which converts the geometric anisotropy of the initial energy
density distribution into anisotropic distribution in azimuthal
angles of the detected hadrons. The observed anisotropic flow
is typically characterized in terms of Fourier components, vn.
For noncentral collisions, the second moment v2 dominates
reflecting the shape of the overlapping nuclei at finite impact
parameters. The higher Fourier components, on the other hand,
are due to event-by-event fluctuations of the initial geometry
[19]. These higher moments have been studied within event-
by-event ideal and viscous hydrodynamical model calculations
[20–25] with the finding that the they are mainly determined
by fluctuations in the initial conditions, and the ratio of the
shear viscosity η and entropy density s. Comparisons between
experimental data and hydrodynamic calculations thus have
the promise to provide increasingly stringent constraints on
the η/s of the dense matter and the initial conditions [26–28].

First-principle calculations of the shear viscosity of strongly
interacting matter from QCD over a large range of temperature
have so far been elusive. However, model calculations of
strongly interacting matter in different ranges of tempera-
ture can provide an interesting picture of the temperature
dependence of the shear viscosity to entropy density ratio,
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η/s [29,30]. Based on experimental π -π shifts, calculations
[31,32] give an η/s ratio for a pion gas that decreases
with temperature as ∼1/T 4 [33], whereas perturbative QCD
calculations [34–39] predict a smaller η/s that increases
logarithmically with temperature in a quark-gluon plasma.
This ratio, believed to be bound by a limit of 1/(4π ) (in units
of h̄/kB) from Anti-de Sitter Space/Conformal Field Theory
(AdS/CFT) calculations [40], likely reaches a minimum
around the QCD phase transition temperature.

Lacking firm theoretical guidance on the temperature
dependence of the η/s ratio, most hydrodynamic model studies
have assumed a constant η/s, whereas some studies have incor-
porated hadronic cascade models (termed afterburners) [41,42]
following hydrodynamic evolution in order to incorporate the
effect of a large shear viscosity in the hadronic phase. A
systematic study of shear viscosity to entropy density ratio in
the hadronic phase is therefore important to assess the effects
of transport properties throughout the evolution; that is, from
of the quark-gluon plasma stage to the phase transition stage
and thereafter the hadronic stage.

In this paper, we present our study of the shear viscosity
to entropy density ratio in a hadronic resonance gas with 57
resonances (with masses up to 2 GeV taken from the Particle
Data book) formed by interactions among the components
of a π -K-N -η mixture. Our calculations are for a system
with zero net baryon and strangeness numbers. Resonant
interactions, including the widths of the various resonances,
are incorporated consistently in calculations of both the
shear viscosity and the entropy density. We employ the
K-matrix parametrization of the hadronic cross sections which
accommodates multiple resonances and preserves the unitarity
of the T matrix in all channels. We show how the inclusion of
multiple resonances in a multicomponent mixture decreases
the shear viscosity to entropy density ratio η/s with increasing
number of components in the mixture as the temperature
approaches that of the QCD phase transition.

This paper is organized as follows. Our calculation of shear
viscosity, carried out numerically within the Chapman-Enskog
approximation, is reviewed in Sec. II. In Sec. III, we examine
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different parametrizations of differential cross sections that
have been used in the calculation of transport cross sections
needed for the calculation of shear viscosity. The thermo-
dynamics of interacting hadrons using the virial expansion
approach is discussed in Sec. IV. Analytical and numerical
results are presented in Sec. V for a single-component gas
of pions. Section VI contains results for the multicomponent
π -K-N -η mixture. We summarize and conclude with an
outlook in Sec. VI. The Appendices contain relevant details of
the K Matrix, Breit-Wigner, and phase shift parametrizations
of cross sections.

II. SHEAR VISCOSITY

We employ the Chapman-Enskog approach, generalized
to include relativistic kinematics, for the calculation of shear
viscosity. This approach enables us to consider a mixture
in which particles with different masses give rise to mul-
tiple massive resonances through hadronic interactions. In
the case of a single-component system, we follow closely
the formalism developed in Refs. [43,44] considering only the
number conserving elastic processes. In the case of binary and
multicomponent mixtures, we adapt the formalism detailed in
Refs. [44,45] to treat the hadronic gas composed of a large
number of resonances. In the context of hadronic interactions,
the procedure to calculate shear viscosity has also been
described in detail in Refs. [32,46]. We present only the final
results in this section and refer the reader to earlier works for
details.

A. Single-component system

Here we summarize the working formulas relevant for a
single-component gas consisting of hadrons with mass m. To
first order, the shear viscosity is given by

ηs = 1

10
T

γ 2
0

c00
, γ0 = −10 ĥ, ĥ = K3(z)/K2(z), (1)

where z = m/T is the relativity parameter, ĥ is the reduced
enthalpy per particle, and Kν(z) is the modified Bessel function
of order ν. The quantity c00 is given by

c00(z) = 16
[
w

(2)
2 (z) − w

(2)
1 (z)/z + w

(2)
0 (z)

/
(3z2)

]
, (2)

where w
(s)
i (z) are the so-called relativistic omega integrals:

w
(s)
i (z) = 2πz3

K2(z)2

∫ ∞

0
dψ sinh7 ψ coshi ψKj (2z cosh ψ)

×
∫ π

0
d� sin �σ00(ψ,�)(1 − coss �). (3)

The differential cross section for interaction between two
identical particles is given by σ00(ψ,�), j = 5/3 + 1/2(−1)i .
Hyperbolic functions of the quantity ψ characterize the relative
momentum and invariant center-of-mass energy of the two
colliding particles:

sinh ψ = g

m
, cosh ψ = P

2m
, (4)

where g =
√

(p1 − p2)2/2, P =
√

(p1 + p2)2, and p1 and p2

are the initial four-momenta of the two colliding hadrons.

The Chapman-Enskog approach also allows us to improve
upon the first-order result in Eq. (1). Expressions for higher
orders can be found in Refs. [43,44]. Results obtained using
higher-order approximations in the case of a pion gas with
experimental cross sections have been presented earlier in
Ref. [32], showing rapid convergence with respect to the order
of the approximation.

B. Multicomponent system

1. Binary mixture

To first order, the shear viscosity in the case of a binary
mixture is given by

ηs = 1

10
T

[
γ 2

2 c11 + γ 2
1 c22 − 2γ1γ2c12(

c11c22 − c2
12

) ]
, (5)

where γk = −10 x̃kĥk (k = 1, 2) and ĥk = K3(zk)/K2(zk)
with zk = mk/T being the reduced enthalpy per particle
for particle type k = (1, 2) with mass mk . The coefficients
x̃k = ρk/ρ are related to the mass density ρk (mass times the
number density) of particle type k and ρ = ∑

k ρk is the total
mass density. The coefficients ckl are given by

ckk = c00(zk) + c̃kk(kl), (6)

ckl = c̃kl(kl), for k �= l, (7)

where the coefficients c̃kl(kl) = c̃lk(lk) are used to denote
contributions to the shear viscosity from interactions between
different particle species (1–2 for a binary mixture), while
c00(zk) accounts for contributions from interaction between
two identical particles of type k. The corresponding coeffi-
cients c̃kl(kl) are by given by

c̃12 = 32ρ2x̃2
1 x̃

2
2

3M2
12n

2x1x2

[−10z1z2ζ
−1
12 Z−1

12 w
(1)
1211(σ12)

− 10z1z2ζ
−1
12 Z−2

12 w
(1)
1311(σ12) + 3w

(2)
2100(σ12)

− 3Z−1
12 w

(2)
2200(σ12) + Z−2

12 w
(2)
2300(σ12)

]
, (8)

c̃11 = 32ρ2x̃2
1 x̃

2
2

3M2
12n

2x1x2

[
10z2

1ζ
−1
12 Z−1

12 w
(1)
1220(σ12)

+ 10z2
1ζ

−1
12 Z−2

12 w
(1)
1320(σ12) + 3w

(2)
2100(σ12)

− 3Z−1
12 w

(2)
2200(σ12) + Z−2

12 w
(2)
2300(σ12)

]
, (9)

c̃22 = 32ρ2x̃2
1 x̃

2
2

3M2
12n

2x1x2

[
10z2

2ζ
−1
12 Z−1

12 w
(1)
1202(σ12)

+ 10z2
2ζ

−1
12 Z−2

12 w
(1)
1302(σ12) + 3w

(2)
2100(σ12)

−3Z−1
12 w

(2)
2200(σ12) + Z−2

12 w
(2)
2300(σ12)

]
, (10)

where xk = nk/n, nk is the particle number density of particle
type k, and n = ∑

k nk is the total particle number density. We
have denoted the summed mass by Mkl = mk + ml and the re-
duced mass by μkl = mkml/Mkl for two nonidentical particles
(k �= l). Additionally, ζkl = 2μkl/T and Zkl = Mkl/2T .
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The relativistic omega integrals for a binary mixture are
given by

w
(s)
rtuv(σkl) = π μkl

4 T K2(zk) K2(zl)

∫ ∞

0
d�kl sinh3 �kl

×
(

g2
kl

2μklT

)r(
Mkl

Pkl

)t

(cosh ψk)u(cosh ψl)
v

×Kn

(
Pkl

T

)∫ π

0
d�kl sin �kl σkl(�kl,�kl)

× (1 − coss �kl), (11)

where

P 2
kl = m2

k + m2
l + 2mkml cosh �kl, (12)

gklPkl = mkml sinh �kl, �kl ≡ ψk + ψl, (13)

cosh ψk = 1

Pkl

(mk + ml cosh �kl), (14)

cosh ψl = 1

Pkl

(ml + mk cosh �kl), (15)

with Pkl =
√

(pk + pl)2 and gkl =
√

(pk − pl)2/2 character-
izing the invariant center-of-mass energy and relative momen-
tum of two particles with initial four-momenta pk and pl . In
the case of mk = ml = mi , �ii = 2ψi , Pii = 2mi cosh ψi and
the relativistic omega integral for binary mixture reduces to
Eq. (3).

2. Tertiary and higher component mixtures

In a mixture containing N components (k, l =
1, 2, . . . , N), the first-order coefficient of shear viscosity
within the Chapman-Enskog approximation is given by

ηs = 1

10
ρ2T 3

N∑
k=1

N∑
l=1

ck cl ckl, (16)

where ck are coefficients of the orthogonal Laguere polynomi-
als used as an ansatz function in solving for the coefficient of
shear viscosity (for details, see Refs. [45,47]). The additional
sum rule required to solve for ck in terms of ckl and γk is given
by

N∑
l=1

(
ρ T

n

)2

cl ckl = ρ T

n2
γk, (17)

where k, l = 1, 2, . . . , N (the number of particle species).
As for the single-component gas and for the binary mixture,

the coefficients ck are linear combinations of γk and ckr .
Thermodynamic variables are hidden in the coefficients γ .
Interactions among particles in the mixture given in terms of
differential cross sections reside in the omega integrals, and the
coefficients ckr are linear combinations of the omega integrals
[45]. Explicitly, the required coefficients can be written as

ckk = 16 x̃2
k

(
w

(2)
2 (σkk) − 1

z
w

(2)
1 (σkk) + 1

3z
w

(2)
0 (σkk)

)

+
N∑

l �=k

32ρ2x̃2
k x̃

2
l

3M2
kln

2xkxl

[
10z2

kζ
−1
kl Z−1

kl w
(1)
1220(σkl)

+ 10z2
kζ

−1
kl Z−1

kl w
(1)
1320(σkl) + 3 w

(2)
2100(σkl)

−3Z−1
kl w

(2)
2200(σkl) + Z−1

kl w
(2)
2300(σkl)

]
(18)

c̃kl = 32ρ2x̃2
k x̃

2
l

3M2
kln

2xkxl

[−10zkzlζ
−1
kl Z−1

kl w
(1)
1211(σkl)

− 10zkzlζ
−1
kl Z−2

kl w
(1)
1311(σkl) + 3w

(2)
2100(σkl)

− 3Z−1
kl w

(2)
2200(σkl) + Z−2

kl w
(2)
2300(σkl)

]
(k �= l). (19)

The first of the above equations, Eq. (18), tells us how similar
particles interact in the presence of other types of particles,
whereas the second equation, Eq. (19), tells us how dissimilar
particles interact in the mixture.

III. CROSS SECTION PARAMETRIZATIONS

The magnitude of shear viscosity is strongly determined by
the strength of interactions between the constituent particles in
a system. As is evident from Eqs. (1)–(3), the shear viscosity
is inversely proportional to the differential cross section of the
interacting particles. Large cross sections, characteristic of a
strongly interacting system, naturally lead to small viscosities.
In this work, we focus on shear viscosities in the hadronic
phase of the strongly interacting matter that is created at
RHIC/LHC. For all but the lightest particles, first-principle
calculations of hadronic interactions, particularly those involv-
ing massive resonances, do not exist. One therefore often uses
empirical parametrizations of these hadronic cross sections.
To assess the impact of different parametrizations on the
shear viscosity, we examine three forms of parametrizations:
(i) cross sections obtained directly from the phase shifts
[32,48], (ii) the Breit-Wigner parametrization for Ref. [49], and
(iii) cross sections from the K-matrix [50] parametrization.

A. Cross sections from π-π phase shifts

A pion gas represents a good test case in which the role
of resonances on the viscosity is exemplified. Experimentally,
π -π shifts are available at least in three channels. The impact
of additional channels for which phase shifts are not available
will be considered in a subsequent section. For practical and
illustrative purposes, we follow the parametrization employed
by Bertsch et al. [48], which was used in the calculation of the
shear viscosity of a pion gas in Ref. [32]. In terms of phase
shifts, the differential cross section can be parameterized by

σ (
√

s, θ ) = 4

q2

∑
l+I=even

(2I + 1)(2l + 1)∑
I (2I + 1)

×P 2
l (cos θ ) sin2 δI

l (
√

s), (20)

where l is the orbital angular momentum, I is the isospin,
and the summation is over both l and I for l + I being even
numbers. The phase shift δ0

0, corresponding to the σ resonance,
is well fit by

δ0
0 = π

2
+ arctan

(√
s − mσ

�σ/2

)
, �σ = 2.06 q, (21)
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where mσ = 5.8mπ is the mass of the σ resonance, mπ is
the pion mass,

√
s is the center-of-mass energy, and q =√

s − 4m2
π/2 is the center-of-mass momentum of two colliding

pions. The phase shift δ2
0 corresponds to the repulsive channel

and is given by

δ2
0 = −0.12

q

mπ

. (22)

The phase shift δ1
1 corresponds to the ρ resonance and is

expressed by

δ1
1 = π

2
+ arctan

(
E − mρ

�ρ/2

)
, (23)

�ρ = 0.095 q

[
q/mπ

(1 + (q/mρ)2)

]2

, (24)

where mρ = 5.53mπ is the mass of the ρ resonance. Including
contributions from l = 0, 1, 2, the differential cross section is
then

σ (
√

s, θ ) = 4

q2

(
1

9
sin2 δ0

0 + 5

9
sin2 δ2

0 + 3 sin2 δ1
1 cos2 θ

)
.

(25)

These three phase shifts and the total cross section are shown
in Fig. 1 as functions of center-of-mass momentum and energy,
respectively.

FIG. 1. (a) π -π phase shifts vs center-of-mass momentum from
Eqs. (21)–(23). (b) Total cross section vs center-of-mass energy from
Eq. (25).

B. The Breit-Wigner parametrization

The interaction or T matrix for hadronic interaction
through a single resonance (a + b → R → a + b) can also
be parameterized in the Breit-Wigner form [51] as

T = mR�R→ab(
√

s)(
m2

R − s
) − imR�tot

R (
√

s)
. (26)

where �tot
R = ∑

c,d �R→cd is the total width and �R→ab is
the partial width for the channel R → ab of the resonance
R, respectively. The differential cross section for such an
interaction is then

σ (
√

s, θ ) = C(I, l)

q2
ab

m2
R�2

R→ab(
m2

R − s
)2 + m2

R�tot
R

2
Pl(cos θ )

≈ C(I, l)

q2
ab

�2
R→ab

4(mR − √
s)2 + �tot

R
2 Pl(cos θ ), (27)

where C(I, l) is the symmetry factor which contains the spin-
isopin multiplicities for the corresponding resonance, and qab

is the center-of-mass momentum. The general cross section
for the reaction a + b → c + d is then obtained by integrating
over the polar angle and summing over all relevant resonances,

σ (
√

s)a+b→c+d =
∑
R

2SR + 1

(2Sa + 1)(2Sb + 1)

π

q2
ab

× �R→ab�R→cd

(mR − √
s)2 + �tot

R
2
/4

, (28)

where I denotes the isospin, I3 is the third component of
the isospin, and S is the spin for hadrons and resonances.
The coefficients with angular brackets are the Clebsch-Gordon
coefficients for the isospin. The center-of-mass momentum of
the incoming particles is

qab(
√

s) = 1

2
√

s

√
[s − (ma + mb)2][s − (ma − mb)2], (29)

and the energy dependence of the width in a given channel is
typically given by

�R→ab(
√

s)

= �0
R→ab

mR√
s

(
qab(

√
s)

qab(mR)

)2l+1 1.2

1 + 0.2
( qab(

√
s)

qab(mR )

)2l
, (30)

where mR is the mass of the resonance, �0
R→ab is the width

for the channel R → ab at the pole, and l is the orbital
angular momentum of the exit (decay) channel. Values for
the resonance masses and their decay widths at the pole can be
found in the Review of Particle Physics [51]. The last term in
the above equation is related to the Blatt-Weisskopf B factor
which can be found in Ref. [52].

C. The K -matrix parametrization

The K-matrix formalism [50,53,54] preserves unitarity of
the T matrix for processes of the type ab → cd. In this section,
we provide a brief summary following closely the exposition
in Ref. [50]. The differential cross section for ab → cd is
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given in terms of the invariant amplitude M (or the scattering
amplitude f ) as

σ (
√

s, θ ) = 1

(8π )2s

(
qcd

qab

)
|M|2 = |f (

√
s, θ )|2, (31)

where qab (qcd ) is the breakup momentum in the initial (final)
state, θ is the usual polar angle in spherical coordinates, and√

s is the center-of-mass energy. The scattering amplitude f (θ )
can be expressed as

f (
√

s, θ ) = 1

qab

∑
l

(2l + 1) T l(s) Pl(cos θ ), (32)

in terms of the interaction matrix T l(s). The Legendre
polynomials Pl(cos θ ) account for the angular momentum
dependence of the exit channel.

In general, the T matrix can be defined from the overlap
matrix between the initial and final states of the collision:

Sab→cd = 〈cd|S|ab〉, S = I + 2i T , (33)

where S is the scattering operator (matrix) and I is the identity
operator accounting for no interaction. Based on the unitarity
of the S matrix,

S S† = S† S = I, (34)

one can arrive at the relation

(T −1 + iI )† = T −1 + iI. (35)

Therefore, one can define a Hermitian K matrix through

K−1 = T −1 + iI, K = K†. (36)

Time-reversal symmetry of S and T also leads to K being
symmetric. Therefore, the K matrix can be chosen to be real
and symmetric. One can rewrite the T matrix in terms of the
K matrix as

Re T = (I + K2)−1K = K(I + K2)−1,
(37)

Im T = (I + K2)−1K2 = K2(I + K2)−1.

In the K-matrix formalism, resonances appear as a sum of
poles in the K matrix:

Kab→cd =
∑
R

gR→ab(
√

s)gR→cd (
√

s)

m2
R − s

, (38)

where the sum on R goes over the number of resonances with
masses MR . The decay couplings are given by

g2
R→ab(

√
s) = mR�R→ab(

√
s), (39)

where the partial decay widths are given by

�R→ab(
√

s) = �0
R→ab

mR√
s

qab

qab0
[Bl(qab, qab0)]2 (40)

with qab0 = qab(mR) being the breakup momentum at
√

s =
MR and �0 the width at the pole, as defined previously. The

Bl(q, q0) is the usual Blatt-Weisskopf barrier factors which
can be written in terms of the breakup momentum in channel
R → ab and the resonance breakup momentum qab for the
orbital angular momentum l:

Bl
R→ab(qab, qab0) = Fl(qab)

Fl(qab0)
. (41)

The list of Fl(q) for l = 0 through 4 reads as

F0(q) = 1, Fl(1) = 1,

F1(q) =
√

2z

z + 1
, F2(q) =

√
13z2

(z − 3)2 + 9z
(42)

F3(q) =
√

277z3

z(z − 5)2 + 9(2z − 5)
, and

F4(q) =
√

12746z4

(z2 − 45z + 105)2 + 25z(2z − 21)2
,

where z = (q/qR)2 and qR = 0.1973 GeV/c. For interaction
with a single resonance in the intermediate state, one can
verify that the Breit-Wigner and K-matrix parametrizations
are identical. We will explore their differences for the case of
multiple and, especially, overlapping resonances later in this
section.

D. Comparisons

In this subsection, we first compare results of total cross
sections from three different parametrizations as described
in the previous subsection for the ππ → ρ → ππ channel.
Thereafter, we include other resonances in ππ reactions in our
comparisons. Finally, a discussion in the case of overlapping
resonances is provided.

1. Single resonance

For interaction through a single resonance, the Breit-
Wigner (BW) and K-matrix (KM) parametrizations are nearly
identical. We will compare them to the phase-shift (PS)
parametrizations here. Similar to the partial wave decomposi-
tion of the T matrix,

T = eiδl sin δl, (43)

one can relate the phase shift in a single resonance channel to
the K matrix,

K = mρ �ρ→ππ (
√

s)

m2
ρ − s

= tan δl (44)

for the process π π → ρ → ππ . In Fig. 2, we compare
the phase shift from BW/KM and PS parametrizations
from Eq. (23). We used mρ = 0.77 GeV and the �0

ρ→ππ =
0.15 GeV. The symmetry factor C(I, l) is the same for
all formalisms. While there is good agreement between the
different parametrizations near the peak of the resonance,
some differences exist at threshold and high energies because
of the differences in the parametrizations of the widths between
the PS and KM/BW approaches.
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FIG. 2. (Color online) Phase shifts for ππ → ρ → ππ from
experiment as parametrized in Eq. (23) and from the K matrix of
Eq. (44).

As discussed in Appendices A and B, all three parametriza-
tions lead to identical cross sections if the same energy
dependence of the decay width (�ρ) is employed.

As we can see from the Argand diagram in Fig. 3, both the
KM and BW parametrizations for a single resonance maintain
the unitarity of the T matrix.

In Fig. 4, we show how a fit to the experimental cross
sections that includes all three phase shifts compares with the
KM/BW cross sections when only the ρ resonance is included.
In the results shown, the fit to the experimental cross sections
is isospin averaged. By using the appropriate symmetry factor,
one is able to get the same result as that in the BW cross
section.

In Fig. 4, we also compare the total cross sections from
BW/KM parametrizations (solid curve), the PS parametriza-
tion with the ρ resonance only (dot-dashed), and the PS
parametrization with the σ and ρ resonances together with
the repulsive channel (dashed). While cross sections from
BW/KM and PS for a single resonance are very similar around
the resonance peak, there are significant differences near the

FIG. 3. The Argand plot of the T matrix for the ππ → ρ → ππ

calculated from the K-matrix and Breit-Wigner formalisms.

FIG. 4. (Color online) Total cross sections from phase shift fits,
and from the Breit-Wigner/Urqmd and K-matrix formalisms.

threshold and at higher energies. The inclusion of the σ
resonance and the repulsive channel in the PS parametrization
significantly reduces the cross section at the resonance peak.

2. Separated and overlapping resonances

In the case of two resonances, such as a + b →
(mα,mβ) → a + b, the K matrix can be written as [50]

K = mα�α→ππ (
√

s)

m2
α − s

+ mβ�β→ππ (
√

s)

m2
β − s

. (45)

One can then calculate the T matrix from Eq. (37) and the total
cross section from Eq. (31). One can also calculate the total
cross section from the BW parameterization from Eq. (27).
To illustrate the scenario when the two resonances are well
separated (i.e., when the wings do not significantly overlap),
we consider the first resonance with the mass of mα = 1.2 GeV
with a width �α = 0.1 GeV, and the second resonance mβ =
1.5 GeV with a width �β = 0.2 GeV. The total cross section
for scattering of particles via these two resonances is shown in
the left panel of Fig. 5. In this case, cross sections from the KM
and BW parametrizations are very similar for most colliding
energies, but the magnitude of the total cross section from the
BW parametrization at the peak of the first resonance is slightly
larger than that from the KM parametrization. This is because
in BW the tail of the second resonance contributes to the peak
of the first resonance, which is not the case for the KM.

We show the Argand plot of the T matrices for both
parametrizations in the left panel of Fig. 6. The T matrix from
the KM is able to maintain its unitarity whereas that from the
BW is unable preserve this property exactly.

For two overlapping resonances, we consider mα =
1.35 GeV with �α = 0.3 GeV, and mβ = 1.5 GeV and �β =
0.1 GeV. The total cross sections for the KM and BW cases
are shown in the right panel of Fig. 5. We can see that the
total cross section from the BW parametrization is generally
larger than that from the KM parametrization. The difference
is most significant around the peaks of the two resonances and
also in the region between. Such a difference is caused by the
contribution from the tail of one resonance to the peak region
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FIG. 5. (Color online) (a) Total cross sections for separated
resonances mα (1200) and mβ (1800). The widths are �α = 0.1 GeV
and �β = 0.2 GeV. (b) Total cross sections for nearby resonances mα

(1300) with �α = 0.3 GeV and mβ (1500) with �β = 0.1 GeV. The
solid line is the calculation from the K matrix (KM) parametrization
and the dashed line is the calculation from the Breit-Wigner (BW)
parametrization.

of another in the BW parametrization. Such contributions are
absent in the KM parametrization.

In the right panel of Fig. 6, we show the T matrices from
both the KM and BW parametrizations. The unitarity of the T
matrix is preserved in the case of the KM formalism whereas
such is not the case in the BW parametrization.

To conclude this section, we have shown that (i) for
interaction through a single resonance, both KM and BW
parameterization can maintain the unitarity of their T matrices,
and the total cross sections are very similar to that from the
PS parametrization; (ii) when an interaction contains multiple
resonances, only the KM formalism is able to maintain
the unitarity of the T matrix; and (iii) in the case of multiple

FIG. 6. (Color online) Argand diagrams of the T matrices
corresponding to the resonances in (a) and (b) of Fig. 5. The solid
line is the calculation from the K-matrix (KM) parametrization
and the dashed line is the calculation from the Breit-Wigner (BW)
parametrization.

resonances, the total cross section from the BW is always
larger than that from the KM parametrization. In this work, we
employ the KM parametrization to calculate the differential
cross sections needed for the calculation of viscosity and the
phase shifts required for the calculation of entropy density.
Resonance masses and widths are taken from the Particle Data
Group (PDG) [55]. Although the number of instances in which
interference effects are significant is small, the use of the KM
parametrization automatically guarantees the preservation of
unitarity.

IV. THERMODYNAMICS OF INTERACTING HADRONS

The equilibrium thermal properties of a hadron gas consists
of ideal (from translational degrees of motion due to thermal
agitation) and interacting (from strong interaction dynamics)
parts. The ideal gas contributions are straightforward to
compute (see, for example, the formulas in Appendix 1 of
Ref. [56]). Leading contributions to the thermal properties
from interactions between hadrons can be calculated using
the second virial coefficient which can be deduced from
two-body phase shifts [57]. The relativistic virial expansion
introduced by Dashen et al. [58] has been fruitfully employed
to calculate the state variables of interacting hadrons in
Refs. [56,59], which we adopt in the following. Explicitly,
interacting contributions to the pressure, energy density, and
entropy density at the second virial level are given by the
following expressions:

nint = 1

π3

∫ ∞

M

dε ε2K1(ε β)
∑
l,I

′
gI

l δ
I
l (ε), (46)

Pint = 1

β

1

2π3

∫ ∞

M

dε ε2 K1(εβ)
∑
l,I

′
gI

l δ
I
l (ε), (47)

Eint = 1

4π3

∫ ∞

M

dε ε3[K2(εβ) + K0(εβ)]
∑
l,I

′
gI

l δ
I
l (ε),

(48)

sint = β
1

2π3

∫ ∞

M

dε ε3 K2(εβ)
∑
l,I

′
gI

l δ
I
l (ε), (49)

where M = ma + mb is the invariant mass of the interacting
pair at threshold, β = 1/T , Kν is the modified Bessel function
of order ν, and ε = (q2 + m2

a)1/2 + (q2 + m2
b)1/2 is the total

center-of-mass energy, q being the center-of-mass momentum
of one of the two outgoing particles. The prime denotes that,
for a given l, the sum over I is restricted to values consistent
with statistics (I + l) that are even; gI

l = (2l + 1)(2I + 1) is
the spin-isospin degeneracy of the (l, I ) resonance.

It is worthwhile mentioning here that contributions from
higher than the second virial coefficient can significantly
contribute to the state variables mentioned above. In general,
the logarithm of the partition function can be written as

ln Z = ln Z0 +
∑
i1,i2

z
i1
1 z

i2
2 b(i1, i2), (50)

044917-7



WIRANATA, KOCH, PRAKASH, AND WANG PHYSICAL REVIEW C 88, 044917 (2013)

where zj = exp(βμj ) for j = 1, 2 are the fugacities and the
virial coefficients b(i1, i2) are [58]

b(i1, i2) = V

4πi

∫
d3P

(2π )3

∫
dε exp(−β(P 2 + ε2)1/2)

×
[
A

{
S−1 ∂S

∂ε
− ∂S−1

∂ε
S

}]
c

. (51)

In the above, V , P , and ε stand for the volume, the total
center-of-mass momentum, and energy, respectively. The
labels i1 and i2 refer to a channel of the S matrix which
has an initial state containing i1 + i2 particles; the trace is
therefore over all combinations of particle number. The symbol
A denotes the symmetrization (anti symmetrization) operator
for a system of bosons (fermions) and the subscript c refers
to the trace of all linked diagrams. The lowest (second) virial
coefficient b2 ≡ b(ii , i2)/V as V → ∞ corresponds to the
case in which i1 = i2 = 1, from which the expressions in
Eqs. (46)–(49) ensue. To our knowledge, multiparticle initial
states—as would be appropriate, for example, to treat the
ω(783) meson appropriately—have not been attempted thus
far (including this work) in calculations of thermodynamics.
The work of Lu and Moore [60], performed in the context of
bulk viscosity, and in which the T matrix for three pions in
the initial state was proposed, could be a starting point for
investigating the role of the third virial coefficient.

An adequate treatment of repulsive channels and inelastic
channels also requires careful attention. For all but the lightest
mesons (π and K) and nucleons, experimental knowledge
about repulsive interactions is not available. Since the in-
teracting contributions to the state variables are given by
a convolution of the isospin-weighted sum of the phase
shifts with thermal weights, the repulsive channels negate the
positive contributions of some of the attractive channels [56].
Furthermore, several reactions are characterized by significant
amounts of inelasticities. While a complete knowledge of
the T matrix would include inelastic channels, a practical
approach that encompasses all the resonances encountered
in a heavy-ion collision is yet to be devised. In this work,
however, we will limit ourselves to the level of the second virial
coefficient. Improvements to address the limitations mentioned
above will be taken up in a separate work.

In the case of π π → ρ → π π , the contribution of inter-
actions, up to the second virial level, to the entropy density can
be calculated from Eq. (49) using phase shifts from the KM
and BW parametrizations or phase shifts fitted to experiments
where available. In Fig. 7, we contrast results of the total
entropy density calculated by adding the ideal part to that
from Eq. (49) using these different parametrizations of phase
shifts. Again, differences arise from the parametrization of
the ρ resonance in each method. It is important to mention
here that the KM and BW approaches are able to take
account of resonant interactions only from information on
masses and widths available in the Particle Data book, but
they lack consideration of repulsive channels (which are
known to exist in ππ interactions) in many cases. In this
and all subsequent figures, the hadron to quark-gluon phase
transition temperature Tc = 155 ± 5 MeV from the lattice
calculations of the Budapest-Wuppertal collaboration [61] is

FIG. 7. (Color online) Entropy density versus temperature of
pions interacting through the channel ππ → ρ → ππ . The dashed
curve shows results when phase shifts from experiments are parame-
terized as in Eq. (23). The solid curve is for the K-matrix (KM) and
Breit-Wigner (BW) parametrizations from Eq. (44). The transition
temperature, Tc, from Ref. [61], is indicated by the rectangular box.

shown by a rectangular box. All of our results for thermal and
transport properties are meaningful only below Tc, and the
results extending beyond Tc are only indicative of those in a
hypothetical hadronic world.

V. SINGLE-COMPONENT SYSTEM

Here we consider the case of a system consisting of pions
only as a prototype of a single-component gas. The more
realistic case of a multicomponent mixture will be considered
in the next section. In Table I, we show eight resonant channels
in ππ interactions that lead to ππ final states as listed in
the Particle Data book [55]. Those with very small branching
ratios have been omitted. With increasing temperatures, even
this hypothetical single-component system is not as simple as
one may first assume insofar as many resonances can and do
contribute to the thermal and transport properties.

TABLE I. List of resonances formed in π -π interactions. The
first column is the resonance’s identity. Resonance masses (second
column) and widths (third column) are in units of MeV. The last
column gives the branching ratio of each decay channel. Resonances
with smaller branching ratios than shown are omitted. Entries are
taken from the PDG [55].

Particle Mass Width Branching ratio
(MeV) (MeV) π -π

ρ 774 150 1
ω 782 8 0.02
f0 980 100 0.7
f2 1270 185 0.875
f02 1370 200 0.1
ρ2 1465 310 0.5
f

′
2 1525 76 0.01

ρ3 1690 235 0.1
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FIG. 8. (Color online) Shear viscosities (calculated by using the
K-matrix formalism) vs temperature. The dashed curve shows results
when only the ρ resonance was considered. Results when all possible
resonances (see Table I) formed in π -π interactions were included are
shown by the solid curve. The transition temperature, Tc, is indicated
by the rectangular box [61].

The coefficient of shear viscosity for a single component
system is calculated from Eqs. (1)–(3) for two different cases:
(i) ππ → ρ → ππ and (ii) ππ → all channels → ππ . The
differential cross sections for both cases are parameterized
by the K-matrix formalism described in Sec. III C. The
ensuing results for the shear viscosity are shown in Fig. 8.
Although the ρ-meson contribution dominates, the reduction
in the magnitude of the viscosity upon the inclusion of all the
resonances in Table I is clearly evident, particularly close to
the phase transition temperature.

The addition of more channels increases the magnitudes
of thermodynamics quantities, such as the pressure, energy
density, and entropy density. In Fig. 9, we show the entropy
density, which is calculated by adding the ideal gas contribu-
tions to those from Eq. (49) for the ππ interactions. Relative

FIG. 9. (Color online) Entropy density versus temperature of an
interacting pion gas. The dashed line is the result when only the
ρ channel is included, whereas the solid line is the result when all
resonances in Table I are included. The transition temperature, Tc, is
indicated by the rectangular box [61].

FIG. 10. (Color online) Ratio of shear viscosity (calculated using
the K-matrix formalism) to entropy density versus temperature. The
dashed line corresponds to the case when only the ρ resonance was
considered. The solid line shows results when all possible resonances
formed in π -π interactions (see Table I) were included. The AdS/CFT
lower bound of η/s is shown by the red dotted line. The transition
temperature, Tc, is indicated by the rectangular box [61].

to the case when only the ρ resonance is considered (dashed
curve), the significant increase in the entropy density when
all resonances in Table I are included (solid curve) is chiefly
due to the increased number of (spin and isospin) degrees of
freedom.

The ratios of η/s for the cases discussed above are
shown in Fig. 10. The dashed line is the result when only
the ρ channel is considered and the solid line shows the
result when all resonances in Table. I are included. As
the temperature approaches the hadron to quark-gluon phase
transition temperature Tc = 155 ± 5 MeV found in lattice
simulations [61], η/s decreases more rapidly when all channels
are included than when only the ρ channel is considered. The
inclusion of several resonances not only causes a reduction
in the coefficient of shear viscosity, η, it also results in a
significant increase in the entropy density, s. Both of these
effects cause the ratio η/s to become small as the temperature
approaches Tc.

VI. MULTICOMPONENT SYSTEM

In this section, we consider a four-component mixture
consisting of π -K-N -η(548) and include the dominant res-
onances (see Tables I and II) produced in binary elastic
interactions among the various constituents. In order to gain an
understanding of how the inclusion of an increasing number
of particles (and their associated resonances) determines the
magnitudes of η and η/s, we also show results for the
two-component mixtures of π -K and π -N , as well as for
the three-component mixture of π -K-N together with results
for the π -K-N -η(548) mixture. Thermodynamic properties
for each of the above systems, calculated using the virial
expansion formalism of Sec. IV, are presented in terms of the
interaction measure I = (ε − 3P )/T 4 and compared with the
lattice results of the Budapest-Wuppertal (BW) Collaboration
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TABLE II. List of resonances involved in π -K-η-N interactions.
The first column contains the resonance’s identity. Masses (second
column) and widths (third column) are in units of MeV. The
remaining columns give the branching ratios of the corresponding
decay channels. The data shown are from the PDG, Ref. [55].

Particle Mass Width Branching ratios

π -K K-K π -η π -N K-N

K∗ 893 50 1.0
K∗

0 1429 287 1.0
K2 1430 100 0.5
K∗

2 1410 227 0.3
K∗

3 1680 323 0.4
a0 984 185 0.1 0.9
φ 1020 4 0.84
f ∗

0 1370 200 0.2
a2 1320 107 0.05 0.14
φ2 1680 150 0.1
φ3 1890 400 0.1
�1232 1232 115 1.0
�1600 1600 200 0.15
�1620 1620 180 0.25
�1700 1700 300 0.20
�1900 1900 240 0.30
�1905 1905 280 0.20
�1910 1910 280 0.3
�1920 1920 260 0.15
�1930 1930 360 0.15
�1950 1950 285 0.45
N∗

1440 1440 200 0.7
N∗

1520 1520 125 0.6
N∗

1535 1535 150 0.55
N∗

1650 1650 150 0.8
N∗

1675 1675 140 0.45
N∗

1680 1680 120 0.65
N∗

1700 1700 100 0.10
N∗

1710 1710 110 0.15
N∗

1720 1720 150 0.15
N∗

1900 1900 250 0.1
N∗

1990 1990 550 0.05
�∗

1520 1520 16 0.45
�∗

1600 1600 150 0.35
�∗

1670 1670 35 0.20
�∗

1690 1690 60 0.25
�∗

1800 1800 300 0.40
�∗

1810 1810 150 0.35
�∗

1820 1820 80 0.65
�∗

1830 1830 95 0.10
�∗

1890 1890 100 0.35
�∗

1660 1660 100 0.3
�∗

1670 1670 60 0.13
�∗

1750 1750 90 0.4
�∗

1775 1775 120 0.4
�∗

1915 1915 120 0.15
�∗

1940 1940 220 0.1

[61] as well as with those of a hadron resonance gas (HRG)
with the same constituents from Ref. [62].

In Fig. 11, the interaction measure I is shown for the
pion gas and for the binary mixture π -K . Our results using

FIG. 11. (Color online) Interaction measure I = (ε − 3P )/T 4 of
interacting pions and of the mixture π -K . The solid lines are results
from the virial expansion approach and the dashed lines are results
from a hadron resonances gas (HRG) model [62]. The transition
temperature, Tc is indicated by the rectangular box [61].

the virial expansion method are calculated from Eqs. (47)
and (48) and are shown by the solid curves. Results of
the HRG model [62], calculated using the same number of
particles/resonances, are shown by the dashed curves. For the
pion gas, all resonances from Table I are included in both
calculations. For the π -K mixture, interactions between π -π ,
π -K, and K-K through the resonances shown in Tables I and
II are included. Note that the results from the virial expansion
approach are slightly larger compared to those from the HRG
model. We attribute this difference to the fact that the widths of
the various resonances are accounted for naturally in the former
approach whereas the HRG model includes resonances without
consideration of their widths. In the limit of sufficiently small
widths, the virial expansion approach guarantees that the
pressure (and other thermodynamic quantities) of a dilute
system of interacting particles is very well approximated by
that of an ideal gas of noninteracting particles including the
resonances (see Refs. [56,58,63,64]). This feature forms the
basis of the HRG model. However, repulsive channels (as, for
example, the δ2

0 channel in ππ interactions) are not included
in the HRG model. Where available, effects of repulsive
channels can be straightforwardly incorporated in the virial
expansion approach through the appropriate phase shifts (un-
fortunately, adequate data does not exist for all but the lightest
mesons).

A comparison of results from the virial expansion approach
to those from lattice calculations of the BW collaboration [61]
is shown in Fig. 12. In the interest of being consistent with the
ingredients of transport calculations, only those resonances
that are formed in the π -K-η-N mixture (shown in Tables I
and II) are included in the virial expansion approach. The
number of resonances included in the case of the π -K-η
mixture is 21 whereas 57 resonances are included in the
π -K-η-N mixture. As is evident from this figure, the additional
resonances present in the four-component mixture improve the
agreement with the lattice results up to 140 MeV. The inclusion
of additional mesons and baryons more massive than realized
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FIG. 12. (Color online) Interaction measure I = (ε − 3P )/T 4

from lattice calculations (data points) with three- quarks (nf =
2 + 1), mπ = 135 MeV, and lattice spacing Nt = 8 (BW Col-
laboration). The dashed line is the result for a three-component
mixture of π -K-η(548) and the solid line is the result for a four-
component mixture of π -K-η(548)-N . The transition temperature,
Tc, is indicated by the rectangular box [61].

in the π -K-η-N mixture is expected to improve agreement
with the current lattice results (as supported by results of HRG
calculations with all the resonances in the PDG book) even up
to the phase transition temperature Tc [61].

The temperature dependence of the shear viscosity in a
π -K-η-N mixture is displayed in Fig. 13. The progressive
decrease in the magnitude of the shear viscosity with increas-
ing temperature as more and more resonances are included
is readily apparent from this figure particularly as Tc is
approached. The inclusion of more resonances than considered
in this work is likely to reduce the magnitude of η even further
as Tc is approached (see also [65]).

The results of the ratio η/s are presented in Fig. 14.
As explained in the previous section, the role of increasing
the number of resonances is evident even in the case of a

FIG. 13. (Color online) Shear viscosity vs temperature for the
π -K-η-N mixture. The transition temperature, Tc, is indicated by the
rectangular box [61].

FIG. 14. (Color online) Ratio of shear viscosity to entropy
density, η/s, of interacting hadrons. Results are for a single-
component system (π gas), two-component mixtures (π -K and π -N ),
a three-component mixture (π -K-N ) and a four component mixture
[π -K-η(548)-N ]. The horizontal curve at 1/(4π ) is the AdS/CFT
result.

single-component pion gas. In addition to decreasing the shear
viscosity, resonances increase the entropy density both effects
serving to decrease η/s with increasing temperature. A similar
trend is observed in the case binary mixtures as seen from
the results for the π -K and π -N mixtures. The fact that η/s
for these two mixtures are nearly the same is intriguing. A
physical understanding of this result resides in the masses
of the resonances realized in these two systems, which are
nearly the same. Results for the three (π -K-N ) and four
[π -K-η(548)-N ] component systems highlight the increasing
role of the enhanced entropy density in these systems, as
the heaviest resonances are not very effective in transferring
momentum in a direction perpendicular to that of fluid flow.
For reference, the AdS/CFT result of 1/(4π ) is also shown in
this figure. From the trends seen in these results, we infer that
the inclusion of additional mesons and baryons will further
decrease η/s as Tc is approached, though not to the level of
the AdS/CFT result.

VII. SUMMARY AND CONCLUSION

In this paper, we have calculated the shear viscosity η and
the entropy density s of an interacting hadronic resonance
gas. Calculations of η were performed using the relativistic
generalization of the Chapman-Enskog approach, whereas
calculations of the entropy density employed the relativistic
virial expansion method. Our results are for a hadronic mixture
with net baryon number zero and are meaningful only below
the hadron to quark-gluon phase transition temperature of
about 155 MeV. The mixture considered comprised of four
basic hadrons π -K-η-N in which 57 resonances, formed
through binary elastic interactions between the constituents,
were included. In order to understand the results for the four-
component mixture, calculations for a single-component pion
gas, binary mixtures π -K and π -N , and the tertiary mixture
π -K-η with dominant resonances were also performed. In both
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the calculations of η and s, phase shifts for binary interactions
among the various particles feature prominently. Experimental
information on such phase shifts is only available for a few
cases in the π -π , π -K , π -N, and N -N systems, but not for
most of the massive resonances formed. From the masses and
widths of these various resonances, phase shifts (necessary in
the calculation of the thermodynamic properties of the system
using the virial expansion approach) and associated differential
cross sections (required in the calculation of shear viscosity
using the Chapman-Enskog method) were obtained using both
the Breit-Wigner (BW) and the K-matrix (KM) formalisms.
For narrow and well separated resonances, both of these
formalisms yield similar results that maintain unitarity of the
T matrix. However, for wide and nearby resonances only the
K-matrix approach preserves unitarity. The use of phase shifts
and differential cross sections obtained from the K-matrix
approach in the calculations of η and s is the principal new
element of this work.

Our results for the single component pion gas in which
eight resonances up to 1700 MeV are included highlights the
important role of resonances in determining the magnitudes of
η and s as a function of temperature. Increasing the number of
resonances decreases the magnitude of η as additional channels
of interaction are opened up, but increases s due to the increase
in the number of degrees of freedom. Both these features render
the ratio η/s small. These physical effects are further fortified
in binary mixtures of π -K and π -N due to the presence of a
large number of resonances resulting in a further decrease of
the ratio η/s from the case of the single-component pion gas.
Results for the tertiary mixture containing π -K-η and the four-
component mixture π -K-N -η continue the trends observed in
the fewer component mixtures both for η and s resulting in
a much reduced ratio of η/s. The implication of these results
is that were more mesons and baryons than considered in this
work to be included, the ratio η/s would become even smaller
than what we find here for the π -K-N -η mixture, though
perhaps not to the level of the AdS/CFT result of 1/(4π ) as Tc

is approached.
A few future directions are suggested by our work. The in-

clusion of more mesons and baryons than considered here will
reveal how low η/s can become in a system of hadrons with
zero net baryon and strangeness numbers. To be of practical
use for the low-energy scans of RHIC and other upcoming
accelerators, calculations of both η and s for finite baryon
and strangeness numbers appear worthwhile. Additionally, the
possibility that hadrons could be far from chemical equilibrium
and thus influence the magnitude of η/s needs to explored.
Depending on the density and the time scales for chemical
equilibration of the various species, freeze-out may occur with
an overabundance of many mesons relative to the case in which
full chemical equilibrium prevails. As evolution proceeds,
decreasing the local density, chemical equilibrium might be
lost prior to thermal equilibrium so that some constituents (e.g.,
pions, kaons, etc.) acquire dynamically generated chemical
potentials as pointed out in Refs. [31,66,67]. Investigations of
transport coefficients for multicomponent hadrons which are
far from chemical equilibrium are thus worthwhile and will be
taken up in future work.
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APPENDIX A: PHASE SHIFT AND BREIT-WIGNER
CROSS SECTIONS

Here, we discuss the extent to which cross sections derived
from phase shifts and the Breit-Wigner parametrization are
related. To be specific, we consider the process ππ → ρ →
ππ and its associated experimental phase shift which is
parametrized as

δ1
1(

√
s) = π

2
+ arctan

( √
s − mρ

�ρ→2π (
√

s)/2

)
. (A1)

The corresponding differential cross section is

σ (s, θ ) = C(I, l)

q2
sin2 δ1

1 P1(cos θ ), (A2)

where C(I, l) is the symmetry factor which contains spin-
isospin multiplicities. We can recast the above expression
to resemble the well known Breit-Wigner formula using
trigonometric identities:

sin(a + b) = sin(a) cos(b) + cos(a) sin(b), (A3)

where a = π/2 and b = arctan[(
√

s − mρ)/(�ρ→2π/2)], and

cos2(b) = 1

1 + tan2(b)
, (A4)

whence

sin2 δ1
1 = 1

1 + (
√

s−mρ )2

�2
ρ→2π /4

= �2
ρ→2π/4

(
√

s − mρ)2 + �2
ρ→2π/4

(A5)

so that the differential cross section can be written as

σ (s, θ ) = C(I, l)

q2

�2
ρ→2π/4

(
√

s − mρ)2 + �2
ρ→2π/4

P1(cos θ ) (A6)

which is the Breit-Wigner formula. However, some differences
exist in the parametrizations of the widths:

�ρ→2π (PS) = 0.095 q

(
q/mπ

1 + (q/mρ)2

)2

, (A7)

�ρ→2π (BW) = �0

(
q√
s

)(
mρ

qρ

)
[B1(q, qρ)]2. (A8)

Numerical values of �’s and their total cross sections at three
representative energies,

√
s = 2mπ , mρ , and ∞ shown in

Table III serve to illustrate the differences.
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TABLE III. Widths of the ρ resonance at three energies.

√
s q/

√
s �ρ→2π (PS) �ρ→2π (BW) σPS(s) σBW(s)

2mπ 0 0 0 0 0
mρ qρ/mρ �0 = 0.155 �0 = 0.155 C(I, l)/q2

ρ C(I, l)/q2
ρ

∞ 1/2 0 0.252 0 0

APPENDIX B: THE K -MATRIX AND BREIT-WIGNER
CROSS SECTIONS

The squared T matrix can be written as

|T |2 = 1

(1 + K2)2
(K2 + K4) = K2

(1 + K2)
. (B1)

In the case of the ρ resonance, one has

K2 = m2
ρ�

2
ρ→2π(

m2
ρ − s

)2 , (B2)

(1 + K2)2 =
(
m2

ρ − s
)2 + m2

ρ�
2
ρ→2π(

m2
ρ − s

)2 , (B3)

which allows us to write

|T |2 = m2
ρ�

2
ρ→2π(

m2
ρ − s

)2 + m2
ρ�

2
ρ→2π

. (B4)

Near the peak of the resonance,

m2
ρ − s = (mρ − √

s)(mρ + √
s)  (mρ − √

s)2mρ (B5)

so that

|T |2 = �2
ρ→2π/4

(mρ − √
s)2 + �2

ρ→2π/4
. (B6)

Note that, near the peak of the resonance, the cross sections
obtained from phase shifts, the Breit-Wigner formula, and the
K-matrix formalism are all the same.

If the same width is used in all three parametrizations, the
resulting cross sections will be identical.

APPENDIX C: K -MATRIX CROSS SECTION
FOR A SINGLE RESONANCE

The differential cross section for a binary interaction is
given by

σ (s, θ )ab→cd = |fab→cd (s, θ )|2, (C1)

where fab→cd (s, θ ) is the scattering amplitude given by

fab→cd (s, θ ) = 1

q

∑
l

(2l + 1)T l
ab→cd (s)Pl(cos θ ), (C2)

with q = 0.5
√

s − 4 m2
π , l is the orbital angular momentum,

T l
ab→cd (s) is the interaction matrix, and Pl(cos θ ) is the orbital

angular momentum dependence of the T matrix. In terms of
the K matrix, the T matrix can be obtained from

Re T = K

(1 + K2)
and Im T = K2

(1 + K2)
. (C3)

For a resonant interaction (using the example of the ρ
resonance to be specific), the K matrix can be written as

K = mρ�ρ→2π

m2
ρ − s

, (C4)

where �ρ→2π is the width of the ρ resonance:

�ρ→2π = �0
ρ→2π

(
mρ√

s

)(
q

qρ

)
[B1(q, qρ)]2, (C5)

where �0
ρ→2π is the width at the pole, qρ = 0.5 (m2

ρ −
4 m2

π )1/2, and the factor B is given by

B1(q, qρ) = F1(q)

F1(qρ)
, (C6)

where

F1(q) =
√

2 z

z + 1
, z(q) = q

0.197
. (C7)

APPENDIX D: TWO AND MORE RESONANCES

When two or more resonances are involved, the path
through the T matrix within the K-matrix formalism becomes
cumbersome, albeit straightforward. An alternative way is to
use the scattering amplitude. Recall that

σ (s, θ ) = |fab→cd (s, θ )|2, (D1)

the scattering amplitude being

fab→cd (s, θ ) =
∞∑
l

(2l + 1)fl(
√

s)Pl(cos θ ) (D2)

and

fl(
√

s) = eiδl sin δl

q
= 1

q
(cos δl sin δl + i sin2 δl). (D3)

In the case of a single resonance,

|fab→cd (s, θ )|2 = (2l + 1)2 sin2 δl

q2
P 2

l (cos θ ), (D4)

while in the case of two resonances,

f1 = 1

q
(cos δ1 sin δ1 + i sin2 δ1)P1(cos θ ), (D5)

f2 = 1

q
(cos δ2 sin δ2 + i sin2 δ2)P2(cos θ ). (D6)

Resolving the scattering amplitude into its real and imaginary
parts, we obtain

Re fab→cd = 1

q
[(2l1 + 1) cos δ1 sin δ1P1(cos θ )

+ (2l2 + 1) cos δ2 sin δ2P2(cos θ )], (D7)

Im fab→cd = 1

q
[(2l1 + 1) sin2 δ1P1(cos θ )

+ (2l2 + 1) sin2 δ2P2(cos θ )]. (D8)

The generalization to more more than two resonances proceeds
along similar lines as above.
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