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High-multiplicity pp and pA collisions: Hydrodynamics at its edge
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With growing multiplicity, the pp and pA collisions enter the domain where the macroscopic description
(thermodynamics and hydrodynamics) becomes applicable. We discuss this situation, first with simplified thought
experiments, then with some idealized representative cases, and finally address the real data. For clarity, we do not
do it numerically but analytically, using the Gubser solution. We found that the radial flow is expected to increase
from central AA to central pA, while the elliptic flow decreases, with higher harmonics being comparable. We
extensively study the magnitude and distribution of the viscous corrections, in Navier-Stokes and Israel-Stuart
approximations, ending with higher gradient resummation proposed by Lublinsky and Shuryak. We found that
those corrections grow from AA to pA to pp, but remain tractable even for pp.
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I. INTRODUCTION

High energy heavy ion collisions are theoretically treated
very differently from pp and pA ones. While the for-
mer are very well described using macroscopic theories—
thermodynamics and relativistic hydrodynamics—the latter
are subject to what we would like to call the “pomeron
physics”, described with a help of microscopic dynamics in
terms of (ladders of) perturbative gluons, classical random
gauge fields, or strings. The temperature and entropy play a
central role in the former case, and are not even mentioned or
defined in the latter case.

The subject of this paper is the situation when these two
distinct worlds (perhaps) meet. In short, the main statement
of this paper is that specially triggered fluctuations of the pp
and pA collisions of particular magnitude should be able to
reach conditions in which the macroscopic description can
be nearly as good as for AA collisions. While triggered by
experimental hints at the Cern Large Hadron Collider (LHC)
to be discussed below, this phenomenon has not yet been a
subject of a systematic study experimentally or theoretically,
and is of course far from being understood. So on onset let us
enumerate few key issues to be addressed.

(i) How do the thermodynamical and hydrodynamical
(viscosities, relaxation time, etc.) quantities scale with
the change in the system size R and the multiplicity N?
What are the criteria for macroscopic (hydrodynamical)
behavior?

(ii) What are the consequences of the fact that the strongly
coupled quark-gluon plasma (sQGP) phase of matter is
approximately scale invariant?

(iii) Do high multiplicity pp and pA collisions in which the
(double) “ridge” has been recently observed at the LHC
[1–3] fit into the hydrodynamical systematics tested so
far for AA collisions?

(iv) What is the expected magnitude of the radial flow in
pp and pA collisions, and how is it related to that in
AA? What are the freeze-out conditions in these new
explosive systems?

(v) How do amplitudes of the second and higher angular
harmonics vn scale with n, R, and η/s? In which pt

region do we expect hydrodynamics to work, and for
with vn?

The major objective of the heavy ion collision program
is to create and study properties of a new form of matter,
the quark-gluon plasma. Among many proposed signatures
proposed in [4], the central role is played by production
of macroscopic fireball of such matter, with the subsequent
collective explosion described by the relativistic hydrodynam-
ics. Its observable effects include radial and elliptic flows,
supplemented by higher moments vm,m > 2. At the BNL
Relativistic Heavy Ion Collider (RHIC) and LHC the AA
collisions has been studied in detail by now, with multiple
measured dependences, with excellent agreement with hydro-
dynamics in a wide domain, for n < 7 and in the range of
pt < 3 GeV.

Let us start with a very generic discussion of applicability
of hydrodynamics. The basic condition is that the system’s
size R should be much larger than microscopic scales such as,
e.g., the correlation lengths or the inverse temperature T −1.
The corresponding ratio is one small parameter

1

T R
≈ O(1/10) � 1, (1)

where the value corresponds to well-studied central AA
collisions. Another important small parameter which we seem
to have for sQGP is the viscosity-to-entropy-density ratio

η

s
= 0.1 . . . 0.2 � 1. (2)

This tells us that viscous scale—the mean free path in kinetic
terms—is additionally suppressed compared to the micro scale
1/T by strong interaction in the system. The product of both
parameters appearing in expressions below suggests that one
can hope to apply even ideal hydrodynamics in AA collisions
with few percent accuracy, as also is seen phenomenologically.

The reason why the fireballs produced in AuAu collisions
at RHIC and PbPb at LHC behaves macroscopically is related
to the large size of the colliding nuclei used. Yet smaller
systems, with sizes O(1 fm) occurring in pp or pA, should
also be able to do so, provided certain conditions are met. Let
us thus start to define a proper comparison, starting with our
thought experiment 0, in which two systems (see a sketch in
Fig. 1) A and B have the same local quantities—temperatures,
viscosities and the like—but different sizes RA > RB . (For
example, think of AuAu and CuCu collisions at the same
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FIG. 1. (Color online) Temperature T versus the fireball size R

plane. Solid blue line is the adiabate S = const, approximately T R =
const for sQGP. Example 0 in the text corresponds to reducing R,
moving left A → B. Example 1 is moving up the adiabate A →C. Ex-
ample 2 corresponds to adiabatic expansion, such as A → E, C → E.
If in reality C corresponds to pA, the freeze out occurs at the earlier
point D.

collision energy, as in experiments done at RHIC.) The
equations of ideal hydrodynamics

∂μT μν = 0 (3)

include derivatives linearly and therefore simultaneous rescal-
ing of the size and the time xμ → λxμ does not change them.
So, ideal hydrodynamics will produce the same solution for
fireball of any size, provided other parameters are unchanged.
Yet the viscous terms have more gradients, and thus there is
no such symmetry in viscous hydrodynamics. Going from a
large AA fireball to smaller pA . . . pp systems would increases
viscous terms (as powers of 1/R), eventually invalidating
hydrodynamics. (The boundary of which is shown in Fig. 1 by
the red long-dashed line.)

However if local quantities such as T are changed as well, as
is indeed the case in experimental conditions we will discuss,
the conclusion may change. Consider instead the thought
experiment 1, in which we compare two systems on the same
adiabate A and C. For conformally invariant sQGP—such as
exists in the N = 4 supersymmetric theory without running
coupling–S ∼ (T R)3 = const and the points A,C are related
by the scale transformation

RA/RC = ξ, TA/TC = ξ−1. (4)

If the scale transformation is a symmetry, all densities, e.g., the
energy densities, scale with the naive dimensional powers of
the temperature ε/T 4 ∼ const, viscosities do the same. Thus
the absolute scale plays no role. A small (but hotter) plasma
ball C will behave exactly in the same way as the large (but
cooler) A, provided all dimensionless quantities like T R or
total entropy/multiplicity are held constant.

Let us now proceed to the thought experiment 2, which
is the same as above but in QCD, with a running coupling.
In the sQGP regime it leads to (very small, as lattice tells
us) running of s/T 3, some (unknown) running of η/T 3, etc.
The most dramatic effect is however not the running coupling

per se, but the lack of supersymmetry, which allows for
the chiral/deconfinement phase transition at T = Tc, out of
the sQGP phase to hadronic phase. The end of the sQGP
explosion D thus has an absolute scale, not subject to scale
transformation.

So let us consider two systems A,C of the same total
entropy/multiplicity, initiated in sQGP with conditions related
by scale transformation and left them explode. The sQGP evo-
lution would be related by nearly the same set of intermediate
states (modulo running coupling) till T ≈ Tc, after which they
go into the “mixed” and hadronic stages, which are not even
close to be scale invariant. Thus the result of the explosions
are not the same. In fact the smaller/hotter system will have an
advantage over the larger/cooler one, since it has larger ratio
between the initial and final scales Ti/Tf .

(In the language of holographic models the scale is
interpreted as the fifth coordinate x5, and evolution is depicted
as gravitational falling of particles, strings, fireballs, etc.,
toward the AdS center. The ratio of the scales is the distance
traveled in the fifth coordinate: thus in this language two
systems fall similarly in the same gravity, but smaller system
starts “higher” and thus got larger velocity at the same “ground
level” given by Tc.)

The hydro-expansion does not need to stop at the phase
boundary D. In fact large systems, as obtained in central
AA collisions are known to freeze out at Tf < Tc, down to
100 MeV range (and indicated in the sketch by the point E.
However small systems, obtained in peripheral AA or central
pA seem to freeze out at D, as we will show at the end of the
paper.

Short summary of these thought experiments: not only does
one expect the hydro in the smaller/hotter system to be there,
but it should be similar to the one in the larger/cooler system,
due to approximate scale invariance of sQGP. Furthermore,
in fact smaller systems are expected to produce stronger
hydroflow, as they evolve “longer” (not in absolute but in
dimensionless time).

If one wants to make comparison along such lines, the
question is how one can increase the temperature of the system
in practice. One obvious way to do so is to increase the collision
energy: taking a pair of lighter nuclei A′A′ at LHC one can
compare it to collision of heavier nuclei AA at RHIC tuning the
energy so that the multiplicity and centrality of the collisions
be the same, reproducing our thought experiment 2. Yet the
energy dependence of multiplicity is very slow, RHIC and
LHC have different detectors, etc.: so it is not very practical.
Another option is to rely on rare fluctuations, selecting events
with a larger entropy/multiplicity. This is very expensive,1 but
this is what is done in practice.

Let us now briefly outline the history of the subject of
collective flow effects in pp collisions. The radial flow effects
in were searched for in the minimum-bias pp collisions at
CERN ISR more than 30 years ago by one of us [5], with
negative results. Indications for some radial flow have been

1While the cost of an average “min. bias” pp collision is (number of
events)/(cost of LHC) ∼1010/1010$ = 1 per $, in the selected sample
the cost is then about 106$/event.
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found in specially triggered p̄p collisions by the Fermilab
Minimax experiment [6], but the data remained inconclusive
and, more importantly, the magnitude of the flow was small,
below of what the full-fledged hydro would give. (We are
however not aware of any actual comparison of hydro with
these data.)

With the advent of the LHC era of extremely high
luminocities and short-time detector capabilities, a hunt for
strong fluctuations in the parton multiplicity became possible.
Already during the very first run of LHC in 2010, the CMS
collaboration was able [7] to collect sufficient sample of
high multiplicity pp collisions occurring with the probability
∼10−6. CMS found the “ridge” correlation in the highest
multiplicity bins, an angular correlation in the azimuthal angle
between two particles at �φ < 1 which extends to large
rapidity range |�y| � 4. More recently the same phenomenon
was seen in pPb collisions as well, now by the CMS [1],
ALICE [3], and ATLAS [2] collaborations, as well as by
the PHENIX collaboration [8] in dAu collisions at RHIC.
A larger number of “participant nucleons” and higher average
multiplicity substantially weaken the cost of the trigger: the
“ridge” is seen at the trigger level of few percents higher
multiplicity events. It is shown in those works that in pp and
pA collisions, the same threshold in terms of multiplicity is
needed to start showing the “ridge”.

Angular correlations naturally appear in a hydrodynamical
explosion of a nonazimuthally symmetric objects. The spatial
shape is then translated to momentum space and is observed.
For example, in the comments on the CMS discovery written
by one of us [9] it was illustrated by a string placed outside
of an (axially symmetric) stick of explosive. While the basic
wind blowing is isotropic in φ, an extra string may move in a
preferred direction. In central AA collisions it is similar to that.
Axially symmetric explosion has perturbations in the form of
localized “hot spots”, moved by the radial flow.

Furthermore, the subtraction of the so-called “back-to back
recoil” (a peak at φ ∼ π ) (evaluated from some perturbative
(e.g., HIJING) or color glass models [10] or seen experi-
mentally in smaller multiplicity bins) reveals that a ridge
is “doubled” on the away side. The remaining correlation
function is found to be [2,3] nearly symmetric with x →
−x, φ → π − φ. Furthermore, the second angular harmonics
completely dominates the correlator—unlike the central AA,
in which the strongest harmonics is the third. The first
attempts to describe this phenomenon hydrodynamically are
qualitatively consistent with these data. For the pA case, it is
Ref. [11], which starts from Glauber-inspired initial conditions
similarly to what is done in the AA case.

A nucleon propagating through the diameter of the Pb
nucleus “wounds” up to 20 nucleons. Similar number of
“wounded nucleons” and multiplicity can be found for very
peripheral PbPb collisions. Since these two systems have
different transverse area, they approximately correspond to
our “thought experiment 2” (modulo different shape, which
can be accounted for, see below).

The objective of this paper is to extend hydrodynamical
studies, using instead of a complicated “realistic models” with
huge number of details and heavy numerics (the “event-by-
event” hydrodynamics) an analytic approach. As we will see,

this will allow us to focus on generic dependences of the
predictions on the parameters of the problem.

The structure of the paper is as follows. In the next
section we discuss the radial flow using Gubser’s solution.
After putting AA, pA, pp representative cases into common
dimensionless units, we see that they are in fact not so far from
thought experiments just discussed. We will then study viscous
effects, from the Navier-Stokes term, to Israel-Stuart equa-
tions and Lublinsky-Shuryak higher gradient resummation in
Sec. II D. We found an artifact of Gubser solution—large
corrections on the space-like part of the freeze-out surface, but
other than that all viscous effects seem to be reasonably under
control, in all cases considered. We then turn to the harmonics
of the flow vm in the next section, with m = 2,3 and higher. We
start with “acoustic damping” formula, outlying dependence
on the parameters, and then proceed to solving the equations
for Gubser flow perturbations in AA, pA, and pp cases. The
last section is devoted to a comparison to the experimental
data. Only very recently spectra of the identified secondaries
for high-multiplicity pA had allowed to confirm our main
point: the increase of the radial flow, and even determine more
quantitatively the freeze-out conditions.

II. HYDRODYNAMICS OF THE RADIAL FLOW

A. Ideal hydrodynamics and the Gubser’s flow

Since we are interested in comparison of different size
systems, it is important not to have too many details which
can be different and induced some variations. In particularly,
one would like to keep the matter distribution of the same
shape. It is sufficient for this purpose to use a relatively simple
analytic solution found by Gubser [12], see also [13]. This
solution has two symmetries: the boost-invariance as well as
the axial symmetry in the transverse plane. It is obtained via
special conformal transformation, and therefore, the matter is
required to be conformal, with the EOS

ε = 3p = T 4f∗, (5)

where the parameter f∗ = 11 is fitted to reproduce the lattice
data on QGP thermodynamics (not too close to Tc).

The coordinate sets used are either the usual proper time–
spatial rapidity–transverse radius–azimuthal angle (τ̄ , η, r̄, φ)
set with the metric

ds2 = −dτ̄ 2 + τ̄ 2dη2 + dr̄2 + r̄2dφ2, (6)

or the comoving coordinates we will introduce a bit later.
The shape of the solution is fixed, and the absolute scale

is introduced by a single parameter q with dimension of the
inverse length. We call the dimensionful variables τ̄ , r̄ with the
bar, which disappears as we proceed to dimensionless variables

t = qτ̄ , r = qr̄. (7)

In such variables there is a single solution of ideal relativistic
hydrodynamics, which for the transverse velocity and the
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energy density reads

v⊥(t, r) = 2tr

1 + t2 + r2
, (8)

ε

q4
= ε̂028/3

t4/3[1 + 2(t2 + r2) + (t2 − r2)2]4/3
.

The specificity of the system considered is reduced to a single
dimensionless parameter ε̂0 related to macro-to-micro ratio (1)
or multiplicity, plus of course different freeze-outs to which
we turn shortly.

Let us crudely map the AA, pA, and pp collisions to these
coordinates, guessing the scale factors (in f m) to be

q−1
AA = 4.3, q−1

pA = 1, q−1
pp = 0.5. (9)

The energy density parameter can be related to the entropy-
per-rapidity density of the solution

ε̂0 = f −1/3
∗

(
3

16π

dS

dη

)4/3

(10)

which in turn is mapped to multiplicity density per unit rapidity

dS

dη
≈ 7.5

dNch

dη
(11)

defined at freeze-out. We use for central LHC AA= PbPb
collisions

dNAA
ch /dη = 1450. (12)

The pp and pA data are split into several multiplicity bins:
for definiteness, we will refer to one of them in the CMS
set, with the (corrected average) multiplicity Nch = 114 inside
|η| < 2.4 and pt > 0.4 GeV acceptance. We thus take

dN
pA
ch /dη = dN

pp
ch /dη = 1.6

114

2 × 2.4
, (13)

where the factor 1.6 approximately corrects for the unobserved
pt < 0.4 GeV region. Similarly the energy parameters are
fixed for each multiplicity bin.

(For clarity: our thought experiments 1 and 2 of the
Introduction assumed the same values of ε̂0 for points A and
C, thus the same solution. Now we compare central AA and
some representative bins of pA and pp, which correspond to
different adiabatic curves and have different ε̂0.)

The expression for transverse flow (8) does not depend on
ε̂0 though, and all one needs to do to calculate the particle
spectra is to define the freeze-out surfaces, for all cases. Such
a map is shown on the t, r plot in Fig. 2, in which we, for now,
selected the same freeze-out temperature Tf = 150 MeV for
all three cases (to be modified later). Hydrodynamics is valid
between the (horizontal) initial time lines and the contours of
fixed freeze-out temperature Tf , shown by thicker solid line, at
which the particle decouple and fly to the detector. The spectra
should be calculated by the standard Cooper-Fry formula

dN

dηdp2
⊥

∼
∫

pμd�μ exp

(
− pμuμ

Tf

)
(14)

in which �μ is the freeze-out surface, on which the collective
velocity uμ(t, r) should be taken, for details see [14]. (We
ignore changes in the equation of state at T > Tc.)

r
0 1 2 3

t

0.5

1

1.5

2

2.5

3

FIG. 2. (Color online) The three horizontal lines correspond to the
initial time: from bottom up AA (blue solid), pA (black dashed), and
pp (red dash-dot). The corresponding three curves with the same color
are the lines at which the temperature reaches the same freeze-out
value, set to be Tf = 150 MeV. The two thin solid lines correspond
to the values of the variable ρ = −2.2 (lower) and −0.2 (upper).
Those values are used as initial and final values in the evolution of
higher harmonics.

Note first, that while the absolute sizes and multiplicities in
central AA are quite different from pA and pp bins discussed,
in the dimensionless variables those are not so far away.
Notably the pA freeze-out appears “later” than for AA, and
pp later still. (Of course, the order is opposite in the absolute
fm units.) This illustrates the case we made with the thought of
experiment 2: smaller systems get more and more “explosive”,
because in the right units CD path is longer than AD.

The transverse collective velocity on the freeze-out curves
is read off Eq. (8). We would not give here a plot but just
mention that transverse rapidity rise about linearly from the
fireball center to the the maximal values reached at the “corner”
of the freeze-out curves. For three cases considered those are

vmax
⊥ [AA,pA,pp] = [0.69, 0.83, 0.95]. (15)

These values are of course for qualitative purposes only,
to demonstrate the point in the most simple way. We will
discuss recent CMS data and realistic freeze-out surfaces
corresponding to them at the end of the paper.

B. The Navier-Stokes corrections

We continue to discuss the radial flow adding the first
viscosity effect. The equation for the reduced temperature
T̂ = ε̂1/4 using the combination of variables

g = 1 − t2 + r2

2t
(16)

becomes an ordinary differential equation

3(1 + g2)3/2 dT̂

dg
+ 2g

√
1 + g2T̂ + g2H0 = 0. (17)
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FIG. 3. (Color online) The temperature versus dimensionless
time t , for ideal hydrodynamics (solid) and viscous hydrodynamics
with η/s = 0.132 (dashed) lines. The upper pair of (red) curves are
for pp, the lower (black) ones for pA collisions. The upper plot is
for r = 1, the lower plot for r = 3.

This equation is easily solvable analytically in terns of certain
hypergeometric functions or numerically. Note that the last
term contains viscous parameter

H0 = η

ε3/4
= η

s

4

3
f 1/4

∗ . (18)

For η/s = 0.134 one finds H0 = 0.33 we will use as represen-
tative number.

The question is how important is the viscous term. While
H0 is just a constant, its role depends on the magnitude
of the initial temperature T̂0 or total entropy. For AA collisions
we find that its role is truly negligible, as the curves hardly are
separated by the line width. (This is, of course, well known
from all studies in the literature.) For the pA and pp cases
as modeled above one can see a difference between ideal and
viscous solutions, shown in Fig. 3 through the temperature
dependence T = T̂ /t at certain positions. The viscous effect
is maximal at early times, while the viscous and ideal curves
meet near freeze-out. As expected, the viscous effects are more
noticeable at the fireball edge, compare the r = 1 and the

0 2 4 6 8 10 12
0.015
0.010
0.005
0.000
0.005
0.010
0.015

r fm

(a)

σμν

0 2 4 6 8 10 12
0

5. 10 6

0.00001

0.000015

r fm

(b)

π(2)
μν

FIG. 4. (Color online) Radial dependence of the first order
viscous term (a) and the second-order one (b) for central AA

collisions. In (a) the black dashed, blue solid, and brown dotted
lines show 00,11,01 components of σμν , respectively. In (b) we show
00,11,22 components of Eq. (22) by black dashed, blue dotted, and
red solid lines.

r = 3 plots. The main conclusion of this section is that small
viscosity of the sQGP provides only modest corrections to the
radial flow, even for the pA and pp cases.

Another source of viscous corrections comes from modifi-
cations of the particle distributions induced by gradients of the
flow. Those should be proportional to tensor of flow derivatives
at the freeze-out surface

δf (x, p) ∼ f (x, p)pμpνuμ;ν, (19)

where semicolon stands for covariant derivative. The coeffi-
cient is to be determined from the fact that this correction is the
one inducing the viscosity part of the stress tensor. Looking
at the space-time dependence of the (symmetrized) tensor of
flow covariant derivatives

σμν = u〈μ;ν〉 (20)

we found rather curious behavior produced by Gubser’s flow.
In Fig. 4 we display several components of this tensor, and one
can see that some of them change sign and magnitude at r ≈
10 fm, which is on the right hand side or space like part of the
freezeout surface in AA collisions. (The “corner” in this case is
at r ≈ 9.1 fm.) We think that this behavior is in fact an artifact
of the Gubser solution caused by slow (power-like) decrease of
the density at large distance. This tails of the matter distribution
serve in fact as an “atmosphere” around the fireball, in which
some fraction of expanding matter get accelerated inwards. We
checked that such behavior is not observed for exponentially
decaying tails, as is the case for real nuclei. Our conclusion
then is that one should not use Gubser solution outside of the
fireball “rim”, in our case for r > 9.1 fm. Fortunately, with
realistic nuclear shapes that part of the surface contribute only
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very small—few percents—contribution to particle spectra and
can therefore be neglected.

Let us now start the discussion of the second and higher
order gradients. In general, those can be treated phenomeno-
logically: one can write down a complete set of all possible
forms for the stress tensor of the given order, with some
coefficients to be determined empirically. The corresponding
contribution to the stress tensor looks like

πμν =
∑

n

cnP
μν
n (T , uα) ∼

∑
n

cn

(
1

T R

)n

(21)

with some coefficients cn and certain kinematical structures
with i derivatives P

μν
n . Their order of magnitude is given by the

pertinent powers of the hydroparameter 1/T R, or multiplicity.
Unfortunately, even for the second gradients there are way too
many terms for that to be a practical program.

For conformal fluids the number of the second order terms
is more manageable and using the AdS/CFT one can obtain the
value of the coefficients (for a review see [15]). Using such as
a guide, one can estimate the magnitude of the terms neglected
in the Navier-Stokes approximation. Furthermore, for Gubser
flow we find that the rotational (antisymmetric) combination of
the covariant derivatives ωα,β = u[α;β] = 0, which eliminates
two more terms. The term which is the easiest to estimate is
the symmetrized convolution of two first order term

π (2)
μν = −λ1

2
σ〈μλσ

λ
ν〉, (22)

where angular bracket stands for symmetrization of μν. The
AdS/CFT value for the coefficient is λ1 = η/(2πT ).

Radial dependence of this term at the freeze-out surface
for AA collisions is shown in Fig. 4(b). It is reasonably small
and constant, except strong growth “beyond the rim” of the
fireball. As we already noted above, this is the artifact of the
Gubser solution, which should be ignored.

C. The radial expansion and the Israel-Stuart
second-order hydrodynamics

Using the lowest order hydrodynamics equations one can
trade the spatial derivatives by the time ones, and subsequently
promote the “static” gradient tensor σμν to “dynamical” stress
πμν , with its own equation of motion. One may wander how
these equations behave in the Gubser setting. Since the first
version of this paper was posted, this was done in [16], which
we follow in this section. The main purpose of this paper has
been methodical, to check their previously developed MUSIC
hydrosolver against the analytically solvable examples. (The
solutions discussed were not intended to correspond to any
particular physical settings.)

The IS equations to be solved have in this case the form

T̂ ′(ρ)

T̂ (ρ)
+ 2

3
tanh(ρ) = 1

3
π (ρ) tanh(ρ), (23)

c
η

s

[
π ′(ρ) + 4

3
π (ρ)2 tanh(ρ)

]
+ π (ρ)T̂ (ρ) = 4

3

η

s
tanh(ρ),

(24)

T̂

(a)

1

0

2

-2 -1 0 1
ρ

π

(b)

ρ
0 1-1-2

FIG. 5. (Color online) (a) The dimensionless conformal temper-
ature T̂ and (b) the dimensionless conformal stress π as a function
of “time” ρ. The parameters correspond to q = 1 fm−1, η/s = 0.2,

c = 5 and multiplicity corresponding to the highest multiplicity bin
of pA in CMS experiment. The red dotted line in (a) is the ideal
hydro-Gubser solution T̂0/ cosh2/3 ρ. In both plots the blue dashed
lines are for a “realistic” solution with π (0) = 0 near freeze-out,
while the black solid lines are for “nice” solution with zero anisotropic
stress at the initiation time, π (−2) = 0.

where a prime denotes the derivative over the “time” ρ, and

T̂ = T τ, π (ρ) = π̂
ξ
ξ

1

T̂ ŝ
. (25)

Note that at ρ → ±∞ the dimensionless temperature T̂
vanishes as certain negative power of cosh ρ, and therefore
the second equation decouples from the first. Furthermore,
putting to zero the derivative, one find constant fixed point
solution π = 1/

√
c, to which any solution should tend in the

ρ → ±∞ limit. This feature is very unusual, in variance with
Navier-Stokes and generic dissipative equations, which only
regulate solutions at positive time infinity, generating singular
or indefinitely growing solutions toward the past ρ → −∞.
In this sense, there exists clear advantage of the IS equations
over the NS ones: but we don’t think this improvement reflects
actual physics.

The negative of the Israel-Stuart version of hydrodynamics,
is that selecting the initial conditions for π (ρ) is a nontrivial
task. In principle, some theory of pre-equilibrium conditions,
e.g., the AdS/CFT or color glass condensate (CGC) model,
should provide it. For lack of knowledge about the initial value
of the anisotropic part of the pressure tensor πμν practitioners
often select π (τi) = 0 at the initiation time, and then carry it
on from the equation, till freeze-out. In Fig. 5 such a solution
to Israel-Stuart equations given above is shown by the black
solid lines. This solution is indeed more than satisfactory, in
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the sense that the temperature is very close to the ideal case
(red dotted line), and π remains small.

This however is opposite to general expectations for the real
QCD setting, in which the coupling constant runs from small
to large as a function of time. Because of that, the η/s, c are not
in fact constant but run, toward the most ideal fluid reached
near Tc, at the end of the QGP era. Therefore one expects
the nonequilibrium effects, in particular described by π , to
monotonously decrease from the initial to the final state, as
close to equilibrium as possible. We therefore suggest another
possible solution, with π (ρ) set to be zero at the end of the
expansion, at the freeze-out. This solution is shown in Fig. 5 by
the blue dashed line: it indeed shows a monotonous decrease of
π (ρ) in the range of interest, ρ = [−2..0]. While this scenario
is not as nice as the previous one—the anisotropic pressure is
not small at the initial time π (−2) ∼ 1 and in the temperature
deviations from the ideal solution are well seen—perhaps it is
closer to reality.

In summary, while IS approach has advantages such as
regular behavior of the solutions at both time infinities,
in practice it allows wide range of solutions in between,
depending on the required initial conditions for the viscous
tensor. There is no real argument explaining why this version
can be better than the first order NS in cases when viscous
corrections get noticeable, as there is no estimate of the terms
neglected.

D. Higher gradients and Lublinsky-Shuryak resummation

The Navier-Stokes and Israel-Stuart approximations used
so far only includes the first- and second-order terms in the
gradient expansion. What about higher orders?

The expansion coefficients may be obtained from AdS/CFT,
an indispensable tool. For small (linearized) perturbations—
sounds—the correlators of the two stress tensors was calcu-
lated to higher orders in frequency and wave vector ω, k,
extending the original viscosity prediction η/s = 1/4π of Son
et al. [17] to about a dozen further coefficients.

Can one resum the higher gradient terms? While hydro-
dynamics is more than two centuries old, it seems that the
first attempt of the kind has been suggested by Lublinsky and
Shuryak (LS) [18]. An approximate PADE-like resummation
of the higher order terms results from the alternating signs
of the series and coefficients of the order 1, which calls for
approximate resummation a la geometrical series2

1 − x + x2 + · · · → 1

1 + x
(26)

which keeps the quantity positive and regular even for
x > 1. The suggested recipe is to substitute the Navier-Stokes
viscosity constant by an effective one, which is in frequency-

2The reader may ask why not other series, such as, e.g., leading to
e−x . While there is not enough known higher order terms to tell the
difference, large x behavior of the geometric series seems to us more
appropriate.

momentum dependent and reads

ηLS2(ω, k) = ηNS

1 − η2,0k2/(2πT )2 − iωη0,1/(2πT )
(27)

while Eq. (27) involves only two dimensionless coefficients,
whose values for AdS/CFT are

η2,0 = −1

2
, η0,1 = 2 − ln2 = 1.30 (28)

it actually approximately reproduces about a dozen of known
terms. Note that resummation into the denominator suggests a
reduction of the viscous effect as gradient grows. It may look
counterintuitive: note however that viscosity is a coefficient of
terms in hydro equations of (at least) second order of k: so this
reduction only makes such terms finite, not zero.

Recently one of us has studied the “strong shock wave”
problem [19] in the AdS/CFT setting, solved from the first
principles (Einstein equations) and comparing to the LS
resummation. While this problem is far from sound and is a
generic “hydro-at-its-edge” type, with large gradients without
any small parameters, deviations between the NS and the exact
(variational) solution of the corresponding Einstein equations
were found to be on the level of few percents only. Studies of
time-dependent collisions in bulk AdS/CFT have found that
the first-principle solution approaches the NS solution early
on and quite accurately, at the time when the higher gradients
by themselves are not small, see, e.g., [20].

Let us now check how does it work in the case of Gubser
solution. Changing k2, ω into derivatives

−k2/q2 →
(

∂

∂r

)2

+ 1

r

∂

∂r
,

iω/q → ∂

∂t
(29)

makes the resummed factor (with the denominator) an integral
operator, which can be used not only for plane waves of the
sound but for any function of the coordinates f (t, r). The
inverse “LS operator” acting on a function f is defined as

O−1
LS(f ) = 1 + q2

2(2πT )2

(
∂2f

∂r2
+ 1

r

∂f

∂r

)
1

f

+ (2 − ln2)
q

2πT

∂f

∂t

1

f
. (30)

Schematically the resummed hydroequations look as

(Euler) = ηOLS(Naview-Stokes), (31)

where OLS is an integral operator. However, one can act with
its inverse on the hydrodynamical equation as a whole, acting
on the Euler part but canceling it in the viscous term

O−1
LS(Euler) = η(Navier-Stokes). (32)

These are the equations of the LS hydrodynamics. Obviously
they have two extra derivatives and thus need more initial
conditions for solution.

Instead of solving these equations, we will simply check the
magnitude of the corrections appearing in the left hand side
due to the action by the LS differential operator on the (ideal
Gubser) solution used as a zeroth-order starting point. As one
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FIG. 6. (Color online) The action of the LS operator OLS (30)
on the zeroth order (nonviscous) temperature profile, the first term of
Eq. (39). The three lines correspond to AA (black) solid, pA (blue)
dashed, and pp (red) dash-dot.

can see, large systems have a small q/T ∼ 1/RT parameter
and so these corrections are parametrically small. The issue is
what happens “on the hydro edge”, when the corrections have
no formal small parameter.

In Fig. 6 we show the (inverse) action of Eq. (30) on
the zeroth other temperature profile of the Gubser flow as
a function of r . We have used the freeze-out temperature
Tf = 150 MeV and the indicated respective freeze-out times
for pp, pA, and AA. The higher gradient corrections for AA
and pA are inside the few percent range from 1, while in
the pp case the correction is larger, yet still in the 15 percent
range. We thus conclude, that if the LS resummation represents
the role of the higher gradients, the overall corrections remain
manageable, although it does grow from AA to pA to pp cases.

III. HIGHER ANGULAR HARMONICS

A. Acoustic damping

There is a qualitative difference between the radial flow we
had discussed so far, and higher angular harmonics. While the
former monotonously grows with time, driven by sign-constant
pressure gradient, the latter are (damped) oscillators. The
signal observed depends on the viscous damping factor as well
as on the particular phase in which the oscillator finds itself at
the freeze-out time. We will discuss those effects subsequently.

The effect of viscosity damps the higher angular flow
moments stronger. The so called “acoustic damping” formula
was suggested by Staig and Shuryak [21]. Wave amplitude
reaction is given by

Pk = δTμν(t, k)

δTμν(0, k)
= exp

(
− 2

3

η

s

k2t

T

)
. (33)

Since the scaling of the freeze-out time is linear in R or tf ∼ R,
and the wave vector k corresponds to the fireball circumference

which is m times the wavelength

2πR = m
2π

k
, (34)

the expression (33) yields

vm

εm

∼ exp

[
− m2 4

3

(
η

s

)(
1

T R

)]
. (35)

Note that the exponent contains the product of two small
factors, η/s and 1/T R, as discussed in the Introduction. Note
further that the harmonics number is squared. For central PbPb
LHC collisions with

1

T R
= O(1/10) (36)

its product of η/s is O(10−2). So one can immediately see
from this expression why harmonics up to m = O(10) can be
observed.

Proceeding to smaller systems in the spirit of our thought
experiment 0, by keeping a similar initial temperature Ti ∼
400 MeV ∼ 1/(0.5 fm) but a smaller size R, results in a
macro-to-micro parameter that is no longer small, or 1/T R ∼
0.5, 1, respectively. For a usual liquid/gas, with η/s > 1, there
would not be any small parameter left and one would have
to conclude that hydrodynamics is inapplicable for such a
small system. However, since the quark-gluon plasma is an
exceptionally good liquid with a very small η/s, one can
still observe harmonics up to m = O(

√
10) ∼ 3. However, if

T R = const, along the line of the thought experiment 1, there
is no difference in the damping.

Extensive comparison of this expression with the AA
data, from central to peripheral, has been recently done in
Ref. [22]. Both issues—the m2 and 1/R dependences of
the log(vm/εm)—are very well reproduced. It works all the
way to rather peripheral AA collisions with R ∼ 1 fm and
multiplicities comparable to those in the highest pA binds.
Thus the acoustic damping provides hydro-based systematics
of the harmonic strength, to which new pA and pp data should
be compared.

B. Angular harmonics of Gubser flow

The acoustic damping formula just discussed, although
phenomenologically working, still is incomplete as it does
not include the oscillatory prefactors. Since each harmonics
is basically a damped oscillator, stopped at the moment of
freeze-out, there appear certain phases. As emphasized in
Ref. [14], those in general should lead to secondary peaks
in the power spectrum of fluctuations at higher m. Similar
peaks in the power spectrum of cosmological microwave
perturbations are observed, and found to be very sensitive
to fixing cosmological parameters such as the total age of the
Universe (the Hubble constant). So far no secondary peaks in
the spectrum for heavy ion collisions are observed.

The theoretical expressions for linearized hydro equations
were discussed in detail in [13,14] and will not be repeated
here. In the former paper Gubser and Yarom rederived the
radial solution by going into the comoving frame via a
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coordinate transformation from the τ, r to a new set ρ, θ given
by

sinh ρ = −1 − τ 2 + r2

2τ
, (37)

tan θ = 2r

1 + τ 2 − r2
. (38)

In the new coordinates the rescaled metric reads

dŝ2 = −dρ2 + cosh2 ρ(dθ2 + sin2 θdφ2) + dη2.

We will use ρ as the “new time” coordinate and θ as a
new “space” coordinate. In such coordinates the unperturbed
fluid is at rest in the Gubser’s flow. The temperature is now
dependent only on the new time ρ. For nonzero viscosity the
solution becomes

T̂ = T̂0

(cosh ρ)2/3
+ H0 sinh3 ρ

9(cosh ρ)2/3 2F1

(
3

2
,

7

6
;

5

2
,− sinh2 ρ

)
(39)

with T̂ = τf
1/4
∗ T and f∗ = ε/T 4 = 11 as in [12].

The small perturbations to Gubsers flow obey linearized
equations which have also been derived in [13]. Equation
(99) of [13] defines the “scalar” perturbations, which are
propagating, and the “vector perturbations, which are diffusive.
It is commonly assumed that physical perturbations originate
from spatial inhomogeneous matter distributions at the initial
proper time, δT /T (x, τ = τi). The initial velocity field is set to
zero. It is clear from Eq. (99) that only the scalar component is
thus initiated. That is why we focus only on the scalar modes,
solving the equations (108,109) in [13].

We start with the zero viscosity case, so that the background
temperature (now to be called T0) will be given by just the first
term in Eq. (39). The perturbations over the previous solution
are defined by

T̂ = T̂0(1 + δ), (40)

uμ = u0 μ + u1μ (41)

with

û0 μ = (−1, 0, 0, 0), (42)

û1μ = (0, uθ (ρ, θ, φ), uφ(ρ, θ, φ), 0), (43)

δ = δ(ρ, θ, φ). (44)

The exact solution can be found by using the separation of
variables δ(ρ, θ, φ) = R(ρ)�(θ )�(θ ). In the nonviscous case,
that we are now discussing, each of the three equations

R(ρ) + 4

3
tanh ρR(ρ) + λ

3 cosh2 ρ
R(ρ) = 0,

�(θ ) + 1

tan θ
�(θ ) +

(
λ − m2

sin2 θ

)
�(θ ) = 0, (45)

�(φ) + m2�(φ) = 0

are analytically solvable, with the results discussed in [14]. The
parts of the solution depending on θ and φ can be combined

in order to form spherical harmonics Ylm(θ, φ), such that
δ(ρ, θ, φ) ∝ Rl(ρ)Ylm(θ, φ).

The basic equations for the ρ-dependent part of the pertur-
bation, now with viscosity terms, can be written as a system of
coupled first-order equations [13]. We are assuming rapidity
independence, thus the system of equations (107), (108),
and (109), from the referred paper, becomes two coupled
equations, for (the ρ-dependent part of) the temperature and
velocity perturbations

d �w
dρ

= −� �w , �w =
(

δv

vv

)
, (46)

where the index v stands for viscous and the matrix compo-
nents are

�11 = H0 tanh2 ρ

3T̂b

,

�12 = l(l + 1)

3T̂b cosh2 ρ

(
H0 tanh ρ − T̂b

)
,

�21 = 2H0 tanh ρ

H0 tanh ρ − 2T̂b

+ 1,

�22 =
(

8T̂ 2
b tanh ρ + H0T̂b

(−4(3l(l + 1) − 10))

cosh2 ρ
− 16

)

+ 6H 2
0 tanh3 ρ

)/ (
6T̂b

(
H0 tanh ρ − 2T̂b

))
. (47)

Before we display the solutions, we need to translate our
space-time plot into the ρ − θ coordinates. The initiation
surface t = ti are not the ρ = const surfaces. The freeze-out
ones also do not correspond to fixed ρ because the temperature
is T = T̂ (ρ)/t(ρ, θ ). So, in both cases one has to decide which
points on the initiation and final surfaces are most important.
The thin solid lines in Fig. 2 approximately represent the initial
ρi and the final ρf values for all three systems. Therefore, we
will solve the equations between those two surfaces.

In Fig. 7 we show the solution of the ρ evolution of
the two variables, the temperature perturbation and velocity
δl(ρ), vl(ρ). As one can see, all of them start at ρ0 = −2 from
the same δl = 1 value. While the elliptic one l = 2 (black solid
curves) changes more slowly, higher harmonics oscillate more.
We return to its discussion in Sec. IV B.

IV. PHENOMENOLOGY

A. The radial flow in spectra of identified secondaries

The main idea behind experimental signatures of the radial
flow has been developed in [5], it is based on the fact that
collective flow manifests itself differently for secondaries of
different mass. The exponential thermal spectra of the near-
massless pion are simply blue-shifted by a factor, the exponent
of the transverse flow rapidity T ′ = T eκ . However spectra of
massive particles, such as kaons, protons, etc., are modified in
a more complex way. Instead of discussing the shape of the
spectra, let us focus on their high-momentum behavior and
the so-called m⊥ slopes: the particle spectra are fitted to the

044915-9



EDWARD SHURYAK AND ISMAIL ZAHED PHYSICAL REVIEW C 88, 044915 (2013)

FIG. 7. (Color online) The dimensional less temperature perturbation δl(ρ) and velocity vl(ρ), for l = 2, 3, 4 shown by (black) solid, (blue)
dashed, and (red) dotted curves, respectively. Three sets of calculations corresponds to AA, pA, and pp collisions.

exponential form (above certain pt )

dN

dydp2
⊥

= dN

dydm2
⊥

∼ exp

(
− m⊥

T ′

)
(48)

in the transverse mass variable m⊥ =
√

m2 + p2
⊥, typically

above certain value of the m⊥ (see examples below). It has
been found in [5] using the minimum bias ISR pp data that the
so-called “m⊥ scaling” holds—the slopes T ′ are the same for
π,K, p independent on their mass M . This scaling (coming
from the string fragmentation mechanism) implies that there
was no evidence for collective expansion in minimum bias pp
collisions at the ISR energies.

Recent CMS pA data [23] significantly increased the
range of multiplicities, and now contain spectra of identified
particles. As seen in Fig. 8, for small multiplicity bins (marked
by 8 and 32 at the bottom) the same m⊥ scaling holds, 34
years later and at beam energies hundreds of times higher.
However for larger multiplicity bins the slopes grow linearly
with the particle mass. Qualitatively similar behavior has
been previously seen in AGS/SPS/RHIC and LHC AA data,

and is widely recognized as the signature of the radial flow.
Furthermore, six months after the first version of this paper [24]
made its main prediction—that not only the radial flow in pA
and pp will be observed, but that its magnitude will even
be larger than in central AA collisions—is confirmed. The
highest multiplicity pA do have slopes exceeding even those
in central PbPb LHC collisions, the previous record-holding
on the radial flow.

In Fig. 9(a) we show samples m⊥ spectra calculated from
Gubser radial flow. As for any axially symmetric case, one can
perform the integrals over the spatial rapidity and azimuthal
angle analytically, both producing Bessel functions,

dN

dydp2
⊥

= gstat

2π2

∫
drτ (r)r

[
m⊥K1

(
m⊥ cosh(κ)

Tf

)

× I0

(
p⊥ sinh(κ)

Tf

)
− p⊥

dτ

dr
K0

(
m⊥ cosh(κ)

Tf

)

× I1

(
p⊥ sinh(κ)

Tf

) ]
. (49)
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FIG. 8. (Color online) The slopes of the m⊥ distribution T ′ (GeV)
as a function of the particle mass, from [13]. The numbers on the right
are track multiplicity.

In the remaining radial Cooper-Fry integral over the freeze-
out surface one should substitute proper time τ (r) and its
derivative, as well as transverse rapidity κ(τ (r), r), defined
via tanh(κ) = v⊥. The spectra are fitted to exponential form at
large m⊥ [see Fig. 9(a)] and finally in Fig. 9(b) we compare
the slopes T ′ observed by the CMS (in the highest multiplicity
bin) to theoretical results.

We start doing it by comparing to other models. We do
not include the parton cascade models Hijing, as it has no
flow by design and obviously fails in such a comparison. The
(latest version of the) hydrodynamical model “Epos LHC” [25]
predicts spectra with slopes shown by asterisks: as evident
from Fig 9.(b) it misses the slope by a lot, for the protons
by about factor 2. Even further from the data are the slopes
calculated from the AMPT model [26] (diagonal crosses and
dashed line).

Upper two lines in Fig. 9(b) show our results, corresponding
to two selected values of Tf , 0.12, and 0.17 GeV. The former
is in the ballpark of the kinetic freeze-out used for AA data:
but as Fig. 9(b) shows it overpredicts the radial flow for the
pA case. The second value corresponds to the QCD critical
temperature Tc: it is kind of the upper limit for Tf since it is
hard to imagine freeze-out in the QGP phase. As seen from
the figure, such value produces reasonable amount for the
collective radial flow as observed by the CMS. The same level
of agreement holds not only in the highest multiplicity bin, but
for most of them. We thus conclude that in pA the chemical
and kinetic freeze-out coincide.

Apart from the effective m⊥ slopes T ′ for each multiplicity
bin and particle type, the paper [23] also gives the mean
transverse momenta. Like slopes, they also display that
radial flow in few highest multiplicity pA do exceed that in
central AA. Those data also agree reasonably well with our
calculation.

(a)

dN

dydm2
⊥

(y = 0)

m⊥(GeV )

(b)

m(GeV )

T (GeV )

FIG. 9. (Color online) (a) A sample of spectra calculated for
π, K, p, top-to-bottom, versus m⊥ (GeV), together with fitted
exponents.(b) Comparison of the experimental slopes T ′(m) versus
the particle mass m (GeV). The solid circles are from the highest
multiplicity bin data of Fig. 8, compared to the theoretical predictions.
The solid and dash-dotted lines are our calculations for freeze-
out temperatures Tf = 0.17, 0.12 GeV, respectively. The asterisk-
marked dashed lines are for Epos LHC model, diagonal crosses on
the dashed line are for AMTP model.

(The reader may wander why we do not compare the spectra
themselves. Unfortunately we cannot do it now, neither in
normalization more in shape because of significant “feed-
down” from multiple resonance decays, strongly distorting
the small-pt region. Event generators like HIJING and AMPT
use “afterburner” hadron cascade codes for that.)

B. Higher harmonics

The repeated motive of this paper is that the smaller systems
should have stronger radial flow, as they evolve “longer” (in
proper units, not absolute ones) and the pressure gradient
driving them never disappears. Higher harmonics are not
driven permanently but are instead oscillating, plus damped
by the viscosity. Since the only harmonics in the pA and pp
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observed so far are the elliptic m = 2 and triangular m = 3
ones, and their origins are quite different, we will discuss
them subsequently, starting from qualitative expectations and
then returning to hydrocalculations.

Elliptic deformation εAA
2 of the peripheral AA collisions

is quite large, significantly larger than than those of the very
central pA ε

pA
2 of comparable multiplicity. However if those

are evaluated, e.g., in the Glauber model, and divided out in
the ratio v2/ε2, the result should be about the same in both
cases for the same multiplicity in both sets. This is seen from
the acoustic damping expression (35): the same value of the
multiplicity/entropy implies the same T R and thus damping.
An especially interesting case is dAu collisions, as in this case
there are two collision centers and ε2 is factor 2 enhanced [11],
and v2 is also a factor 2 higher [8].

The m = 3 flow originates from fluctuations, not from a
particular average shape. Therefore,3 assuming we compare
the same number of wounded nucleons and multiplicity in
central pA and peripheral AA, we expect similar ε3 in
both cases. Indeed, the magnitude of all m > 2 deformations
is εm>2 ∼ 1/

√
N , where N is the number of “fluctuating

clusters”—wounded nucleons. Thus we expect v3 for both
cases be the same, even without the need to renormalize it by
ε3. This predictions is indeed fulfilled in the LHC data.

Now we return to hydroresults, discussed in Sec. III B.
As one can see from Fig. 7 the time from initial ρ ∼ −2
till freeze-out ρ ∼ 0 is between a quarter and a half of the
period of the oscillations. So the energy associated with the
initial spatial deformation is transferred into kinetic energy
of the flow, and start to come back when the explosion ends.
The amplitude of the velocity at the right hand side (r.h.s.)
of the plot is the largest for the m = 2, and is smaller for
m = 3,4. Smaller system do evolve a bit “longer” which put
their velocity amplitudes closer to zero.

Note that all of those start from the same deformation εm,
so what one reads from this plot is actually proportional to
vm/εm. In order to get absolutely normalized vm/εm one has
to do integration over the the Cooper-Fry freeze-out, as done
in the previous section for radial flow. Since the latter includes
rather lengthy calculations (see [14] for details) we will not do
it at this stage.

Note that the solutions plotted in Fig. 7 all start from
the same amplitude of perturbation δ(ρ) = 1 on the left side
of the plot, corresponding to some initial surface ρ = −2.
Each should be rescaled by the actual amplitude of the initial
deformation εm: in other words, the curves on the r.h.s. show
the normalized deformation of the velocity field vm(ρ)/εm.
The final values of those, at the r.h.s. of the plots, give the
normalized flow at ρ ∼ 0, which is approximately the freeze-
out time. Plugging these values into the Cooper-Fry formula,
one finds that the angular harmonics of the hadron distributions
are proportional to harmonics of the flow vm(ρ ≈ 0). Since
real measurements are done for the two-particle correlation
functions, which give squares of those ratios, we take the
squares of various flow harmonics at the freeze-out time and

3This consideration has been proposed by D. Teaney in the
discussion.

compare it for different systems

(
vAA

2

εAA
2

)2

:

(
v

pA
2

ε
pA
2

)2

:

(
v

pp
2

ε
pp
2

)2

= 0.5 : 0.3 : 0.16. (50)

Note, that even these ratios show some decrease from AA to
pp, due both to viscous damping and oscillation phases.

In order to compare our (or any other) hydro to the data one
needs some theory of the initial state, such as Glauber model or
CGC, providing the values of εm. At the moment, for pp we do
not have such a model, which strictly speaking means we can
only compare the results to other hydro rather than the data.
Still, let us comment that the CMS data do show that the pp
has smaller v2 as compared to pA data, which is smaller than
AA. The observed ratio (v2(pp)/v2(pA))2 is about a factor of
1/4 (see Fig. 3 of [1]). Our solution predicts 1/2: if correct
it means that the pp collisions create a less deformed state
(ε2(pp)/ε2(pA))2 ≈ 1/2.

Let us now compare in a similar manner the ratio of the
m = 3 to m = 2 harmonics(

vAA
3

vAA
2

)2

≈ 0.12

(
εAA

3

εAA
2

)2

,

(
v

pA
3

v
pA
2

)2

≈ 0.09

(
ε

pA
3

ε
pA
2

)2

, (51)

(
v

pp
3

v
pp
2

)2

≈ 0.02

(
ε

pp
3

ε
pp
2

)2

.

Assuming ε3/ε2 ∼ 1 one finds that in pA we predict v3/v2 ≈
1/3, which agrees nicely with the ALICE data [2]. For pp we
have v3/v2 ≈ 1/7 which is still too small to be seen in the
sample available.

C. Comment of higher gradients at freeze-out

The effect of flow gradients affect spectra at freeze-out. As
emphasized by Teaney [27], the equilibrium distribution func-
tion f0(x, p) should be complemented by the nonequilibrium
corrections proportional to flow gradients

f (x, p) = f0(x, p) + δf (x, p)pμpν∂μuν

+ (higher gradients). (52)

Furthermore [28], the Lorentz covariance forces any extra
gradient to carry another power of the particle momentum.
As a result, the expansion parameter of the nth term is of the
order

δf

f
∼ η

s

(
p

T

1

T R

)n

. (53)

If one moves to large p⊥/T = O(10), compensating small
factor 1/T R, the expansion in gradients (and thus hydrody-
namics) breaks down. Indeed, the radial and harmonics of the
flow agree with hydro up to transverse momenta of the order
of pt ≈ 3 GeV, or pt/Tf < 20.

In applications of these ideas people had calculated particle
spectra from f + δf and get negative values at large pt , which
is of course meaningless and indicate importance of higher
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corrections. Needless to say, it is the behavior of the first two
terms (1 − x) of the expansion (26) for x > 1. Our suggestion,
along the line of LS resummation, is to use instead the PADE
form

f = f0

1 + δf/f0
(54)

which is sign-definite and approximately reproduce the higher
order terms as well.

V. SUMMARY AND DISCUSSION

High multiplicity pp and pA collisions are very interesting
systems to study, as they are expected to display the transi-
tion from a “micro” to “macro” dynamical regimes, treated
theoretically by quite different means. In this paper we tried
to explain how this transition works using the language of the
macroscopic theory, the viscous hydrodynamics.

As we emphasized in the Introduction, the applicability of
hydrodynamics to high energy collisions rests on the product
of the two small parameters: (i) the micro-to-macro ratio
1/T R, and (ii) the viscosity-to-entropy ratio η/s. For central
AA collisions, both are small or of order O(1/10). For high
enough multiplicity of the pA and pp collisions, such as the
first parameter becomes the same as in current AA collisions,
the accuracy of hydrodynamics should be the same. While
those value of multiplicity are not reached yet, hydrodynamics
apparently starts to work, albeit with less accuracy.

After solving the hydrodynamical equations we found
that the radial (axially symmetric) flow is little modified by
viscosity and is in fact enhanced by “longer” (in dimensionless
time) run. Thus our main prediction is an enhanced radial flow.
Its signatures—growing m⊥ slopes with the particle mass, or

growing proton-to-pion-ratio—are indeed confirmed by recent
CMS data. This happens in spite of the fact, that AA freeze-out
happens at smaller Tf than in pA.

We extensively studied various forms of viscous hydrody-
namics, from NS to IS to re-summation of gradients as la LS.
In short, those grow from AA to pA to pp, but perhaps even
in the last case they remain manageable. Higher harmonics are
obviously more penalized by viscous corrections, especially
of higher order, as each gradient goes with extra factor m. The
role of those should be studied further elsewhere.

Finally let us comment the following: version 1 of this paper
also included a view on the high multiplicity pp/pA from
microscopic model, based on stringy Pomeron. It had grown
substantially and will now appear as a separate publication.

Note added. When this version of the paper was completed,
we learned about ALICE measurements of the identified
particle spectra in high multiplicity pPb collisions [28].
Strong radial flow, growing with the multiplicity, is reported,
clearly seen in proton/antiproton spectra. All conclusions
are completely consistent with ours. Note especially one
point: ALICE also finds that in pPb the freeze-out happens
at temperature T

pPb
f ≈ 0.17 GeV higher than that in central

PbPb, in which T PbPb
f ≈ 0.12 GeV.
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