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We analyze the multiplicity correlations between distant forward and backward rapidity regions in relativistic
heavy-ion collisions in a superposition framework, where the particle production occurs through independent
emission from correlated sources. This in principle allows for inferring information on the long-range forward-
backward correlations of the sources in the earliest phase of the collision, based solely on the experimental
information on the statistical features of the observed particle distributions. Our three-stage study incorporates
the fluctuations of parton production in the early phase, the effect of intermediate hydrodynamic evolution, as
well as fluctuations in the production of particles at freeze-out. We investigate the dependence of the results on
the features of the overlaid distributions and hydrodynamics, as well as the centrality dependence. We analyze
the existing data from the STAR Collaboration. Predictions for the forward-backward multiplicity correlations
in Pb + Pb collisions to be analyzed at the Large Hadron Collider are also made.
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I. INTRODUCTION

The forward-backward (F-B) multiplicity correlations
in relativistic heavy-ion collisions, recently measured at
Brookhaven National Laboratory’s Relativistic Heavy-Ion
Collider [1–4], were followed with a number of theoretical
studies [5–19]. The primary goal of these analyses is to get
insight into the space-time dynamics of the earliest stages
of the reaction, probed via the long-range correlations. A
simplified statistical understanding [5,6,14] of the problem is
gained when one considers initially formed sources (wounded
nucleons [20–22], possibly amended with binary collisions
[23,24], glasma [25–28], and dual strings [5,29]), which later
lead to particle production occurring independently (and with
the same distribution) from each source. Such superposition
models lead to simple relations between the statistical features
(moments, correlations) of the distributions of sources and of
the produced particles, which involve properties of the overlaid
distribution as parameters [5,14].

In this paper we analyze in detail the predictions of this
framework, tailoring it closely to the popular description of
the relativistic heavy-ion dynamics based on three stages:
initial phase, hydrodynamics, and statistical hadronization (for
a review see, e.g., [30]). The key assumption here is that the
emission from a source is universal, i.e., occurs with the same
statistical distribution independently of the centrality class
of the collision. This leads to very simple formulas for the
statistical measures, in particular for the correlation coefficient
between the numbers of particles produced in the forward and
backward rapidity bins. Parameters in these relations depend
on the features of the overlaid statistical distributions and the
properties of hydrodynamics.
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We use the derived relations in two ways. First, using
the experimental data from the STAR Collaboration [2–4]
for the correlation and the scaled variance, we obtain an
expression for the correlation of sources in the early phase,
involving one free parameter dependent on the unknown
features of the overlaid distributions and hydrodynamics. This
straightforwardly generalizes the treatment of Brogueira and
Dias de Deus [5] and Białas, Bzdak, and Zalewski [14], who
use a Poisson distribution in the two-step approach. We carry
out our analysis for the Au + Au and Cu + Cu collisions at√

sNN = 200 GeV, where the data are available, using the
methodology of Refs. [11,17].

Second, we use the relations in the opposite direction,
starting from the properties of the source distribution and
computing the F-B correlation of the produced particles. We
use the Glauber framework for this purpose. Predictions,
involving one free parameter, for the Pb + Pb collisions at√

sNN = 2.76 TeV at the Large Hadron Collider (LHC) are
made. We predict a decrease of the F-B correlations of particles
with centrality, which follows from the decrease of the scaled
variance of the sources. The future data from the LHC will
verify this scenario.

The outline of the paper is as follows: In Sec. II we
briefly recall the three-stage approach, consisting of the early
production, the hydrodynamic evolution, and the final freeze-
out. We then derive the basic relations linking the statistical
features of the sources and of the final particle distributions.
In Sec. III we use the data from the STAR Collaboration
for the Au + Au and Cu + Cu collisions to obtain the F-B
multiplicity correlations of the sources. We take an effort
to incorporate the intricacies of the STAR measurement, as
explained in Refs. [11,17]. Finally, in Sec. IV we present our
predictions for the F-B correlations of particle multiplicities
to be experimentally analyzed with the LHC for the Pb + Pb
system. We use the approach introduced in Sec. II and the
distributions of sources obtained with the mixed model [23,24]
from GLISSANDO [31].

044913-10556-2813/2013/88(4)/044913(7) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.88.044913


ADAM OLSZEWSKI AND WOJCIECH BRONIOWSKI PHYSICAL REVIEW C 88, 044913 (2013)

II. THREE-STAGE APPROACH

Much of the success in the description of the relativistic
heavy-ion dynamics was achieved in a three-stage model (for
a review see, e.g., [30]), consisting of the following.

(1) Early production, modeled in terms of the Glauber
approach [20–24,32], glasma [25–28], string formation
[5,29], etc.

(2) Hydrodynamic evolution, starting from the initial
condition provided by stage 1 (for reviews see, e.g.,
[30,33,34], and for the recent event-by-event studies
[35–44]).

(3) Statistical hadronization, carried out at freeze-out right
after the hydrodynamic phase ends, e.g., [45–56].

The approach leads to a proper description of such measured
quantities as multiplicities, spectra, harmonic flow coefficients,
femtoscopic properties, etc., [57], thus is viewed as a practical
framework. Statistical fluctuations are generated in phases
1 and 3, while phase 2 is assumed to be deterministic (although
one may include fluctuations also in this phase [58]). Of
course, the most interesting are the fluctuations in the initial
stage, as they refer to the important physics at the earliest
times and may help to discriminate between various physics
approaches, while the fluctuations at hadronization form a
“statistical noise” which should be disposed of. While each
of the stages is physically involved, including numerous
physical parameters, and needless to say, takes a huge effort to
simulate numerically, certain statistical aspects, as we shall
see, can be understood and classified in somewhat simple
terms, displaying the possible scenarios in the F-B correlations
of the earliest phase.

Throughout this paper we use the generic concept of
sources, which may be viewed statistically as the density of
partons (or fields) in the initial phase, turning into the entropy
density of the fluid cell in the hydrodynamic phase, which
in the end, at freeze-out, gives birth to the observed hadrons
streaming to the detectors. In the context of the F-B multiplicity
fluctuations, an important assumption is the sufficient kine-
matic separation of the forward (F) and backward (B) rapidity
windows, such that the particles produced in from the F source
do not fall into the B window, and vice versa. This allows
us to trace the evolution of a cell with fluctuating sources.
Suppose in the early-production phase we separate the F and
B cells in spatial rapidity, with the original number of sources
s denoted as sF and sB , respectively. These numbers fluctuate
event-by-event and may be correlated, which is what we
eventually want to assess. In the initial production mechanism
these sources produce partons p, whose density supplies the
initial condition for hydrodynamics.

Assuming that the production occurs from each source in
the same manner, we have

pA =
sA∑
i=1

μi, A = F,B, (1)

where the random variable μi is the number of partons
produced from the source i. As mentioned, we assume that
the distribution of μi is universal, i.e., does not depend on
the location of the cell, and that the production from different

cells is independent from one another. Then the formulas for
the superposition model follow (see Appendix):

〈pA〉 = 〈μ〉〈sA〉,
var(pA) = var(μ)〈sA〉 + 〈μ〉2var(sA), (2)

cov(pF , pB) = 〈μ〉2cov(sF , sB),

where A = F,B.
The sources p yield the entropy density which constitutes an

event-by-event initial condition for the collective evolution via
hydrodynamics. The hydrodynamic evolution is dynamically
complicated, however, it is deterministic. Thus the evolution of
the cell with initially p sources yields h sources at freeze-out
(p and h may be thought of as entropy contained in the cell),
where h is a function of p (strictly speaking, the hydrodynamic
evolution depends not only on the number of sources p, but
also on their spatial distribution, hence the same values of
p may lead to somewhat different h. Such nuances can only
be included in a fully numerical simulation. We do not expect
them to be relevant for our analysis). The phase-space location
of the fluid cells is evolved due to the hydrodynamic push,
however, the separation between the far-lying F and B regions
is maintained. If the event-by-event fluctuations are not too
large, we may expand

h = t0〈p〉 + t1(p − 〈p〉) + O((p − 〈p〉)2), (3)

where ti are parameters depending on dynamical properties of
hydrodynamics. The higher-order terms may be dropped if p
is sufficiently close to 〈p〉. The constant term is written in the
form t0〈p〉. Then,

〈hA〉 = t0〈pA〉, var(hA) = t2
1 var(pA),

(4)
cov(hF , hB) = t2

1 cov(pF , pB ).

Equation (3) requires some discussion. If the response
of hydrodynamics is such that h ∼ t , i.e., the entropy in
the considered cell after the evolution is proportional to the
initial entropy, then t0 � t1. The success of hydrodynamics
in reproducing the rapidity spectra starting from an initial
Glauber condition (see, e.g., [59]) supports this scenario.
Moreover, it suggests that t0 and t1 are independent of centrality
in the range of applicability of hydrodynamics. Secondly,
because in viscous hydrodynamics the entropy is produced,
we have in a given cell 〈h〉 > 〈p〉, which implies t0 > 1.
The production of entropy depends on the properties of
hydrodynamics, but is not very large [59] (25%–50%), such
that we expect t0 to be only somewhat larger than 1. To
summarize, we arrive at the estimates,

t0 � t1 ∼ 1, t0 > 1. (5)

The parameters t0 and t1 should be treated as specific to a given
reaction or rapidity bin, but independent of centrality.

Finally, statistical hadronization is carried out at freeze-out.
We assume that a given cell emits n hadrons into a region of
phase space with some statistical distribution superimposed
over h. Similarly to the analogous mechanism in the initial
phase, each of the h sources emits independently m hadrons
with the same distribution. In reality some mixing may occur
and particles may be emitted from different cells into the
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same kinematic region. However, if the F and B cells are well
separated, this effect is negligible. Thus we have

nA =
hA∑
i=1

mi, (6)

and

〈nA〉 = 〈m〉〈hA〉,
var(nA) = var(m)〈hA〉 + 〈m〉2var(hA), (7)

cov(nF , nB) = 〈m〉2cov(hF , hB).

The three-stage model and the notation introduced above may
be summarized with the following diagram:

s
init.production−→ p

hydro−→ h
hadronization−→ n.

Joining Eqs. (2)–(7) yields

〈nA〉 = α〈sA〉, var(nA) = β〈sA〉 + γ var(sA),
(8)

cov(nF , nB ) = γ cov(sF , sB),

where the combinations of constants are

α = t0〈μ〉〈m〉,
β = t0〈μ〉var(m) + t2

1 〈m〉2var(μ), (9)

γ = t2
1 〈μ〉2〈m〉2.

It is convenient to introduce the scaled variance ω(xA) =
var(xA)/〈xA〉 and the correlation coefficients ρ(xF , xB ) =
cov(xF , xB )/(σ (xF )σ (xB)). Then, for symmetrically separated
bins where σ (xF ) = σ (xB), we can write the relations,

ω(nA) = δ + κω(sA),
(10)

ρ(nF , nB ) = ρ(sF , sB)

1 + λ/ω(sA)
,

with

δ = β/α = ω(m) + t2
1

t0
〈m〉ω(μ),

κ = γ /α = t2
1

t0
〈μ〉〈m〉, (11)

λ = β/γ = t0ω(m)

t2
1 〈μ〉〈m〉 + ω(μ)

〈μ〉 .

Formulas (8) and (10) express the statistical properties of
the event-by-event distributions of the produced particles in
the F and B bins via the properties of the distribution of the
original sources. Note that the relation between the correlation
coefficients depends on a single combination of the unknown
parameters of the overlaid distributions and hydrodynamics
represented in λ, which makes the qualitative analysis simple.
This feature is a derivative of the form of Eq. (3).

We may also write reversed formulas expressing the
properties of the initial sources through the properties of the
final particle distributions:

〈sA〉 = 1

α
〈nA〉, ω(sA) = ω(nA)

κ
− λ,

(12)

ρ(sF , sB) = ρ(nF , nB )

1 − δ/ω(nA)
.

For the case of asymmetric bins we have

ρ(sX, sY ) = ρ(nX, nY )√
1 − δ/ω(nX)

√
1 − δ/ω(nY )

. (13)

A feature following from the assumptions in our analysis
is the independence of the parameters α, β, γ , δ, κ , and λ
on the centrality class. This dependence resides entirely in the
statistical properties of the distributions of s or n.

Finally, we note that the inclusion of finite experimental
acceptance a amounts to overlaying yet another statistical
distribution over n, with mean a and variance a(1 − a). As
a result, the parameters α, β, and γ are changed, however, the
form of Eqs. (8)–(12) remains unaltered.

The basic methodology is as follows: Eq. (12) involves three
independent parameters: α, κ , and λ (note that δ = κλ). Thus,
knowing from the experiment 〈nA〉, ω(nA), and ρ(nF , nB) and
from the model 〈sA〉, ω(sA), and ρ(sF , sB) (at a given centrality)
allows us to solve the equations for α, κ , and λ. Comparing
the values at various centralities serves as a consistency check
(more appropriately, one should simultaneously solve the
equations at all centralities in the χ2 sense). For the method
to be feasible, however, one needs the complete experimental
data involving 〈nA〉, ω(nA), and ρ(nF , nB ) at all centralities,
which, unfortunately, is not the case of Refs. [3,4], where
ω(nA) is provided only for two centrality classes. For that
reason the above program is carried out only partially in the
following sections. On the model side, we need 〈sA〉, ω(sA),
and ρ(sF , sB).

III. ANALYSIS OF THE STAR DATA

As originally pointed out by Lappi and McLerran [11],
statistical interpretation of the STAR measurement [3,4] is
affected by correlations to the reference bin used to determine
centrality (for large F-B separations, the reference bin takes
|η| < 0.5). The STAR analysis first sets the multiplicity in
the reference bin, nR , end then with this multiplicity fixed
computes the variances and correlations for the F and B bins.
Finally, averaging over nR is performed in a given centrality
class. This procedure leads to important corrections [11,17]
over the naive interpretation of the data. Let us denote the
correlation between the peripheral (F,B) and central (R) bins
as (we consider the symmetric case in η all over) ρ(nF , nR) =
ρ(nB, nR) = ρ(nA, nR) ≡ R, where A = F,B. Then the cor-
relations reported by the STAR Collaboration, denoted here as
ρ∗(nF , nB ), relates to the “true” F-B correlation ρ(nF , nB) in
the following way [11]:

ρ∗(nF , nB ) = ρ(nF , nB ) − R2

1 − R2
. (14)

As shown by Bzdak [17], formula (14) may be straightfor-
wardly obtained by incorporating the linear dependence,

〈nA〉nR
= c0 + c1nR, (15)

[see Eqs. (5)–(9) of Ref. [17] for the derivation]. Then

c0 = 〈nA〉 − 〈nR〉Rσ (nA)

σ (nR)
, c1 = R

σ (nA)

σ (nR)
, (16)
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where σ (.) denotes the standard deviation. Because experi-
mentally c0 � 0 [3], we obtain

ω(nR) = 〈nR〉
〈nA〉R

2ω(nA). (17)

It also follows [17] that the scaled variance measured according
to the STAR method relates to the usual scaled variance in the
following way:

ω∗(nA) = ω(nA)(1 − R2). (18)

With the help of Eqs. (14) and (18) we can now write down
the relation,

R2 = ρ(sF , sB)

[
1 − δ(1 − R2)

ω∗(nA)

]
− (1 − R2)ρ∗(nF , nB).

(19)

Next, we use Eqs. (13) and (17) to obtain the formula,

R2 = ρ(sA, sR)2

[
1− δ(1−R2)

ω∗(nA)

][
1− δ(1−R2)

ω∗(nA)

〈nA〉
R2〈nR〉

]
.

(20)

We can solve Eq. (19) for R2,

R2 = ρ∗(nF , nB ) − [1 − δ/ω∗(nA)]ρ(sF , sB)

ρ∗(nF , nB ) − 1 + δ/ω∗(nA)ρ(sF , sB)
, (21)

plug it to Eq. (20), and obtain a relation involving the
correlations of sources between the central (reference) and
peripheral bins, ρ(sA, sR), and the forward and backward bins,
ρ(sF , sB):

ρ(sA, sR)2 =
{[

1 − δ
ω∗(nA)

]
ρ(sF , sB) − ρ∗(nF , nB )

}2{
1 − ρ∗(nF , nB ) − δ

ω∗(nA)

}{
ρ(sF , sB) − ρ∗(nF , nB ) − δ

ω∗(nA)

[ 〈nA〉
〈nR〉 (ρ(sF , sB) − 1) + ρ(sF , sB)

]} . (22)

We note that the condition R2 � 1 leads to a limit on the δ
parameter,

δ/ω∗(nA) � 1 − ρ∗(nF , nB ). (23)

In formula (22) δ is a model parameter (independent of
centrality), cf. Eq. (11), ρ∗(nF , nB ) and ω∗(nA) are obtained
from the published data [2–4], while the ratio 〈nA〉/〈nR〉
reflects the acceptance in the forward and central bins. As the
central reference bin, extending from η = −0.5 to η = 0.5, is
5 times wider than the peripheral bins, and the pseudorapidity
spectra are somewhat flat in the experimentally covered region,
we take 〈nA〉/〈nR〉 = 0.2. The two centrality classes for which
ω∗(nA) is available are c = 0%–10% and c = 40%–50%. The
values of the observables used in our analysis are collected in
Table I. These values correspond to the rapidity separations of
the forward and backward bins from η = 1.2 to η = 1.8,
where the experimental values do not differ much.

The results following from Eq. (22) with the values taken
from Table I are plotted in Figs. 1 and 2 for several values
of the model parameter δ. Each figure contains six curves:
three lower ones for c = 0%–10% and three higher ones
for c = 40%–50%. The regions ρ(sF , sB) > ρ(sA, sR) and
ρ(sF , sB) < ρ(sA, sR) are separated with dotted lines. For the
formal case δ = 0 (no superimposed distributions) we recover
ρ(sF , sB) = ρ(nF , nB ) and ρ(sA, sR) = ρ(nA, nR) = R (solid
lines). The dashed lines are for δ = 0.4, and the dot-dashed
for δ = 0.8 [significantly higher values are precluded by

TABLE I. Values of the measured parameters used in our analysis.

ρ∗(nF , nB ) ω∗(nA)

Au + Au, c = 0%–10% 0.58 3.9
Au + Au, c = 40%–50% 0 1.05
Cu + Cu, c = 0%–10% 0.48 2.7
Cu + Cu, c = 40%–50% 0 1.1

condition (23)]. We note that the dashed and dot-dashed curves
behave nonmonotonically. The sections of the curves which
are decreasing are not physical, as that would mean that
increased forward-backward correlation leads to decreased
forward central correlation. The rising parts of the curves
are acceptable. We note that for the central collisions,

c 40 50

c 0 10Au Au
1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

ρ sF,sB

ρ
s A
,s R

FIG. 1. (Color online) Relation (22) between the forward-
backward correlation of sources ρ(sF , sB ) and the forward-central
correlation of sources ρ(sA, sR) for the Au + Au collisions and
η > 1. The solid line is for δ = 0 (no superposition), the dashed
line for δ = 0.4, and the dot-dashed line for δ = 0.8. The lower
three cores correspond to the central collisions, c = 0%–10%, while
the upper three curves to the peripheral collisions, c = 40%–50%.
The dots indicate the estimate for ρ(nf , nB ) � 0.72 obtained in
Ref. [17]. The dotted line separates the regions ρ(sF , sB ) > ρ(sA, sR)
and ρ(sF , sB ) < ρ(sA, sR).
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c 40 50

c 0 10Cu Cu
1
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ρ sF,sB

ρ
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FIG. 2. (Color online) Same as Fig. 1 for the Cu + Cu collisions.

c = 0%–10%, the rising parts of the curves are in the region
ρ(sF , sB) > ρ(sA, sR). As already stressed in Refs. [11,17]
(for the case δ = 0), this is a puzzling result, meaning that
more separated bins are more correlated. Our calculation in
the superposition model supports this conclusion. On the other
hand, we find that for the peripheral case, c = 40%–50%, the
natural hierarchy is restored, with ρ(sF , sB) < ρ(sA, sR).

In Ref. [17], based on the STAR data published in
Refs. [3,4,60], an estimate ρ(nF , nB ) � 0.72 for the Au + Au
collisions is made for the case of the most central events.
We indicate this special value of ρ(nF , nB ) by the blobs on the
curves in Figs. 1 and 2. With this constraint taken into account,
we find that ρ(sF , sB) is limited from below by 0.72 and from
above by about 0.85 [this limit follows from the constraint
(23), precluding δ to be too large]. The corresponding values
of ρ(sA, sR) are between 0.58 and 0.65.

We recall that the first measurements of the F-B multiplicity
correlations at RHIC were carried out by the PHOBOS
collaboration [1]. Because the statistical measure used in that
work is different form the correlation coefficient used in this
work, we do not use the PHOBOS data in the present analysis.

IV. PREDICTIONS FOR THE LHC

Finally, we use Eq. (10) to predict the F-B correlation for the
Pb + Pb collisions at the collision energy of

√
sNN = 2.76 TeV

at the LHC.1 The values of ω(sA) are obtained from the mixed
Glauber model as implemented in GLISSANDO. In particular,
we take the mixing parameter α = 15% and σNN = 67 mb.
Figure 3 shows our predictions, which will allow one to
extract ρ(sF , sB) when the LHC data for the F-B multiplicity
correlations are analyzed. We note a graduate fall-off of
ρ(nF , nB ) with centrality. This fall-off is due to the fact that

1We assume here that these correlations will be measured without
correlating to the reference bin, as was the case of the STAR analysis.

¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤

superposition Glauber model

Pb Pb PREDICTION

¤ 0
1

2
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1.0

1.5

c

ρ
n F
,n
B
ρ
s F
, s B

FIG. 3. (Color online) Predictions for the ratio of the F-B
multiplicity correlation of measured particles to the F-B correlation
of sources, plotted as a function of centrality, obtained from Eq. (10)
at different values of λ. The scaled variance ω(sA) is taken from
GLISSANDO for the mixed model. The simulation is for the Pb + Pb
collisions at the LHC energy of

√
sNN = 2.76 TeV.

the scaled variance ω(sA) decreases with growing centrality.
The expected value of the the λ parameter is in the range 1–2.

V. CONCLUSIONS

In this paper we have extended the analysis of correlations
in superposition models, previously made in Refs. [5,6,14],
to the case of the three-stage approach consisting of the
early production, hydrodynamics, and statistical hadroniza-
tion. Simple formulas, linking the statistical properties of the
F-B correlations in the data and in the original sources have
been derived. The effect of hydrodynamics may be, under
reasonable assumptions, incorporated in terms of just two
parameters independent of centrality. The relations between
the F-B multiplicity correlations of the produced particles and
the initial sources involve a single parameter, which collects
the features of the overlaid distributions and hydrodynamics.
These one-parameter formulas allow one in principle to verify
the model of the early-phase production with the experiment,
under the proviso that the data are sufficiently complete in
providing, for each centrality, not only the F-B correlation
coefficient, but also the variance of the number of particles in
the F and B bins and their multiplicities.

We have applied the approach on the existent STAR data
[3,4] for the F-B multiplicity correlations, taking into account
the complication explained in Refs. [11,17] which introduces
the correlations to the reference bin into the framework. Our
study confirms the results of Refs. [11,17], namely, that for the
central collisions the F-B source multiplicity correlations are
stronger than the correlations of the peripheral to the central
bin, ρ(nF , nB ) > ρ(nA, nR).

We argue that the complete data, consisting of the average
multiplicity and variance in the forward and backward rapidity
bins, as well as the forward-backward correlation coefficient,
will allow for a verification of production models of the early
phase. The awaited F-B correlation analysis with the LHC data
will shed further light on the early production mechanism. The
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statistical method presented in this paper is directly applicable
to that case and we have made one-parameter predictions for
the dependence of the correlation coefficient on centrality at
the LHC energies, applying the Glauber model.
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APPENDIX: SUPERPOSITION MODEL

In this appendix we derive the relevant statistical formulas
for the superposition model. Let the number of produced
particles n be composed of independent emissions from s
sources,

n =
s∑

i=1

mi. (A1)

Here mi is the number of particles produced by the ith
source from some universal distribution. Then the well-known
relations follow:

〈n〉 = 〈s〉〈m〉, (A2)

var(n) = 〈s〉var(m) + 〈m〉2var(s). (A3)

We give for completeness the derivation. Introduce

δmi = mi − 〈m〉, with 〈δmi〉 = 0. (A4)

Then

var(n) =
〈

s∑
i=1

(δmi + 〈m〉)
s∑

j=1

(δmj + 〈m〉)
〉

− (〈s〉〈m〉)2

=
〈

s∑
i=1

δm2
i

〉
+

〈
s∑

i,j=1,i 
=j

δmiδmj

〉

+ 2〈m〉
〈

s∑
i=1

δmi

〉
+ 〈m〉2

〈
s∑

i=1

s∑
j=1

〉
− 〈s〉2〈m〉2.

(A5)

The second and third term in the last equality vanish due to
Eq. (A4). In addition, from the independence of the production
from different sources, the first term is equal to 〈s〉var(m).
Finally, using the obvious fact that

∑s
i=1

∑s
j=1 = s2 we obtain

Eq. (A3).
Next, we look at the covariance between two well-separated

bins, which means 〈mimj 〉 = 〈m〉2, with i and j belonging to
two different bins. We have

〈n1n2〉 =
〈

s1∑
i=1

mi

s2∑
j=1

mj

〉
= 〈m〉2〈s1s2〉, (A6)

and

cov(n1, n2) = 〈m〉2cov(s1, s2). (A7)

For the correlation coefficient it follows that

ρ(n1, n2) = ρ(s1, s2)√
1 + ω(m)

〈m〉ω(s1)

√
1 + ω(m)

〈m〉ω(s2)

. (A8)
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