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We model the initial confinement-deconfinement transition in relativistic heavy-ion collisions as a rapid quench
in view of expected rapid thermalization to a quark-gluon plasma state. The transition is studied using the Polyakov
loop model, with the initial field configuration (in the confining phase) covering a small neighborhood of the
confining vacuum l � 0, as appropriate for T < Tc. Quench is implemented by evolving this initial configuration
with the effective potential at a temperature T > Tc. We study the formation of Z(3) domain structure and its
evolution during the transition as l rolls down in different directions from the top of the central hill in the effective
potential of l. When explicit Z(3) symmetry-breaking effects (arising from dynamical quark effects) are small,
then we find well defined Z(3) domains, which coarsen in time. Remarkably, the magnitude plot of l shows
vacuum bubblelike configurations arising during the quench. This first-order transitionlike behavior occurs even
though there is no metastable vacuum separated by a barrier from the true vacuum for the parameter values used.
When the initial field configuration everywhere rolls down roughly along the same direction (as will happen
with large explicit symmetry breaking) then we do not find such bubblelike configurations. However, in this case
we find huge oscillations of l with large length scales. We show that such large oscillations can lead to large
fluctuations in the evolution of flow anisotropies compared to the equilibrium transition case.
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I. INTRODUCTION

In relativistic heavy-ion collision experiments (RHICEs)
the collision of two nuclei leads to a hot dense region, which is
expected to rapidly achieve a state of thermal equilibrium. For
the relevant range of energies and colliding nuclei at RHIC
and at LHC there is compelling evidence that a region of
quark-gluon plasma is created in these collisions. Simulation
results as well as experimental data, such as elliptic flow
measurements, all point towards a very rapid thermalization
to the quark-gluon plasma (QGP) phase, within a proper
time less than 1 fm. We thus have a system that starts out
in the confining phase, and within proper time of (probably
much less than) 1 fm makes a transition to the QGP phase
(with maximum temperature estimates ranging from 200 MeV
to more than 700 MeV for the relevant energies in these
experiments). Lattice results show that for real world QCD
with small baryon density (as appropriate for the central
rapidity regions in RHICEs) the transition is likely to be a
crossover. With that, the dynamics of the transition depends
crucially on the rate of temperature change compared to the
time scale of the evolution of the order parameter field. For
an equilibrium transition, we had studied the formation of
Z(3) domains and associated QGP strings using a first-order
transition dynamics via bubble nucleation [1,2]. The transition
was simulated using the Polyakov loop, l(x), as an order
parameter for the confinement-deconfinement transition [3].
These studies were appropriate for large chemical potential
cases, as in lower-energy collisions, where the transition is
expected to be of first order, though the results for Z(3)
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wall network, etc., having certain universal characters, may
be applicable in a more general context, even for a crossover,
as explained in Refs. [1,2].

However, given the very short time scale of initial ther-
malization to QGP state, an equilibrium dynamics of the
transition appears unlikely. Thermalization time even at RHIC
energies is below 1 fm/c and it is expected to be much
shorter at LHC energies. The thermalization time scale is
related to the saturation scale Qs in the color-glass condensate
model and ranges from 0.6–1.0 fm [4], though much shorter
thermalization time has also been discussed. For example, for
RHIC, the value of thermalization time may be as short as
0.2 fm, see Ref. [5]. In view of the possibility of such short
thermalization times, a more appropriate description of the
transition should employ quenched dynamics in which the
growth of Z(3) domains will be via spinodal decomposition.
In this paper we carry out such a study using the Polyakov loop,
l(x), as an order parameter for the confinement-deconfinement
transition, with an effective potential of the kind used in
Refs. [6–8]. For our simulation results we choose a definite
parametrization of the effective potential [7] as was used in
our previous works [1,2]. We model the phase transition in
this Polyakov loop model, with the initial field configuration
(in the confining phase) covering a small neighborhood of the
confining vacuum l � 0 as appropriate for the initial T = 0
system. In a quench, the temperature rapidly (rather suddenly)
increases to its maximum value T0 with the effective potential
changed accordingly. The initial field l, unable to relax to
the new equilibrium vacuum state in this short time, becomes
unstable and rolls down in different directions from the top
of the central hill in the effective potential of l. We study
the formation of Z(3) domain structure during this evolution.
When explicit Z(3) symmetry breaking effects (arising from
dynamical quark effects) are small, then we find well defined
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Z(3) domains, which coarsen in time. With a symmetric initial
patch of l, all the three Z(3) domains form with random shapes
and rapidly increase in size by coarsening. Remarkably, the
magnitude plot of l shows vacuum bubblelike configurations,
such as those that arise in a first-order transition, arising during
the quench in this case (when the initial field rolls down in
different directions). This first-order transitionlike behavior
occurs even though there is no metastable vacuum separated by
a barrier from the true vacuum for the parameter values used.
These bubblelike configurations expand as well, somewhat in
similar manner as during a first-order transition.

When the initial patch of l is only partially symmetric
around l = 0 (as appropriate for small explicit symmetry
breaking from quark effects), the dynamics retains these
qualitative aspects with expected changes. Thus, true vacuum
domains (with θ = 0) are more abundant and they also grow
fast at the cost of the other two Z(3) domains (which are
now metastable due to explicit symmetry breaking). Still,
for small explicit symmetry breaking, all the three types of
domains occur during the initial stages of the transition. There
are few, small Z(3) walls as there are fewer metastable Z(3)
domains embedded in the dominant true vacuum with θ = 0.
These walls shrink rapidly and eventually only the true vacuum
survives.

The dynamics is found to be very different when the explicit
symmetry breaking due to quark effects is taken to be strong.
In this case the initial patch of l (around equilibrium point
for T = 0 effective potential) could be significantly shifted
towards the true vacuum for the quenched T = T0 effective
potential. In such a situation, l will roll down roughly along
the same direction with angular variations becoming smaller
during the roll down. In this case only θ = 0 vacuum survives
and no other Z(3) domains are formed. Also, in this case we
do not find bubblelike configurations. However, in this case
we find huge oscillations of l with large length scales. This
behavior is known from previous studies of the dynamics of
scalar field in a quench [9] and is expected here when angular
variations are small. The dynamics of field in such a case
is dominated by large length scale coherent oscillations. It
leads to novel scenarios of reheating via parametric resonance
in the case of inflation in the early Universe [9]. In our
case of RHICEs also it raises important questions about the
possibility of parametric resonance and of novel modes of
particle production from these large oscillations of l during the
early stages of the transition. In the present work we explore
another important effect of these large oscillations, on the
evolution of flow anisotropies in RHICEs. As most of the flow
anisotropies are expected to develop during first few fm of
the QGP formation, it becomes an important question if the
presence of large oscillations of l can affect the development
of these flow anisotropies. As we will see, this indeed happens
and these large oscillations lead to large fluctuations in flow
anisotropy. (Though, these oscillations, and their effects, may
not be as enhanced as discussed here when all dissipative
effects are properly accounted for.)

We mention here that we do not discuss which of the cases
discussed here (small, or large explicit symmetry breaking)
may actually be realized in RHICEs. This is primarily because
of a lack of understanding of the magnitude of the explicit

symmetry-breaking term near T = Tc. (Some discussion of
this has been provided in our earlier works [1,2].) Also, the
spread of initial field configuration about confining vacuum
plays a crucial role here and that in turn depends on details of
pre-equilibration stage. A proper understanding (or modeling)
of this stage and resulting estimate of the initial spread is
essential before one can make more definitive statements about
the dynamics of the transition. We hope to discuss these issues
in future. Our main purpose here is to illustrate the possibility
of very different types of dynamics of transition depending
on the initial configuration. Our results show that in quenched
dynamics, Z(3) domains, and resulting Z(3) domain walls,
can last for any reasonable length of time only when explicit
symmetry-breaking terms are very small. Otherwise, either
different domains do not form at all, hence no Z(3) walls are
formed, or fewer metastable Z(3) domains form embedded in
most abundant true vacuum region. In the latter case resulting
Z(3) walls are smaller to begin with, and disappear quickly.

The importance of Z(3) walls in RHICEs has been
discussed by us in previous works, where we have also
emphasized nontrivial scattering of quarks from Z(3) walls.
We have explored its consequences for cosmology as well
as for RHICEs [1,2,10,11], including the possibility of
CP violating scattering of quarks from Z(3) walls leading
to interesting observational implications [12]. Recently an
interesting possibility has been discussed by Asakawa et al.
in Ref. [13] where it is argued that scattering of partons from
Z(3) walls may account for small viscosity as well as large
opacity of QGP. Our results for the formation of Z(3) domains
during quench (which are abundant only for small explicit
symmetry-breaking cases) can be relevant for the studies in
Ref. [13]. In this context we mention that smallest reasonable
size Z(3) domains [hence Z(3) walls] we find are of order
1–2 fm at very early times, and at that stage the magnitude
of the Polyakov loop order parameter l is very small, of
order few percent of its vacuum expectation value. The quark
scattering from Z(3) walls is likely to be small for such a
small magnitude of l [10–12]. By the time the magnitude of
l becomes significant, domains coarsen to have large sizes, of
order several fm. Thus, in the context of our model it appears
difficult to form very small Z(3) domains that still can scatter
partons effectively (as needed in the study of Ref. [13]).

It is important to note that our results for domain growth
and fluctuations for the quench case are dominated by the
spinodal instabilities during the roll down of the field from
the top of the hill of the effective potential. These instabilities
arise primarily from the nature of the quench when the initial
field configuration becomes unstable to exponential growth of
long wavelength modes due to sudden change in the shape
of the effective potential (the quench), and will be in general
present even if the transition is a crossover. In this sense we
believe that the qualitative aspects of our results have a wider
applicability and are not crucially dependent on the specific
form of the effective potential used here.

We briefly mention here that issues related to the physical
meaning of Z(3) domains, etc., have been discussed in the liter-
ature (see discussion of these in our earlier works [1,2] and we
will not repeat it here). We only note that recent work of Deka
et al. [14] has provided a support for the existence of these
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metastable vacua from lattice. We also note that a simulation of
spinodal decomposition in the Polyakov loop model has been
carried out in Ref. [15], where fluctuations in the Polyakov loop
and growth of long wavelength modes (representing domain
formation) are investigated. In comparison, the main focus of
our work is on detailed growth of domains due to coarsening
with and without explicit symmetry breaking, new bubblelike
structures, and existence of large fluctuations affecting flow
anisotropies in important ways.

The paper is organized in the following manner. In Sec. II,
we discuss the essential aspects of the Polyakov loop model of
confinement-deconfinement phase transition and the effective
potential used from Ref. [7]. Section III presents the numerical
technique of simulating the phase transition via quench. We
first discuss the case without any explicit symmetry breaking
and study the formation and evolution of Z(3) domains during
the quench. Section IV discusses the unexpected result of
bubblelike structures arising during the quench. We also
discuss the case of small explicit symmetry-breaking terms
when true vacuum domains become more abundant, but the
overall picture of the transition remains roughly similar. In
Sec. V we discuss the case when explicit symmetry-breaking
effects are strong leading to l rolling down everywhere roughly
along θ = 0. This leads to large oscillations of l. In Sec. VI we
study the effects of these large oscillations on flow anisotropy
and show that it leads to large fluctuations in elliptic flow and
spatial eccentricity (as compared to the case of equilibrium
transition). Section VII presents conclusions.

II. MODELING THE PHASE TRANSITION

We briefly recall the salient features of the model we use
for the confinement-deconfinement phase transition. The order
parameter is taken to be the expectation value of Polyakov loop
l(x),

l(�x) = 1

N
Tr

{
P exp

[
ig

∫ β

0
A0(�x, τ )dτ

]}
, (1)

where A0(�x, τ ) is the time component of the vector potential
Aμ(�x, τ ) = Aa

μ(�x, τ )T a , T a are the generators of SU(N ) in
the fundamental representation, P denotes path ordering in
the Euclidean time τ , g is the gauge coupling, and β = 1/T
with T being the temperature. N (=3 for QCD) is the number
of colors. The complex scalar field l(�x) transforms under the
global Z(N ) (center) symmetry transformation as

l(�x) → exp(2πin/N )l(�x), n = 0, 1, . . . , (N − 1). (2)

The expectation value of l(x) is related to e−βF where
F is the free energy of an infinitely heavy test quark. For
temperatures below Tc, in the confined phase, the expectation
value of the Polyakov loop is zero corresponding to the infinite
free energy of an isolated test quark. [Hereafter, we will use
the same notation l(x) to denote the expectation value of the
Polyakov loop.] Hence the Z(N ) symmetry is restored below
Tc. Z(N ) symmetry is broken spontaneously above Tc where
l(x) is nonzero corresponding to the finite free energy of the
test quark. Effective theory of the Polyakov loop has been
proposed by several authors with various parameters fitted
to reproduce lattice results for pure QCD [6–8]. We use the

Polyakov loop effective theory proposed by Pisarski [7,8]. The
effective Lagrangian density can be written as

L = N

g2
|∂μl|2T 2 − V (l), (3)

where the effective potential V (l) for the Polyakov loop, in
case of pure gauge theory is given as

V (l) =
(−b2

2
|l|2 − b3

6
(l3 + (l∗)3) + 1

4
(|l|2)2

)
b4T

4. (4)

At low temperature where l = 0, the potential has only one
minimum. As the temperature becomes higher than Tc the
Polyakov loop develops a nonvanishing vacuum expectation
value l0, and the cos 3θ term, coming from the l3 + l∗3 term
above leads to Z(3) generated vacua. Now in the deconfined
phase, for a small range of temperature above Tc, the l = 0
extremum becomes the local minimum (false vacuum) and a
potential barrier exist between the local minimum and global
minimum (true vacuum) of the potential. (However, the quench
temperature used here is much higher than this range and there
is no barrier present at such temperatures.)

The effects of dynamical quarks is included in terms of
explicit breaking of the Z(3) symmetry, which is represented in
the effective potential by inclusion of a linear term in l [7,8,16].
The potential of Eq. (4) with the linear term becomes

V (l) =
(

−b1

2
(l + l∗) − b2

2
|l|2

− b3

6
(l3 + l∗3) + 1

4
(|l|2)2

)
b4T

4. (5)

Here coefficient b1 measures the strength of explicit symmetry
breaking. The coefficients b1, b2, b3, and b4 are dimensionless
quantities. With b1 = 0, other parameters b2, b3, and b4 are
fitted in Refs. [7,8] such that that the effective potential
reproduces the thermodynamics of pure SU(3) gauge theory
on lattice [16–18]. The values of various coefficients from
Refs. [7,8] are the same as used in our previous works
[1,2] (including discussions about explicit symmetry-breaking
strength b1) and we do not repeat that discussion here. (With
those values of parameters, the transition temperature is taken
to be Tc = 182 MeV.)

III. NUMERICAL SIMULATION

In this work, we carry out a 2 + 1 dimensional field
theoretic simulation of the dynamics of confinement-
deconfinement transition in a quench. First we work within the
framework of Bjorken’s boost invariant longitudinal expansion
model [19] (without any transverse expansion) for the central
rapidity region in RHICEs. To model the quench, we take the
initial field configuration to constitute a small patch around
l = 0, which corresponds to the vacuum configuration for the
confining phase. This is for the case of zero explicit symmetry
breaking. We will discuss the case of explicit symmetry break-
ing later. We have taken the initial phase of l to vary randomly
between 0 and 2π from one lattice site to the other, while the
magnitude of l is taken to vary uniformly between 0 and ε.
(We have also taken the initial magnitude to have a fixed value
equal to ε and the results are similar.) The value of ε is taken
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to be much smaller than the vacuum expectation value (VEV)
of l at T = T0 and results remain qualitatively the same for
similar small values of ε. We report results for ε = 0.01 times
the VEV of l. We take the quench temperature T0 = 400 MeV.

This initial field configuration, which represents the equi-
librium field configuration of a system with T < Tc, is evolved
using the effective potential with T = T0 > Tc. This represents
the transition dynamics of a quench. The field configuration
is evolved by the time-dependent equation of motion in the
Minkowski space [20]

∂2lj

∂τ 2
+ 1

τ

∂lj

∂τ
− ∂2lj

∂x2
− ∂2lj

∂y2
= − g2

2NT 2

∂V (l)

∂lj
;

(6)
j = 1, 2

with ∂lj
∂τ

= 0 at τ = 0 and l = l1 + il2. The temperature is
taken to decrease starting with the value T0 (at an initial time
τ0, which we take to be 1 fm in all the simulations) as τ−1/3 as
appropriate for the longitudinal expansion model. We mention
that later in Sec. V we will consider an isotropic geometry for
the transverse dynamics of QGP as relevant for RHICEs. There
we will also model nonzero transverse expansion and then the
central temperature will decrease faster than τ−1/3. Here, we
take a 2000 × 2000 square lattice with physical size 20 fm ×
20 fm. We take this lattice as representing the transverse plane
of the QGP formed in a central collision and consider the
midrapidity region. The evolution of field was numerically
implemented by a stabilized leapfrog algorithm of second-
order accuracy both in space and in time with the second-order
derivatives of li approximated by a diamond-shaped grid [1,2].
We evolve the field using the periodic, fixed, and free boundary
conditions for the square lattice. Here we present the results
with periodic boundary conditions. We use �x = 0.01 fm for
the present case; later on we use different values of �x, as
shown by the lattice size in the corresponding figures. We
take �t = �x/

√
2 as well as �t = 0.9�x/

√
2 to satisfy the

Courant stability criteria. The stability and accuracy of the
simulation is checked using the conservation of energy during
simulation. The total energy fluctuations remains few percent
without any net increase or decrease of total energy in the
absence of dissipative l̇ term in Eq. (6).

We mention here that the only dissipative term in Eq. (6)
arises from the longitudinal expansion. In addition there will be
sources of dissipation. For example, the phase transition may
create heat and particle production. The resulting dynamics,
then, will have additional sources of dissipation in the
relaxation of the order parameter to the confined phase. Any
dissipation will lead to suppression of oscillations of the field.
Thus, the presence of additional sources of dissipation [which
are not included in Eq. (6)] may lead to modification in our
results on large oscillations of l as discussed below.

First, we present results for the formation and evolution
of Z(3) domains. The initial field configuration in the
neighborhood of l = 0 becomes unstable when evolved with
the effective potential [Eq. (5)] with T = T0 = 400 MeV (at
τ = τ0 = 1 fm). As l rolls down in different directions, settling
in one of the three Z(3) vacua, different Z(3) domains form.
This can be understood clearly from Fig. 1, which shows the
plot of the effective potential (in MeV/fm3) at T = 190 MeV,

0.5
0.0

0.5
0.5

0.0

0.5
100
50
0

l

l

1

2

V(l )

FIG. 1. (Color online) Plot of the effective potential V in units of
MeV/fm3 at T = 190 MeV.

and the three Z(3) vacua. (We show the plot of V at T =
190 MeV to illustrate that at all temperatures T > Tc =
182 MeV, the three Z(3) vacua are well formed.) Initially,
as the phase of l is taken to vary randomly from one lattice
site to the next, there are no well defined domains. Also, the
magnitude of l is very small initially making any association of
Z(3) structure meaningless at such early stages. The situation
remains similar for very early times as seen in Fig. 2(a) at
an early stage τ = 1.2 fm (i.e., 0.2 fm after the quench). In
Fig. 2 we have shown the values of the phase of l around
the three Z(3) vacua in terms of different shades (colors) to
focus on the evolution of Z(3) domain structure. Thus all
the values of the phase θ of l are separated in three ranges,
between −2π/6 to 2π/6 (θ = 0 vacuum), between 2π/6 to π
(θ = 2π/3 vacuum), and between π to 2π − 2π/6 (θ = 4π/3
vacuum). As the field magnitude grows, the angular variation
of l also becomes less random over small length scales, leading
to a sort of Z(3) domain structure. Z(3) domains become
more well defined, and grow in size by coarsening as shown
in sequence of Figs. 2(b)–2(d). Different shades (colors) in
Fig. 2 represent the three Z(3) domains. Figures 2(b)–2(d)
show the growth of these domains at τ = 2.0, 2.4, and 2.8 fm,
as l relaxes to the three Z(3) vacua and domains grow in size
by coarsening. The magnitude of l is about 0.04, 0.08, 0.2,
and 0.4 for Figs. 2(a)–2(d), respectively. Note that domains
grow rapidly to size of order 2 fm within a time duration of
about 1 fm as shown in Fig. 2(b). Within another 1 fm time,
the domain size is about 4 fm as seen in Fig. 2(d).

The boundaries of different Z(3) domains represent Z(3)
walls, and the junction of three different Z(3) domains gives
rise to the QGP strings. These objects have been discussed in
detail in our earlier works [1,2,21].

We mention here that the smallest reasonable size Z(3)
domains [hence Z(3) walls], which we find in our simulation
are of order 1–2 fm at very early times, such as seen in
Fig. 2(b). At this stage, the magnitude of the Polyakov loop
order parameter l is still very small, of order few percent of its
vacuum expectation value. This is important when one consid-
ers the possibility of nontrivial scattering of partons from Z(3)
walls [10–13]. The quark scattering from Z(3) walls is likely to
be small for such a small magnitude of l [10–12]. By the time
the magnitude of l becomes significant, domains coarsen to
have large sizes, of order several fm, as in Figs. 2(c) and 2(d)

044901-4



DOMAIN GROWTH AND FLUCTUATIONS DURING . . . PHYSICAL REVIEW C 88, 044901 (2013)

FIG. 2. (Color online) (a) Evolution of Z(3) domain structure during a quench. Note that we take the initial temperature to be T0

(=400 MeV) at proper time τ = τ0 = 1 fm to set the initial conditions for the simulation. Different shades (colors) represent the three Z(3)
domains. (a)–(d) show the growth of these domains at τ = 1.2, 2.0, 2.4, and 2.8 fm, (with corresponding values of temperature T = 376, 317,
298, 283 MeV) as l relaxes to the three Z(3) vacua and domains grow in size by coarsening. The magnitude of l is about 0.04, 0.08, 0.2, and
0.4 for (a)–(d), respectively. Note that domains grow rapidly to size of order 2 fm within a time duration of about 1 fm as shown in (b). Within
another 1 fm time, domain size is about 4 fm [as seen in (d)].

where the magnitude of l is about 20% and 40%, respectively,
of its vacuum expectation value. Thus, in the context of
our model, with quenched dynamics of transition, it appears
difficult to form very small Z(3) domains, which still can
scatter partons effectively (as needed in the study of Ref. [13]).

IV. BUBBLELIKE STRUCTURES DURING QUENCH

In this section we show a very unexpected result.
Figure 3 shows the sequence of plots of the magnitude of l dur-
ing the quench described in the previous section. We note the
appearance of bubblelike structures. These structures are also
seen to grow in a manner similar to the bubbles for a conven-
tional first-order phase transition, as in Refs. [1,2]. However,
the distribution of the phase of l does not show any specific
local variation related to these bubblelike configurations. In a
roughly uniform region of the phase these localized bubblelike
configurations arise and expand. We show here the plots of l
in Fig. 3 corresponding to the initial central temperature T =

T0 = 500 MeV (at τ = τ0 = 1 fm). The plots in Figs. 3(a)–3(d)
are for τ = 2.0, 2.8, 3.0, and 3.3 fm respectively, with the
corresponding values of the central temperature being T =
395, 355, 345, 336 MeV. It is important to note that at such
high temperatures there is no metastable confining vacuum
at l = 0 in the effective potential [2]. (A metastable confining
vacuum exists from T = Tc = 182 MeV up to T � 250 MeV.)
There is no tunneling modeled (or thermal hopping over the
barrier) here nor is it expected. One expects a simple roll down
of the field representing the dynamics of spinodal decompo-
sition during the quench. We mention that similar bubblelike
configurations also arise with T0 = 400 MeV. However, in
that case the temperature range goes below T = 250 MeV.
To make a clear case that these bubblelike configurations have
nothing to do with a first-order transitionlike situation (even
remotely), we have shown plots with T0 = 500 MeV.

This result is very unexpected and points to new interesting
possibilities for the phase transition dynamics. For example,
such bubblelike structures may lead to a dynamics of phase
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FIG. 3. (Color online) These plots correspond to initial central temperature T0 = 500 MeV. (a)–(d) show the surface plots of |l| during early
stages with subsequent formation and growth of bubblelike structures just like a first-order phase transition. Plots in (a)–(d) are at τ = 2, 2.78,
3, and 3.3 fm respectively, with corresponding temperature being T = 395, 355, 345, 336 MeV. These bubblelike configurations are surprising
as there is no barrier here, and no metastable vacuum in the effective potential for this temperature range.

separation in the case of the universe similar to the original
Witten’s scenario [22], even when there is no underlying first-
order transition. This may also have important implications for
RHICEs. More importantly this new possibility of transition
dynamics needs to be understood and analyzed in detail, see
Ref. [23] for a study of these issues.

The studies of this section and the previous section apply
to the case without any explicit symmetry breaking, i.e.,
with b1 = 0 in Eq. (5). We have repeated these simulations
with small explicit symmetry-breaking effects on the initial
conditions. We take b1 = 0.005 as in Ref. [2] here as well
as in the next section. By small explicit symmetry-breaking
effects on the initial conditions we mean that the initial patch
of l is taken to shift towards θ = 0 vacuum for T = T0 effective
potential, while still overlapping with the initial equilibrium
value of l. The shift of the minimum at l = 0 to nonzero
value of l is shown in the plot of the effective potential (for
small values of l, in θ = 0 direction) in Fig. 4. This small
shift forces l to roll down to different θ directions at least at
some fraction of lattice points, though a major fraction now
rolls down towards θ = 0. Figure 5 shows sequence of plots
showing growth of Z(3) domains in one such case. We see
that one of the vacua (θ = 0) expands dominantly while other
domains remain relatively smaller. The Z(3) domain walls in
this case are smaller and disappear faster compared to the
case without explicit symmetry breaking. The dynamics of
bubblelike structure retains its qualitative aspects in this case
as long as the field rolls down in different directions.

V. STRONG EXPLICIT SYMMETRY BREAKING AND
LARGE FIELD OSCILLATIONS

Now we consider the case when explicit symmetry-
breaking effects make the initial field configuration completely
biased towards θ = 0 direction. Here the initial patch of l rolls
down entirely towards θ = 0 direction with angular variations
decreasing during the roll down. The dynamics of transition is
entirely different in this case. Clearly there is no possibility of
different Z(3) domains here, hence no Z(3) interfaces, or QGP
strings will form. We also do not see any bubblelike structures
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 0  0.02  0.04  0.06  0.08  0.1

V
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 [M
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l

FIG. 4. (Color online) Plot of the effective potential V at T =
190 MeV in θ = 0 direction for b1 = 0.005. The minimum is shifted
to nonzero value of l.
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FIG. 5. (Color online) (a) Field configurations at different times with small explicit symmetry-breaking effects. The shading (color)
representing the dominant region in (d) corresponds to the true vacuum with θ = 0. (a)–(d) show the growth of domains for τ = 1.2, 1.6, 2.0,
and 2.4 fm (with corresponding values of temperature T = 376, 342, 317, 298 MeV).

here as were seen in Fig. 3. Instead we find the l settles down
to the true vacuum after undergoing huge oscillations, with
large length and time scales.

These large oscillations are very similar to coherent
oscillations of the inflaton field in the context of inflation in
the early Universe [9]. For the inflation, the decay of such
coherently oscillating field to particles can be via parametric
resonance leading to novel features in the reheating of the
Universe after inflation. The existence of similar oscillations
here raises possibilities of parametric resonance for RHICEs
and similar novel dynamics of particle production during such
early stages of QGP evolution. As for the universe, new
possibilities of thermalization and symmetry changes may
arise here. We hope to explore these issues in a future work.

A direct implication of the existence of such huge oscil-
lations of l in the context of RHICEs is its possible effects
on the growth of flow anisotropies. In the hydrodynamical
studies of elliptic flow in noncentral collisions it is known that
much of the flow anisotropy develops during early stages of the
plasma evolution [24,25]. In such studies one starts with the
equilibrium QGP phase where flow develops due to pressure
gradients. In view of the possibility of large oscillations during

early stages of transition to the QGP phase, the equilibrium
starting point of these hydrodynamics simulations becomes
suspicious. Our present study does not allow us to address this
issue in the context of hydrodynamical evolution. However,
even with the field theoretical simulation in this work, we can
do a comparative study of momentum anisotropy development
with and without the presence of large oscillations of the order
parameter field l. For this we proceed as follows.

First we need to model the initial QGP system with appro-
priate spatial anisotropies. One cannot then use the square
lattice with uniform temperature. We use the temperature
profile of Woods-Saxon shape with the size in the X and Y
directions being different representing elliptical shape for a
noncentral collision. This allows us to have a well defined
size for the central QGP region, with temperature smoothly
decreasing at the boundary of this region. The transverse
size R of this system (i.e., profile of temperature) is taken to
increase with uniform acceleration of 0.015 c per fm, starting
from an initial value of R equal to the nuclear radius [25].
The initial transverse expansion velocity is taken to be zero.
This expanding background of temperature profile is supposed
to represent the hydrodynamically expanding quark-gluon
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FIG. 6. (Color online) Surface plots of the magnitude of l with circular geometry for the QGP region. (a)–(d) show large oscillations of
l during the quench when l rolls down everywhere towards the same vacuum with θ = 0. Plots in (a)–(d) correspond to τ = 2.6, 3.6, 4.4,
6.2 fm/c, with corresponding values of temperature being T = 281, 251, 228, 191 MeV, respectively

plasma in which the evolution of the order parameter field l will
be studied. It may appear confusing as l is expected to represent
the QGP phase. Indeed, the normalization of the effective
potential in Eq. (5) from Refs. [7,8] is carried out precisely
so that it represents energy density and pressure of gluons plus
quark degrees of freedom. Still, the dynamics of l from Eq. (5)
does not carry the information of hydrodynamical degrees
of freedom. Various particle modes in l need to be excited,
which should reach equilibrium, and only then we can expect
some sort of hydrodynamical evolution. Clearly the initial
field configurations assumed here are far from representing
such a hydrodynamical state. A consistent interpretation of our
simulation can be that we are studying long wavelength modes
of l, which are coupled to a background of short wavelength
modes, which are in thermal equilibrium. This equilibrated
background is expanding with velocity as mentioned above,
and drives the evolution of large wavelength modes of l via
Eq. (6).

With this interpretation, our task is straightforward. The
central temperature of the Woods-Saxon profile is taken to
decrease by assuming that the total entropy (integrated in
the transverse plane) decreases linearly as appropriate for
Bjorken dynamics of longitudinal expansion. Note that, with
the transverse expansion being nonzero now, the central
temperature will decreases faster than τ−1/3. We show, in
Fig. 6, a sequence of surface plots of the magnitude of
l showing huge oscillations with large length scale during
quench. Lattice here is again 2000 × 2000 but we take a large
value of �x = 0.25 fm so that the physical lattice size is

50 fm × 50 fm. The Woods-Saxon temperature profile
(representing QGP region) is taken to have a diameter of about
16 fm as appropriate for Au-Au collision for RHICEs. The
large physical size of the lattice allows for the evolution of the
QGP region to be free from boundary effects.

At any stage we can calculate the energy momentum tensor
T μν of l. We then calculate the spatial eccentricity εx of the l
field configuration in the standard way,

εx =
∫

dxdy(y2 − x2)ρ∫
dxdy(y2 + x2)ρ

, (7)

where ρ is the energy density. We can also calculate the
momentum density at any time using T 0x and T 0y . Using
these components we know the momentum density vector at
every stage. By integrating it in angular bins we calculate
its various Fourier coefficients, in particular the elliptic flow
coefficient v2.

VI. EFFECTS OF LARGE l OSCILLATIONS
ON FLOW ANISOTROPY

To study the effects of large l oscillations on flow
anisotropy, we consider two separate cases. Note that now
we are considering the cases with explicit symmetry breaking,
with its effect being strong on the initial field configuration.
First we consider the quench case as described above. Here,
we start with the initial field configuration corresponding to
a small patch near the equilibrium point of T = 0 effective
potential. The patch is taken, as above, with field magnitude
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randomly varying in angle between 0 and 2π with random
amplitude uniformly varying from 0 to 0.01 times the VEV
of l but now shifted by a constant value of 0.011 times the
VEV along θ = 0 direction. This simulates the effect of strong
explicit symmetry breaking as the entire patch rolls down
towards θ = 0 direction. This patch is then evolved with the
temperature profile of Woods-Saxon shape as described above
with the central temperature having initial value equal to T0 =
400 MeV. As a sample case we give results for the case when
the initial (elliptical shaped) temperature profile has an eccen-
tricity of 0.5 (with the major and minor axes being along the
x and y axes respectively), which for uniform energy density
will correspond to εx = −0.143 from Eq. (7). The initial field
configuration rolls down in the entire central region towards
roughly θ = 0 direction leading to strong l oscillations. εx , and
flow coefficients, e.g., v2 are calculated at each stage during the
evolution. This is shown in Fig. 7. In this section we take the lat-
tice to be 1000 × 1000 with the physical size of 25 fm × 25 fm.
This still allows for sufficient separation of the QGP region (of
size 16 fm diameter) from the boundary. Here we show plots
(both for εx and for v2) for two different realizations of the
random initial field configuration (shown as solid and dashed
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FIG. 7. (Color online) These plots correspond to the quench case
when the initial elliptical shaped temperature profile has eccentricity
of 0.5. Solid and dashed plots correspond to two different realizations
of the initial random field configuration. (a) and (b) show plots for εx

and elliptic flow v2 respectively.

plots). Here, and in all the figures below, we will show plots
for a time up to τ = 10 fm/c, starting with τ = τ0 = 1 fm/c at
the initial stage. The central temperature decreases (now faster
than τ−1/3 due to nonzero transverse expansion) from an initial
value T = T0 = 400 MeV at τ = τ0 = 1 fm/c to the final value
T = 147 MeV at τ = 10 fm/c. Note from the difference in
solid and dashed plots in Fig. 7 that differences in the initial
field configuration, which have very small magnitudes, lead to
huge differences in the values of εx and v2.

This situation should be compared to the case of equilibrium
initial conditions, as appropriate for conventional hydrody-
namical simulations. This equilibrium initial condition is
implemented in the following manner here. For the initial
temperature profile of Woods-Saxon shape (again, with a given
eccentricity), with initial temperature T = T0 = 400 MeV, we
first need to determine the appropriate l configuration, which
assumes a vacuum expectation value everywhere depending
on the local value of the temperature. To achieve this, we first
evolve the field configuration for 1000 time steps with highly
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FIG. 8. (Color online) Plots as in Fig. 7, now for the equilibrium
case. Solid and dashed plots show different realizations of the
small random fluctuating part of the equilibrium field configuration.
The temperature profile has same initial eccentricity of 0.5 (with
corresponding value of εx = −0.143) as in Fig. 7. (a) and (b) show
plots of εx and elliptic flow v2 respectively. Note, the initial value of
εx for the equilibrated configuration in (a) is very close to −0.143 as
shown by the plot in the inset.
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dissipative dynamics while keeping the temperature profile
to remain fixed at the initial profile. A reasonably smooth
initial test profile of l is used as the initial field configuration.
With highly dissipative evolution, the field everywhere settles
to the local minimum of the potential quickly. The final
configuration is found to be reasonably independent of the
initial configuration assumed for l as long as it is smooth. This
final configuration has correct profile as appropriate for the
Woods-Saxon profile of temperature representing the lowest
energy configuration everywhere. In order to make a suitable
comparison with the quench case we must incorporate small
fluctuations around this equilibrium configuration everywhere.
For this purpose we add to the value of the field everywhere
a small fluctuating field component with randomly varying
angle between 0 and 2π and with random amplitude uniformly
varying from 0 to 0.01 times the VEV of l (as for the quench
case). This new field configuration represents the equilibrium
field configuration everywhere, with small fluctuations. This
is taken as the initial field configuration for subsequent
evolution where now any extra dissipation is switched off.
This stage is taken as representing the initial time τ = τ0 =
1 fm. The field now evolves with the field equations, Eq. (6).
The temperature profile also is now allowed to change in time
as mentioned above. εx , and v2, etc. are calculated at each

stage. Figure 8 shows these plots for this equilibrium case,
starting from the time slightly after when extra dissipation
(to achieve equilibrium configuration) has been switched off.
When the random fluctuating component is introduced at every
lattice site after the end of dissipative evolution, it introduces
large gradients. Thus, for a very short time, there are large
fluctuations as the field smoothes to certain level. Thus we
show plots slightly after (by about 0.2 fm/c) the introduction
of the random field component.

Comparison of Figs. 7 and 8 shows the dramatic effects
of quench-induced oscillations on flow anisotropies. First
note that for the equilibrium case the initial value of εx is
close to the value −0.143 (as shown by the inset in Fig. 8),
which exactly corresponds to the initial eccentricity of 0.5
for the temperature profile. This gives us confidence that our
procedure of achieving equilibrated configuration works well.
In contrast, the initial value of εx for the case of quench in
Fig. 7 is very different showing the importance of fluctuations
for this case. We further see huge fluctuations in the values of
εx and v2 in Fig. 7 compared to the equilibrium case shown
in Fig. 8. Note that though there are oscillations in v2 for the
equilibrium case also, they do not change much from one event
to another. In contrast, for the quench case in Fig. 7, there are
huge variations between the two different realizations, i.e.,
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FIG. 9. (Color online) These plots are for the zero eccentricity for the temperature profile. In all the figures here, solid and dashed plots
correspond to different realizations of initial random field configuration. (a) and (b) show plots of εx and v2 for the equilibrium transition case,
while (c) and (d) correspond to the quench case.
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different events. These large fluctuations in Fig. 7 arise due to
large oscillations in l, which itself depends on the nature of
randomness in the initial field configuration. Note that plots for
εx in Fig. 8 show a sharp change near τ = 5.5 fm after which εx

settles down to a value close to zero. The central temperature
at that stage is about 208 MeV. Presumably a large part of the
region (away from the central part where temperature is lower
due to a Woods-Saxon profile) may be undergoing transition
at that stage leading to large changes in field dynamics. We
have checked with the contour plots that the ellipticity of the
profile of l, as well as that of energy density, does not undergo
rapid changes during this stage. (In fact this is a reflection
of a shortcoming in our model where the temperature profile
is taken to have definite initial eccentricity, and its further
expansion is with definite acceleration as discussed above,
starting with zero transverse velocity. A more appropriate
model may be to take the time evolution of the spatial
eccentricity of the temperature profile from hydrodynamical
models and study the evolution of l using that.) We note strong
fluctuations in both these quantities around this stage, which
may be responsible for these large changes in εx at this stage.
We hope to develop a better understanding of the dynamics
during this stage, which is a topic for future work. At present
what is important to note is that, apart from this peak region,
everywhere else εx shows rather stable values settling down to
a value close to zero after τ � 5.5 fm, and does not fluctuate
much, as compared to the quench case in Fig. 7(a).

To further illustrate the importance of fluctuations for the
quench case, we show plots for the case with zero eccentricity
of the QGP region (i.e., for the temperature profile), which
also will mean zero value of εx for uniform density case.
Thus, any nonzero εx and v2 arise only from the randomness
in the initial field configuration. Figures 9(a) and 9(b) show
the plots for the equilibrium case. We note that εx and v2

remain very small, apart from a large change near τ = 5.5 fm
for εx , just as in Fig. 8. Again, at present what is important
to note is that, apart from this peak region, everywhere else
εx and v2 remain very small for equilibrium case, as expected
for the zero eccentricity case. Different plots in Figs. 9(a) and
9(b) correspond to different realizations of the initial random
field configuration. This situation should be contrasted with
the quenched case as shown in Figs. 9(c) and 9(d). Note
that εx and v2 now fluctuate with large amplitudes, even
though eccentricity of the temperature profile is zero. Further,
different realizations of the initial random field configurations
lead to widely different plots of these quantities. This shows
the fluctuating nature of development of flow anisotropies
if large l fluctuations are present. These results suggest
the dynamics of the order parameter field, especially such
large length scale oscillations, may play an important role in
determining flow anisotropies and it needs to be incorporated
in the hydrodynamical models. (We emphasize again that
with additional sources of dissipation present, large field
oscillations and their effects will be suppressed.)

VII. CONCLUSIONS

We carry out a 2+1-dimensional simulation to study
the dynamics of confinement-deconfinement transition as a

quench for the central rapidity region in relativistic heavy-ion
collision experiments. We work in the framework of the
Polyakov loop model. The initial field (in the confining phase)
is taken to cover a small neighborhood of the confining vacuum
l � 0 as appropriate for the initial T = 0 system. This initial
field l, unable to relax to the new equilibrium vacuum state
with quenched potential at T = T0 = 400 MeV, becomes
unstable and rolls down in different directions from the top
of the central hill in the effective potential of l. We study
the formation of Z(3) domain structure during this evolution.
When explicit Z(3) symmetry-breaking effects (arising from
dynamical quark effects) are small, then we find well defined
Z(3) domains, which coarsen in time. During early stages Z(3)
domains [and Z(3) domain walls] have small sizes of order
1 fm. However at this stage the magnitude of l is very small, of
order few percent of its vacuum expectation value. Domains
coarsen rapidly as the magnitude of l grows and by the time
τ = 4–5 fm, domains are of size several fm. Surprisingly, the
magnitude plot of l shows vacuum bubblelike configurations,
such as those which arise in a first-order transition. This
first-order transitionlike behavior occurs even though there
is no metastable vacuum separated by a barrier from the
true vacuum for the parameter values used. These bubblelike
configurations expand as well, somewhat in a similar manner
as during a first-order transition. This result points to new
interesting possibilities for the phase transition dynamics. For
example, such bubblelike structures may lead to a dynamics
of phase separation in the case of the Universe similar to
the original Witten’s scenario [22], even when there is no
underlying first-order transition. This may also have important
implications for RHICEs. This new possibility of transition
dynamics needs to be understood and analyzed in detail, see
Ref. [23] for a study of these issues.

When the initial patch of l is only partially symmetric
around l = 0 (as appropriate for small explicit symmetry
breaking from quark effects), the dynamics retains these
qualitative aspects, with true vacuum domains (with θ = 0)
growing dominantly at the cost of the other two metastable
Z(3) domains. In this case Z(3) walls are fewer and relatively
smaller, and they disappear more quickly. When the initial
patch of l (around equilibrium point for T = 0 effective
potential) is significantly shifted towards the true vacuum
for the quenched T = T0 effective potential (as will happen
when explicit symmetry breaking is strong), then l rolls down
roughly along the same direction with angular variations
becoming smaller during the roll down. In this case only
θ = 0 vacuum survives and no other Z(3) domains are formed.
Also, in this case we do not find bubblelike configurations.
However, in this case we find huge oscillations of l with large
length scales. This is similar to the scenarios of reheating
via parametric resonance in the case of inflation in the early
Universe. In our case of RHICEs also it raises important
questions about the possibility of novel modes of particle
production from these large oscillations of l during the
early stages of the transition. We have shown that these
large l oscillations can strongly affect the evolution of flow
anisotropies in RHICEs. The spatial eccentricity and the flow
coefficients, e.g., the elliptic flow v2 are found to undergo
large fluctuations during the evolution of the system. These
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results suggest the dynamics of the order parameter field,
especially such large length scale oscillations may play an
important role in determining flow anisotropies and it needs
to be incorporated in the hydrodynamical models. Though we
mention again that the dynamics of field studied here only
incorporates the dissipative term arising from the longitudinal
expansion. In general there will be additional sources of
dissipation, e.g., from the phase transition dynamics leading
to heat and particle production. This will affect the relaxation
of the order parameter leading to suppression of oscillations of
the field. Thus, the effects of oscillations discussed here (such
as on flow fluctuations) may not be as enhanced as discussed

in the present work. These additional dissipation effects are a
topic for future research.
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