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Noncollective excitations in low-energy heavy-ion reactions:
Applicability of the random-matrix model
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We investigate the applicability of a random-matrix model to the description of noncollective excitations in
heavy-ion reactions around the Coulomb barrier. To this end, we study fusion in the reaction 16O + 208Pb, taking
account of the known noncollective excitations in the 208Pb nucleus. We show that the random-matrix model
for the corresponding couplings reproduces reasonably well the exact calculations, obtained using empirical
deformation parameters. This implies that the model may provide a powerful method for systems in which the
noncollective couplings are not so well known.
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I. INTRODUCTION

Heavy-ion reactions around the Coulomb barrier often show
a behavior that cannot be accounted for by a simple potential
model [1–3]. They have thus provided a good opportunity
to investigate the role of internal degrees of freedom in the
reaction process. One of the well known examples is a large
enhancement of sub-barrier fusion cross sections due to the
couplings between the relative motion of the projectile and
target nuclei and their internal degrees of freedom, such as
surface vibrations for spherical nuclei, or rotational motion
for nuclei possessing a static, intrinsic deformation. It is
well recognized that these couplings lead to a distribution of
potential barriers [4], and a method was proposed by Rowley,
Satchler, and Stelson to extract the barrier distributions directly
from experimental fusion cross sections [5]. The barrier distri-
butions extracted in this way are found to be sensitive to details
of the couplings, often showing a characteristic structured
behavior [1,6,7]. Similar heavy-ion barrier distributions can
also be defined for large-angle quasielastic scattering [8,9].

In order to analyze experimental data for these low-
energy heavy-ion reactions, the coupled-channels method has
been employed as a standard approach [3,10]. This method
describes the reaction in terms of the internal excitations of
the colliding nuclei, representing the total wave function of the
system as a superposition of wave functions for the relevant
reaction channels. Conventionally, a few low-lying collective
excitations, that are strongly coupled to the ground state, are
taken into account in these calculations. Such analyses have
successfully accounted for the strong enhancement of sub-
barrier fusion cross sections, and have successfully reproduced
the structure of the fusion and quasielastic barrier distributions
for many systems [1,3].

Recently, quasielastic barrier distributions have been mea-
sured for the 20Ne + 90,92Zr systems [11]. The corresponding
coupled-channels calculations show that the main structure
of these barrier distributions is determined by the rotational
excitations of the strongly deformed nucleus 20Ne. The
calculated barrier distributions are in fact almost identical for
the two systems, even when the collective excitations of the Zr
isotopes are taken into account. It was, therefore, surprising

when the two experimental barrier distributions were found
to be different in an important respect. That is, the barrier
distribution for 20Ne + 92Zr exhibits a much more smeared
behavior than that for the 20Ne + 92Zr system. The origin of
this difference has been conjectured in Ref. [11] to be the
multitude of noncollective excitations of the Zr isotopes, that
are generally ignored in a coupled-channels analysis. In fact,
the two extra neutrons in the 92Zr nucleus lead to a significantly
larger number of non-collective excited states compared with
90Zr, since this latter possesses an N = 50 closed shell (the
difference is reflected by the number of known states up to an
excitation energy of 5 MeV; one finds 35 for 90Zr and 87 for
92Zr [12]).

There are many ways to describe noncollective excitations
in heavy-ion reactions [13–24]. In the 1970s, Weidenmüller
et al. introduced a random-matrix model for such excitations
in order to study deep inelastic collisions [18–24]. See also Ref.
[25], in which a link between the coupled-channels approach
and the random-matrix model has been made. In Ref. [13],
we have used a similar model in a schematic one-dimensional
barrier-penetration problem, in order to study the role of these
noncollective excitations in low-energy reactions. On the other
hand, in Ref. [14], we have explicitly taken into account in the
coupled-channels formalism all of the 70 known noncollective
states in 208Pb below 7.382 MeV [26,27] without resorting
to the random-matrix model, and have analysed in this way
the experimental data for the 16O + 208Pb reaction. Although
some discrepancies between the experimental and theoretical
barrier distributions remain after the inclusion of noncollective
excitations, we have shown in Ref. [14] that these excitations
play a more important role as the incident energy increases. We
have also compared there the role of noncollective excitations
in the fusion and quasielastic barrier distributions, and have
shown that they affect both distributions in a similar fashion.

Given that exact calculations with a realistic spectrum for
noncollective states is possible here, it is intriguing to also
apply the random-matrix model to this system in order to test
its applicability. This theoretical test is the main aim of this
paper, and we achieve it by comparing our new results with
those obtained in Ref. [14]. Note that, in contrast to 208Pb, the
properties of the noncollective states in 90,92Zr are not known
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sufficiently well. As we will show in this paper, the random-
matrix model provides a good method for a description of
noncollective excitations in such a situation.

The paper is organized as follows. In Sec. II, we explain
the coupled-channels formalism with noncollective excitations
based on the random-matrix model. In Sec. III, we discuss the
strength distribution and fusion cross sections obtained with
this model. We then compare these with calculations using
the more exact couplings and discuss the applicability of the
random-matrix model. The paper is summarized in Sec. IV.

II. COUPLED-CHANNELS METHOD WITH
NONCOLLECTIVE EXCITATIONS

In order to describe internal excitations during the reaction
process, we assume the following Hamiltonian:

H = − h̄2

2μ
∇2 + Vrel(r) + H0({ξ}) + Vcoup(r, {ξ}), (1)

where r is the separation of the projectile and target nuclei, and
μ is the reduced mass. In this equation, H0({ξ}) is the intrinsic
Hamiltonian with {ξ} representing a set of internal degrees
of freedom. The optical potential for the relative motion is
Vrel(r), and it includes an imaginary part to simulate the fusion
process (that is, strong absorption into compound-nucleus
degrees of freedom inside the Coulomb barrier). The coupling
Hamiltonian between the relative motion and the intrinsic
degrees of freedom is denoted by Vcoup(r, {ξ}).

The coupled-channels equations for this Hamiltonian are
obtained by expanding the total wave function in terms of the
eigenfunctions of H0({ξ}). The equations read[

− h̄2

2μ

d2

dr2
+ J (J + 1)h̄2

2μr2
+ Vrel(r) + εn − E

]
uJ

n (r)

+
∑
m

Vnm(r)uJ
m(r) = 0, (2)

where εn is the excitation energy for the nth channel. In
deriving these equations, we have employed the iso-centrifugal
approximation [3,28–33]. In this approximation, the orbital
angular momentum in the centrifugal potential is replaced by
the total angular momentum J , thereby considerably reducing
the dimension of the coupled-channels equations.

In solving these equations, we impose the following
asymptotic boundary conditions

uJ
n (r) → H

(−)
J (knr)δn,0 −

√
k0

kn

SJ
n H

(+)
J (knr), (3)

for r → ∞, together with the regular boundary condition at
the origin. Here, kn =

√
2μ(E − εn)/h̄2 is the wave number

for the nth channel, where n = 0 corresponds to the entrance
channel. SJ

n is the nuclear S matrix, and H
(−)
J (kr) and H

(+)
J (kr)

are the incoming and the outgoing Coulomb wave functions,
respectively. The fusion cross sections are then obtained as

σfus(E) = π

k2
0

∑
J

(2J + 1)

(
1 −

∑
n

∣∣SJ
n

∣∣2

)
. (4)

In the random-matrix model [18–25], one assumes an
ensemble of coupling matrix elements whose first moment
satisfies

V II ′
nn′ (r) = 0, (5)

while the second moment satisfies

V II ′
nn′ (r)V I ′′I ′′′

n′′n′′′ (r ′)
= {δnn′′δn′n′′′δII ′′δI ′I ′′′ + δnn′′′δn′n′′δII ′′′δI ′I ′′ }

×
√

(2I + 1)(2I ′ + 1)
∑

λ

(
I λ I ′
0 0 0

)2

×αλ(n, n′; I, I ′; r, r ′). (6)

Here, I is the spin of the intrinsic state labeled by n,
and αλ is the coupling form factor. Weidenmüller et al.
analytically carried out the ensemble average by assuming a
weak coupling limit [18–25]. In contrast, we take the ensemble
average numerically in our calculations in order to avoid the
approximations (but see Sec. III B below). Notice that the
transport equation derived in the random matrix model has
to be solved numerically in any case, even if the ensemble
average of the coupling matrix elements can be performed
analytically.

In this paper, for simplicity, we assume that the noncollec-
tive excitations couple only to the ground state, as in the linear
coupling approximation employed in our previous work [14].
For the form factor αλ, we assume the following dependence:

αλ(n, 0; I, 0; r, r ′) = wλ√
ρ(εn)

e
− ε2

n

2
2 e
− (r−r′ )2

2σ2 h(r)h(r ′), (7)

where ρ(εn) is the level density at an excitation energy εn,
and (wλ,
, σ ) are adjustable parameters. The appearance of
the level density in the denominator reflects the complexity
of the noncollective excited states, as discussed in Ref. [21].
For the function h(r), we adopt the derivative of the
Woods-Saxon potential, that is,

h(r) = e(r−R)/a

[1 + e(r−R)/a]2
. (8)

Note that this choice of the form factor corresponds to the
coupling Hamiltonian in the linear coupling approximation
derived from the Woods-Saxon potential.

III. APPLICABILITY OF THE RANDOM-MATRIX MODEL

A. Strength distribution

Let us now apply the random-matrix model to the
16O + 208Pb reaction and discuss its applicability. As we
mentioned in Sec. I, we have studied this system by explicitly
including 70 noncollective states below 7.382 MeV, together
with a few collective states, in the coupled-channels calcula-
tions [14]. The effect of the noncollective couplings was found
to be non-negligible and tends to result in a widening of the
barrier distribution. In this paper, we attempt to model the
couplings to these 70 noncollective states with the random-
matrix model. The aim here is to show that the random-matrix
model is a good alternative to the exact calculation, and could
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be important in cases where the experimental information on
the noncollective states is not fully available.

We first discuss the strength distribution for the noncol-
lective excitations in 208Pb obtained with the random-matrix
model. To this end, we define the strength distribution as

bI =
√√√√∑

λ

(
0 λ I
0 0 0

)2
√

2I + 1

ρ(ε)
e
− ε2

2
2 =

√√√√√
2I + 1

ρ(ε)
e
− ε2

2
2 .

(9)

This quantity essentially corresponds to the square root of
Eq. (6), except for an overall scale factor (here we have
assumed wλ = w for all λ and omitted wλ in the definition
for the strength function).

The level density in Eq. (9) is treated in the following way.
It is originally defined by

ρ(ε) =
∑

n

δ(ε − εn) (10)

for a discrete spectrum. For practical purposes, we define the
function

N (ε) =
∫ ε

0
ρ(ε′)dε′ =

∑
n

θ (ε − εn), (11)

that gives the number of levels up to the excitation energy ε.
We fit this function with a polynomial in ε, and then define
a continuous level density by differentiating this polynomial.
Figure 1 shows the experimental N (ε) for 208Pb [26] in the
interval between 4 and 7.5 MeV (solid line) and its fit with a
polynomial f (ε) = ∑6

n=0 anε
n (dashed line). The values of an

are a0 = −7479, a1 = 6969 (MeV−1), a2 = −2612 (MeV−2),
a3 = 497.5 (MeV−3), a4 = −49.59 (MeV−4), a5 = 2.347
(MeV−5), and a6 = −0.03632 (MeV−6). The continuous level
density, ρ(ε) = df (ε)/dε, is shown in Fig. 2.

The strength distribution bI calculated with this level
density is shown in Fig. 3 by the solid line as a function
of excitation energy ε. The parameter 
 in Eq. (9) is chosen
to be 7 MeV, as in Refs. [23,24]. For comparison, the figure
also shows the distribution of the experimental deformation
parameters βI [26], smeared with a Gaussian function with a
width of 0.15 MeV (dashed line). We have also performed the
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FIG. 1. (Color online) The number of levels of the 208Pb nucleus
up to the excitation energy ε as a function of ε. The histogram
represents the experimental data [26], while the dashed line shows its
fit with a polynomial function up to the sixth order.
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FIG. 2. The continuous level density for 208Pb obtained as a first
derivative of the fitting function f (ε) shown in Fig. 1.

same smearing for the strength distribution bI . Also, since the
dimensions of βI and bI are not the same, the deformation
parameters βI are scaled by a factor 10 so that the heights of
the first peaks at about 4.3 MeV match one another. Although
there exists a small deviation for the peaks between 5 and
7 MeV, the overall structure of the strength distribution is well
reproduced by this model.

B. Fusion cross sections

The strength distribution discussed in the previous subsec-
tion determines the coupling strength to each excited state.
Let us then examine how the random-matrix model can be
compared with the exact results in terms of the fusion cross
sections for the 16O + 208Pb system. For this purpose, we
use the same Woods-Saxon potential for the nuclear potential
as in Ref. [14]; it has a surface diffuseness a = 0.671 fm,
a radius R = 8.39 fm, and a depth V0 = 550 MeV. For the
couplings to the collective excitations, we take into account the
vibrational 3− state at 2.615 MeV, the 5− state at 3.198 MeV,
and the 2+ state at 4.085 MeV in 208Pb. The octupole mode
is included up to the two-phonon states, while the other,
weaker, vibrational modes are taken into account only up
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) β(ε) x 10
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FIG. 3. (Color online) The strength distributions for 208Pb as a
function of excitation energy ε. The dashed line shows the distribution
of the experimental deformation parameters, while the solid line is
obtained based on the random-matrix model using Eq. (9). Both
distributions are smeared with a Gaussian function with a width of
0.15 MeV. An overall scaling factor is introduced to the dashed line
as the dimension is different between the two curves (see text).
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to their one-phonon states. The deformation parameters for
these vibrational modes are estimated from the measured
electromagnetic transition probabilities. They are β3 = 0.122,
β5 = 0.058, and β2 = 0.058 together with a radius parameter
of r0 = 1.2 fm. Although we took into account the octupole
phonon state of 16O in our preivous study [14], for simplicity
we do not include it in the present calculations, since its effect
can be well described by an adiabatic renormalization of the
potential depth [3,34]. For the parameter σ in Eq. (7), we
follow Refs. [23,24] and use σ = 4 fm. On the other hand,
the parameter wλ = w is chosen to be w = 38 000 MeV3/2

so that the height of the main peak in the fusion barrier
distribution is reproduced by the random-matrix model. In
principle one should repeat the coupled-channels calculations
many times with randomly generated matrix elements and take
an ensemble average. However, we have found in a smaller
model space that the dispersion due to the randomness of these
elements is sufficiently small that a single realization already
yields reasonable results. We therefore take only a single set of
the coupling matrix in the calculations shown below, without
taking an ensemble average of the results.

Figures 4(a) and 4(b) show the 16O + 208Pb fusion exci-
tation function on linear and logarithmic scales respectively.
The dashed lines show the results obtained with the measured
deformation parameters for the noncollective excitations,
while the solid lines show the results obtained using the
random-matrix approximation. For comparison, the dotted
lines show results that account only for the collective exci-
tations. Although a small overall shift can be seen, it is clear
that the random-matrix model reproduces the exact results
reasonably well.

In order to highlight the energy dependence, Fig. 4(c) shows
the fusion barrier distribution Dfus(E) = d2(Eσfus)/dE2

[1,3,5,6]. Although the main peak is slightly shifted in energy,
this confirms that the random-matrix model reproduces well
the exact results. That is, with respect to the dotted line, the
change in the energy dependence of fusion cross sections due to
the noncollective excitations is similar in the two calculations.
In particular, both barrier distributions are smeared out in a
similar way at energies around 80 MeV, and both calculations
yield a similar second peak around 87.5 MeV. (We note that if
the strength w0 was somewhat larger, the second peak could
appear at even higher energies, possibly reflecting the broad
bump seen at around 97 MeV in the experimental data.)

As we have argued in Ref. [13], the higher-energy peaks
in the barrier distribution are affected more by noncollective
excitations than are the lower-energy peaks. Unfortunately this
is not easy to see in Fig. 4 because the peaks obtained with
purely collective couplings are not resolved. This difference
can, however, be easily understood using perturbation theory.
That is, the eigenchannels corresponding to the higher-energy
peaks in the barrier distribution couple more strongly to the
noncollective states via their ground-state component simply
because the energy differences are smaller. Higher peaks are
thus redistributed more, effectively removing much of their
strength from that region of energy.

From these calculations, it is evident that the effects of
noncollective excitations are not sensitive to details of the
noncollective couplings, and that the random-matrix model is
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FIG. 4. (Color online) (a), (b) Fusion cross sections σfus and
(c) fusion barrier distributions Dfus(E) = d2Eσfus(E)dE2 for the
16O + 208Pb system obtained from three different calculations.
Dashed lines show results obtained with the experimental, noncol-
lective deformation parameters, whereas the solid lines are obtained
from the random-matrix model. Dotted lines result from calculations
that include only the 208Pb collective excitations.

applicable to the description of noncollective excitations, so
long as the relevant parameters are chosen appropriately.

IV. SUMMARY

We have investigated the applicability of the random-matrix
model for the description of noncollective excitations in low-
energy heavy-ion reactions. To this end, we have calculated
the fusion excitation function for the 16O + 208Pb system,
where the role of the noncollective excitations has already been
investigated in our previous study using empirical deformation
parameters.

We have first shown that the coupling strength distribution
obtained with the random-matrix model agrees well with the
experimental distribution. The fusion cross section and barrier
distribution for the 16O + 208Pb system obtained with empir-
ical noncollective couplings are also well reproduced by the
random-matrix model with appropriately chosen parameters.
These results provide a validation of the random-matrix model
for the description of noncollective couplings.
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For the 208Pb nucleus, detailed properties of noncollective
states are known over a large energy range. However, this is
not always the case for other systems. That is, for many nuclei,
even though the energies and spin-parity may be relatively well
known for many noncollective states, the coupling strengths
are poorly determined. In such a situation, the present study
suggests that the random matrix model provides a powerful
tool to treat these coupling strengths. A good example is
the quasielastic barrier distribution for the 20Ne + 90,92Zr
systems, where it has been suggested that noncollective
excitations may play an important role. Analyses for these

systems within the random-matrix model are under way. We
shall report the results in a separate publication [35].
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