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The α decay of superheavy nuclei (SHN) is studied within the framework of the shell-model rate theory. The α

half-lives are calculated in terms of the α clustering and resonance scattering amplitudes given by self-consistent
models for the nuclear structure and reaction dynamics. The results and their systematics are compared with the
available experimental data and with those data obtained from empirical models. The Brown relationship [B. A.
Brown, Phys. Rev. C 46, 811 (1992)], which predicts a linear dependence of the log Tα on Z0.6

d Q−1/2
α , is used

to obtain a relevant systematics for α half-lives of the observed SHN. Also, simple fit formulas are proposed
for α-half-time estimations with reduced standard errors. Comparison of experimental and calculated results
provides insight into the accuracy of modern approaches for the structure of SHN with valence nucleons outside
the doubly magic core.
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I. INTRODUCTION

For superheavy nuclei (SHN) located far away from the
β-stability line on the proton-rich side, the binding energy
rapidly decreases, due to increasing Coulomb repulsion and
reaction Q values, which leads to two major difficulties with
regard to both SHN production in fusion-evaporation reactions
and the study of their decay properties. The first difficulty is
related to the fact that large Q values imply high excitations in
the involved nuclear systems. The second one is a consequence
of the first, meaning that large Q values open up many decay
channels favoring the nuclei closer to stability.

Both the amount and quality of experimental data on the
nuclear energy levels and the decay modes of SHN have
increased considerably in the last few years [1–15]. The decay
data reveal that for SHN the dominant decay mode is α
emission, not fission.

The SHN have now become available for experimen-
tal studies with in-beam and decay spectroscopic methods
[1,8,16] and also for systematic studies through phenomeno-
logical and theoretical approaches [17–21]. These detailed
investigations provide the access to the basic properties
of SHN: masses, energy levels, lifetimes, spins, moments,
reaction energies, and emission rates. Moreover, α decay has
become a powerful tool to explore the nuclear structure (α
clustering, fine structure, shell effects, and deformation) and
also to reveal the most important aspects of reaction mech-
anisms (resonance tunneling, phase transitions, and channel
coupling).

The α decay of SHN has yielded much energy level
information for nuclear spectroscopy and it is one of the most
useful probes for studying the structure of SHN [22]. Studies
of production and decay of SHN are revealing new competing
decay modes and complex nuclear structures involving weakly
bound states coupled to an environment of scattering states.
The main features of the nuclear structure can be revealed by
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observing the evolution of basic quantities that characterize
the nucleus [23]. There have been several efforts to correlate
the existing α-decay data on an empirical basis to give
insight into the nature of the process. However, it is difficult
to correlate data with the evolution of nuclear structure
observables.

In the present work, our aim is to correlate on a theoretical
basis the measured reaction energies Eα with the microscopic
information on nuclear structure to make reasonable predic-
tions for the emission rates, i.e., the α half-lives, Tα , and the
decay widths, �α . Theoretical results are confronted with the
available experimental data and the results of other relevant
approaches to obtain the net contributions of the shell structure,
finite size, and screening effects to the emission rates. Also,
we compare the systematics of experimental (T exp

α , Q
exp
α )

and shell-model (SM) results (T SM
α , Q

exp
α ) to discuss possible

sources for some large discrepancies between experiment and
theory.

This paper is organized as follows. In Sec. II the formalism
is briefly reviewed. In Sec. III the results for the α half-lives, the
systematics of the α-decay properties for almost all the known
SHN at the present date, and the fit formulas for practical
estimations of α half-lives are presented. The concluding
remarks are summarized in Sec. IV.

II. SHELL-MODEL RATE THEORY

For studying the essential features of α decay of SHN we
use the shell-model rate theory (SMRT) [24]. The SMRT
unifies the advantages of the microscopic description of the
α-particle preformation process [25] with the ones of the
theory of resonance reactions [26,27] in describing the reaction
dynamics. Apart from the R-matrix theory which contains
the channel radius as an arbitrary parameter, the SMRT is
free from the parameters of the theory. The procedure is to
smoothly match the four shell-model (SM) wave functions
of individual nucleons (I k[SM]

n (r) which describe the SM
formation amplitude of the outgoing α- particle (in channel
n from the resonance state k) with a general solution of the
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A. I. BUDACA AND I. SILIŞTEANU PHYSICAL REVIEW C 88, 044618 (2013)

system of differential equations:[
h̄2

2m

(
d2

dr2
− l(l + 1)

r2

)
− Vnn(r) + Qn

]
u0

n(r)

+
∑
m�=n

Vnm(r)u0
m(r) = 0, (1)

[
h̄2

2m

(
d2

dr2
− l(l + 1)

r2

)
− Vnn(r) + Qn

]
uk

n(r)

+
∑
m�=n

Vnm(r)uk
m(r) = I k[SM]

n (r). (2)

These equations define an α particle of a given kinetic energy,
Qα , and an angular momentum, l, moving in the potential
Vnm(r). The solutions of the above system represent the
radial motion of the fragments at large and small separations,
respectively, in terms of the reduced mass of the system
m, the kinetic energy of the emitted particle Qα = Qn =
E − ED − Eα , the formation amplitude (FA) I k

n (r), and the
matrix elements of the interaction potential Vnm(r).

The effective decay energy used in the above relations is

Qα = A

A − 4
Eexp

α + (
6.53Z

7/5
d − 8.0Z

2/5
d

)
10−5, (3)

where A is the mass number of the parent nucleus, E
exp
α is the

measured kinetic energy of the α particle, and the second term
is the screening correction [28].

The matrix elements Vnm(r) include nuclear and Coulomb
components [29] defined with the quadrupole (β2) and
hexadecapole (β4) deformation parameters of the daughter
nucleus [30]. To avoid the usual ambiguities encountered in
formulating the potential for the resonance tunneling of the
barrier we iterate directly the nuclear potential in the equations
of motion [29,31].

The SM α-particle FA is defined as the antisymmetrized
projection of the parent wave function on the channel wave
function:

I k[SM]
n (r) = r

〈
�SM

k (ri)
∣∣A{[

�SM
D (η1)�p(η2)Ylm(r̂)

]
n

}〉
, (4)

where �SM
D (η1) and �α(η2) are the internal (space-spin) wave

functions of the daughter nucleus and of the particle, Ylm(r̂)
is the wave function of the angular motion, A is the inter-
fragment antisymmetrizer, r connects the centers of mass of
the fragments, and the symbol 〈 | 〉 means integration over the
internal coordinates and the angular coordinates of the relative
motion. It should be pointed out that the spatial correlations
imposed by the Pauli principle on the nucleons in a simple SM
configuration are sufficient to determine the essential features
of nuclear motion in the preformation stage.

Following Ref. [25] we use in Eq. (4) the wave functions
(WFs) |�SM

k (ri)〉 = det ‖ψSM
nlj (ri)‖, i = 1, A, and |�SM

D 〉 =
det ‖ψSM

nlj (η1i)‖, i = 1, A − 4, where ψSM
nlj (ri) are the standard

nuclear SM single-particle WFs [32], and the α-particle WF

�α(η2) = (2/(1/2)!)3/2(β/π )9/4
(
ρ2

1 + ρ2
2 + ρ2

3

)
× (4π )−3/2χ00(s1s2)χ00(s3s4), (5)

where the α-particle oscillator parameter is β = 0.484 fm−2,
χ00 is the singlet spin function, and the internal spatial

coordinates ρ1 = (r1 − r2)/
√

2, ρ2 = (r3 − r4)/
√

2, and ρ3 =
(r1 + r2 − r3 − r4)/2 are connected to the individual coor-
dinates ri of the four nucleons. To perform the integrations
in Eq. (4) we need to transform the WF �SM

k (ri) from the
individual coordinates (ri) −→ r , η1, and η2 to the center-
of-mass system coordinate r and internal coordinates η1 and
η2 of the fragments. Further, by integrating over the internal
coordinates and the angular coordinates of the relative motion
of fragments, the overlap integral is easily obtained.

For nuclei with Z = 102–120 we use single-proton states
[32]: 1i13/2, 2f7/2, 2f5/2, 3p3/2, 3p1/2; and for nuclei with
N = 150–178 we use single-neutron states: 2g9/2, 2g7/2,
3d5/2, 3d3/2, 4s1/2.

The α-decay width is given by

�k[SM]
n = 2π

∣∣∣∣∣
∫ rmax

rmin
I k[SM]
n (r)u0

n(r)dr∫ rmax

rmin
I k
n (r)uk[SM]

n (r)dr

∣∣∣∣∣
2

, (6)

where the lower limit in the integrals is an arbitrary small
radius, rmin > 0, while the upper limit rmax is close to the first
exterior node of u0

n(r).
The α half-life is expressed as

T k[SM]
n = ln 2

h̄

�
k[SM]
n

. (7)

The α half-lives derived from Eqs. (8) and (7) depend on
the nuclear single-particle wave functions and finite sizes of
nucleons and α particles (see Ref. [25] for details). Also these
half-lives include the correction terms due to screening and
resonance scattering effects.

Finally, the SM half-lives are corrected by the even-odd
terms he−o extracted from the available decay data (see
Sec. III):

log T k[SM]
n (s) =⇒ log T k[SM]

n (s) + he−o. (8)

III. RESULTS AND DISCUSSION

A. α half-lives

Nuclei with the atomic number Z = 102–118 (including
even-even, even-odd, odd-even, and odd-odd species) taken
into account in the present calculations are shown in Table I
together with emission energies. These nuclides decay pri-
marily through α emission (Tα < TSF). The decay chains of
consecutive α emissions are terminated by the spontaneous
fission (SF) (Tα > TSF).

The results for the α half-lives obtained from Eqs. (1)–
(8), using only experimental emission energies [1–15], are
presented in column 6 of Table I. In column 7 are shown the
results of a linear fit of the SM half-lives T fit

α (see Sec. III C).
With regard to Table I we would like to reveal the following:

(i) a considerable increase of α half-lives with an increas-
ing number of neutrons in all isotopic sequences;

(ii) a decrease of α half-lives with an increasing number of
protons in isotonic sequences;

(iii) the prominent α emitters are very neutron-deficient
isotopes with the α half-lives in the range of about
10−6–10−5 s to 1–2 min;
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TABLE I. Experimental [1–3,5,9–12,33] and calculated α-decay
properties of the measured SHN.

Nucleus lmin Eexp
α Qα log T exp

α log T SM
α log T fit

α

251No 0 8.620 8.801 −0.119 0.790 0.981
253No 0 8.010 8.181 1.982 2.954 3.010
254No 0 8.100 8.271 1.708 1.575 3.576
255No 0 8.120 8.291 2.270 2.577 2.632
256No 0 8.450 8.626 0.464 0.406 2.386
257No 0 8.340 8.514 1.398 1.834 1.894
259No 0 7.680 7.842 3.542 4.167 4.215
254Lr 0 8.460 8.638 1.114 1.849 1.824
255Lr 0 8.430 8.607 1.338 1.608 1.924
256Lr 0 8.520 8.698 1.431 1.657 1.633
257Lr 0 8.860 9.043 −0.187 0.245 0.572
258Lr 1 8.650 8.829 0.613 1.243 1.223
259Lr 0 8.440 8.615 0.792 1.582 1.898
260Lr 0 8.040 8.208 2.255 3.288 3.253
255Rf 0 8.770 8.953 0.204 1.166 1.165
257Rf 0 9.020 9.206 0.672 0.401 0.409
259Rf 0 8.890 9.072 0.519 0.802 0.803
261Rf 0 8.280 8.452 1.833 2.638 2.760
256Db 0 9.010 9.197 0.230 0.826 0.752
257Db 0 9.160 9.348 −0.097 0.034 0.310
258Db 0 9.170 9.358 0.643 0.350 0.282
259Db 0 9.470 9.662 −0.292 −0.862 −0.570
260Db 1 9.120 9.306 0.176 0.502 0.432
261Db 0 8.930 9.113 0.255 0.737 1.001
262Db 0 8.670 8.848 1.544 1.903 1.810
263Db 0 8.360 8.533 1.462 2.589 2.822
259Sg 0 9.620 9.815 −0.319 −0.656 −0.679
260Sg 0 9.810 10.007 −2.444 −2.241 −0.392
261Sg 0 9.560 9.753 −0.638 −0.485 −0.511
263Sg 0 9.250 9.437 −0.523 0.412 0.368
265Sg 0 8.830 9.010 0.851 1.703 1.630
266Sg 0 8.630 8.806 1.531 1.282 3.132
269Sg 0 8.570 8.744 2.108 2.406 2.462
271Sg 0 8.540 8.712 2.057 2.654 2.563
261Bh 0 10.400 10.607 −1.928 −2.688 −2.395
262Bh 0 10.370 10.576 −2.097 −2.270 −2.319
264Bh 1 9.620 9.813 −0.356 −0.270 −0.369
266Bh 1 9.290 9.477 0.230 0.686 0.565
267Bh 1 8.830 9.009 1.230 1.765 1.949
270Bh 1 8.930 9.109 1.785 1.655 1.644
271Bh 1 9.350 9.535 0.079 0.045 0.400
272Bh 3 9.150 9.331 1.079 0.983 0.984
274Bh 3 8.800 8.975 1.733 2.214 2.054
263Hs 0 10.900 11.114 −0.131 −3.408 −3.289
264Hs 0 10.430 10.636 −3.585 −3.221 −1.397
265Hs 0 10.570 10.777 −3.097 −2.503 −2.512
266Hs 0 10.180 10.381 −2.638 −2.577 −0.758
267Hs 0 9.880 10.076 −1.481 −0.708 −0.767
269Hs 0 9.230 9.415 0.987 1.164 1.051
270Hs 0 8.880 9.059 1.362 1.045 3.201
271Hs 0 9.140 9.322 0.602 1.304 1.321
273Hs 0 9.590 9.778 −0.620 −0.017 0.029
275Hs 0 9.300 9.483 −0.721 0.962 0.856
266Mt 0 11.740 11.965 −2.769 −4.843 −4.834
268Mt 0 10.240 10.441 −1.155 −1.303 −1.405
270Mt 0 10.030 10.227 −0.086 −0.743 −0.863
274Mt 1 10.020 10.214 −0.485 −0.831 −0.831

TABLE I. (Continued.)

Nucleus lmin Eexp
α Qα log T exp

α log T SM
α log T fit

α

275Mt 0 10.330 10.528 −1.921 −1.984 −1.622
276Mt 0 9.710 9.899 −0.143 0.150 0.002
278Mt 0 9.550 9.735 0.716 0.482 0.449
267Ds 0 11.600 11.823 −5.523 −4.306 −4.268
269Ds 0 11.110 11.324 −3.770 −3.197 −3.197
270Ds 0 11.000 11.212 −4.000 −4.111 −2.185
271Ds 0 10.740 10.947 −2.959 −2.308 −2.339
273Ds 0 11.200 11.413 −3.770 −3.401 −3.393
277Ds 0 10.570 10.771 −2.245 −1.990 −1.923
279Ds 0 9.700 9.888 −0.699 0.463 0.331
281Ds 0 8.730 8.903 1.301 3.316 3.230
272Rg 0 10.820 11.029 −2.824 −2.153 −2.245
274Rg 0 11.150 11.362 −2.194 −2.942 −3.003
278Rg 0 10.690 10.893 −2.367 −1.939 −1.928
279Rg 0 10.370 10.568 −0.770 −1.347 −1.141
280Rg 0 9.750 9.938 0.556 0.696 0.491
282Rg 0 9.180 9.359 1.602 2.264 2.136
277Cn 0 11.450 11.666 −3.155 −3.392 −3.389
281Cn 0 10.310 10.507 −1.013 −0.706 −0.700
283Cn 0 9.540 9.725 0.580 1.595 1.381
285Cn 0 9.150 9.328 1.462 2.804 2.535
278Uuta 2 11.680 11.899 −3.620 −3.578 −3.613
282Uuta 0 10.620 10.821 −1.210 −1.156 −1.189
283Uuta 0 10.120 10.313 −1.000 −0.042 0.082
284Uuta 0 9.970 10.161 −0.013 0.586 0.483
285Uuta 0 9.740 9.927 0.738 1.041 1.114
286Uuta 2 9.630 9.815 1.293 1.709 1.425
286Fl 0 10.180 10.373 −0.886 −0.659 1.042
287Fl 0 10.020 10.211 −0.319 0.854 0.642
288Fl 0 9.950 10.080 −0.097 0.019 1.699
289Fl 0 9.820 10.007 0.415 1.433 1.190
287Uupa 0 10.590 10.789 −1.456 −0.683 −0.548
288Uupa 0 10.480 10.677 −1.060 −0.049 −0.271
289Uupa 0 10.500 10.697 −0.420 −0.571 −0.320
290Uupa 2 10.200 10.392 −0.620 0.584 0.453
290Lv 0 10.840 11.042 −2.167 −1.799 −0.076
291Lv 0 10.740 10.940 −1.699 −0.473 −0.635
292Lv 0 10.660 10.858 −1.397 −1.328 0.376
293Lv 0 10.540 10.736 −1.097 0.057 −0.136
293Uusa 0 11.030 11.233 −1.569 −1.209 −1.056
294Uusa 0 10.810 11.010 −1.108 −0.302 −0.527
294Uuoa 0 11.650 11.862 −3.046 −3.198 −1.422
295Uuoa 0 11.550 11.760 −3.000 −1.895 −1.976
298Ubna 0 12.400 12.621 −4.523 −4.336 −2.497
299Ubna 0 12.300 12.519 −4.301 −3.050 −3.048

aTemporary names assigned according to the convention of the
systematic element names.

(iv) the half-lives of even-even nuclei are always shorter
than the half-lives of their neighbors even-odd, odd-
even, and odd-odd nuclei;

(v) there are also significant differences between the half-
lives of nuclei with an identical number of additional
nucleons (or α particles) and the ones with an identical
number of nucleon (or α particle) holes in doubly magic
cores and of Z = 108, N = 162, and Z = 114, and N
approaching 184.
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The differences mentioned at the last two points are
connected with the pairing interaction and the α periodicity
of nuclear properties which are manifested in heavy and su-
perheavy nuclei. These differences are illustrated graphically
in Sec. III C.

An example concerning the last point above is the doubly
magic deformed nucleus 270Hs from the α-decay chain
274Ds(270Hs+α) →270Hs→266Sg(270Hs−α). Notice that, the
nuclide 274Ds is not yet observed and our prediction for its
α half-life is about 10−4 − 10−5 s. The α half-lives of suc-
cessive daughter nuclei increase so that we have Tα(274Ds) 	
Tα(270Hs) < Tα(266Sg). Similar α-decay channels and exper-
imental and theoretical SM values for α half-lives are well
known for the the spherical doubly magic 208Pb and 100Sn
nuclei [24]:

212Po(208Pb+α) →208Pb→204Hg(208Pb−α);
104Te(100Sn+α) →100Sn.

In other words, nuclei from unstable configurations undergo
spontaneous α decay until stability is reached. As has been
noted in Ref. [21], the SM results are very sensitive to the
assignment of the single proton and neutron states. Thus, the
α half-time for the decay of 286Fl agrees well with the observed
data if the parent configuration is 2[2f7/2]p, 2[2g7/2]n, whereas
another configuration leads to a wrong result. In the same
way the meta-stable high-spin states [12] can be uniquely
determined by a precise configuration that reproduces the
experimental data on the α-decay data of the isomeric state,
with other configurations leading to wrong results.

In general, the α half-lives presented in Table I are in a
good agreement with most of the updated α-decay data [33]
and also with some calculated results [34]. The agreement with
the predictions of the different models [17–20] is also good, if
these include the same additional corrections for screening and
even-odd effects. Notice that for a number of nuclei the values
T

exp
α are only estimates with the Viola-Seaborg formula [Eq.

(B1)] using experimental emission energies. The appropriate
results of different models show that the essential factor
determining α half-lives is the emission energy. However,
for a few nuclei, 266Mt, 281Ds, and 282Rg, we observe large
differences between theory and experiments, see Table II. Such
discrepancies of about 2 or 3 orders of magnitude, we have
assumed [21,22] to arise from possible measurement errors.
Even recently, a new series of experiments has been performed
to obtain more detailed information on the decay properties of
odd-Z nuclei as well as to measure the excitation functions
of the 243Am + 48Ca and 249Bk + 48Ca reactions at a more
extended range of projectile energies and to verify the reported
discoveries of elements 113, 115, and 117 [1]. Several new

TABLE II. Superheavy nuclei with large discrepancies between
calculated and experimental half-lives.

Nucleus Eexp
α Qα log T exp

α log T SM
α log T VS

α log T B
α

263Hs 10.900 11.114 −0.131 −3.408 −3.405 −2.874
266Mt 11.740 11.965 −2.770 −4.843 −4.937 −4.198
281Ds 8.730 8.903 1.301 3.316 3.321 2.914
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FIG. 1. (Color online) Logarithm of T SM
α /T exp

α vs the neutron
number N for the heaviest nuclei with Z = 102–120, Z-even. These
values are distributed around the value 0.5 of the logarithm, which
corresponds to the absolute deviations of the half-lives with a factor
of 3.2.

data are in much better agreement with our predictions for
282Rg and 290Uup nuclei than the previous measured values. A
special case would be 281Ds, which is known to decay only by
spontaneous fission [4]. However Düllmann et al. [12] report
also the existence of an α-decay branch Iα of 9+16

−7 % for this
nucleus, which we take into account in our calculations.

For further insight, we give a comparison of the calculated
results with the experimental data for isotopes of different
elements (Figs. 1 and 2). One can see that the absolute values
of log(T SM

α /T
exp
α ) are generally less than 1.5.

In Figs. 1 and 2 are plotted the deviations of even-Z
(Z = 102–120) and odd-Z (Z = 103–117) isotopes versus
the proton number of the parent nucleus. From these figures
one can see that the deviation of T SM

α /T
exp
α decreases from
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FIG. 2. (Color online) Logarithm of T SM
α /T exp

α vs the neutron
number N for the heaviest nuclei with Z = 102–120, Z-odd. These
values are distributed around the value 0.25 of the logarithm, which
corresponds to the absolute deviations of the half-lives with a factor
of 1.8.
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the neutron number N = 151 for several isotopic chains.
This is due to the influence of the spherical shell closure.
Similarly, one can see that the deviations generally decrease
with the neutron number approaching the deformed N = 162
(Z = 108) shell and moving away from the spherical shell
closure. We used the property of this ratio to point out the
theoretical shortcomings made in Ref. [35] but only for heavy
nuclei and several SHN.

The structural characteristics of SHN change rather
smoothly for two neighboring nuclei but isolated jumps in their
α half-lives appear only for transitions across major shells.
The α half-lives are strongly modulated by major shell effects,
leading to very short α half-lives above and long α half-lives
below the magic shells.

For the 99 even-even, odd-even, even-odd, and odd-odd
SHN, the value of the standard deviation is 0.65, which is
defined as

√
〈σ 2〉 =

√√√√ 1

N

N∑
i=1

(
log Tα

SM − log T
exp
α

)2
.

Such a value (0.65) corresponds to a relative mean factor of
4.43 between the theoretical (T SM

α ) and experimental half-
lives, which is a relatively good agreement. It is important to
achieve good agreement for the α half-lives predicted by the
fits of the microscopic and macroscopic α half-lives (shown
in Figs. 5 and 9), because in both fits the structure factor is
represented by a free constant.

B. Systematics of α half-lives

First, we verify the empirical Brown (log TαZ0.6
d Q

−1/2
α ) and

Geiger-Nuttall (log Tα ∼ Q
−1/2
α ) relationships, which predict

a linear dependence of log Tα vs Z0.6
d Q

−1/2
α and Q

−1/2
α for

the measured α half-lives. Second, such a linear dependence,
which is revealed by the calculated α-decay half-lives, consti-
tutes a starting point in the systematics of α-decay properties.

The first systematics of α-decay lifetimes of natural emitters
was obtained by plotting the experimental values of log T

exp
α

vs Q
−1/2
α [36]. Figure 3 shows a version of this plot for the

ground state to ground state α-decay half-lives of the known
SHN for the experimental data. In such a plot the points are
distributed on roughly straight lines (for the element Zd ) and
the deviation of data from these lines is given by the rms value.
Other similar relations have been proposed which contain the
same energy dependence but different powers of Zd [37,38].
Further, as previously noted in Ref. [38], the dependence
log Tα vs ZdQ

−1/2
α shown in Fig. 4 may be a better way to

plot the data because in this case the data points are also
ordered over the Zd values and the scatter is less pronounced
than in the dependence log Tα vs Q

−1/2
α (see Fig. 3). The

best linear fit is obtained when log Tα values are plotted vs
Z0.6

d Q
−1/2
α , as shown in Fig. 5. In fact, Eq.(B2), i.e., log Tα vs.

Z0.6
d Q

−1/2
α appears as a simple interpolation between the plots

log Tα vs Q
−1/2
α and ZdQ

−1/2
α for which the rms values has

a sharp minimum. Although this dependence does not have a
physical interpretation, it also came out numerically from the
Wentzel-Kramers-Brillouin (WKB) calculations performed
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FIG. 3. (Color online) The experimental α half-lives plotted vs
Q−1/2

α for 99 data points.

by Brown [38]. The half-lives were calculated using the
semiclassical approximation of the decay rate Tα = 1

W
, with

W = PWcT , where P is the preformation probability, Wc is
the collision rate of the α particle with the nuclear surface, and
T is the barrier penetration factor defined within the WKB
approximation. The numerical results for log 1

W
plotted as

function of Z0.6
d Q

−1/2
α were found to follow the straight line

dependence even better than the fit of the data for nuclei with
Zd = 74–106. It is obvious that such a dependence is not
bound to the used theoretical description, but rather to the
general property of the α decay. This fact is also supported
by the present results, where a similar linear dependence was
obtained by means of a microscopic formalism. Indeed, in
Ref. [38], the analysis of 119 data points (Tα , Qα) showed
that log Tα vs Z0.6

d Q
−1/2
α is a better way to plot the data to

identify the specific behavior of each decay chain. Although
this systematics pointed out evident regularities in the log Tα
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FIG. 4. (Color online) The experimental α half-lives plotted vs
ZdQ

−1/2
α for 99 data points.
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FIG. 5. (Color online) The experimental α half-lives plotted vs
Z0.6

d Q−1/2
α for 99 data points. The straight line represents the result of

the single-line linear fit.

vs Z0.6
d Q

−1/2
α representation of the nuclei known until 1992,

it doesn’t contain the odd-A and odd-odd nuclei, for which
an additional even-odd correction term he−o is needed. Thus,
we added this correction in all the methods employed in the
present study, except the Viola-Seaborg formula, which has
this correction already included by default.

In the Brown-type plot, i.e., log Tα vs Z0.6
d Q

−1/2
α , we

represent the experimental and calculated SM α half-lives for
all (e-e) and (e-o, o-e, o-o) nuclei. The results are shown in
Figs. 5, 6, 9, and 10.

For SHN, an uncertainty in the l values of current
experimental data arises [7], since α-decay either to ground
and excited states or from isomeric states is allowed for both
l = 0 and l �= 0 transitions. The values and scatter of log T

exp
α
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FIG. 6. (Color online) The experimental α half-lives plotted vs
Z0.6

d Q−1/2
α for 99 data points. The straight lines represent the results

of the linear fits for the (e-e) nuclei and the (e-o, o-e, o-o) nuclei.
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FIG. 7. (Color online) The log T SM
α values plus the even-odd

correction he−o plotted vs Q−1/2
α for 99 data points.

in Figs. 3–5 cannot be reproduced by the values of log T SM
α in

Figs. 7–9 without the even-odd corrections he−o. With these
corrections added, the agreement with experimental data is
improved and basic trends in the systematics of data are well
reproduced. In comparing Figs. 3–5 and Figs. 7–9 one may
conclude the following:

(i) The isotopic lines in Figs. 3 and 4 are not well separated
for the data points, while for the calculated SM data
points in Figs. 7 and 8 these lines are very well
separated.

(ii) The scatter in Figs. 4 and 8 (ZdQ
−1/2
α ) is less pro-

nounced than that in Figs. 3 and 7 (Q−1/2
α ). Also the

Zd lines show an approximate constant slope in Figs. 4
and 8.

(iii) When passing from the plot of log Tα vs Q
−1/2
α to the

plot of log Tα vs ZdQ
−1/2
α , the all isotopic lines are
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FIG. 8. (Color online) The log T SM
α values plus the even-odd

correction he−o plotted vs ZdQ
−1/2
α for 99 data points.
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FIG. 9. (Color online) The log T SM
α values plus the even-odd

correction he−o plotted vs Z0.6
d Q−1/2

α for 99 data points. The straight
line represents the result of the linear fit.

reversed with respect to the magic isotopic line Z =
108 (Hs).

(iv) The Brown plot (log Tα vs Z0.6
d Q

−1/2
α ) in Figs. 5 and

9 which puts all the emitters with different Z values
on the same line is very relevant for the systematics of
both experimental and calculated α half-lives.

Advanced systematic studies of α-decay properties of SHN
have been realized starting from

(i) the R-matrix theory (Thomas-Mang) [39,40],
(ii) the generalization of the Geiger-Nuttall law within the

microscopic [41] and macroscopic [42] mechanisms of
the charged particle radioactivity,

(iii) different folding [43,44] and mean-field [45] potentials,
and

(iv) microscopic calculations of α-half lives within the
cluster model with spherical and deformed potentials
[35] and the two-center SM [46].

It should to be stressed that our results illustrated graph-
ically in Figs. 5 and 6 and in Figs. 9 and 10 are similar to
the ones reported in Refs. [41,42] where the universal line for
cluster-decay half-lives was first introduced.

C. Fit formulas for α half-lives

From the single-line fits of the experimental and calculated
values of log Tα vs Z0.6

d Q
−1/2
α , we obtain two simple formulas

for α half-lives:

log T exp
α (s) = 9.68(Z0.6

d Q−1/2
α ) − 51.32, rmsexp = 0.51.

(9)

log T SM
α (s) = 10.36(Z0.6

d Q−1/2
α ) − 54.51, rmsSM = 0.39.

(10)

The straight line in Fig. 5 [see Eq.(9)] represents the single
linear fit of 99 data points for SHN. This line is very close to
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FIG. 10. (Color online) The log T SM
α values plus the even-odd

correction he−o plotted vs Z0.6
d Q−1/2

α for 99 data points. The straight
lines represent the results of the linear fits for the (e-e) nuclei and the
(e-o, o-e, o-o) nuclei.

the Brown line [Eq. (B2)] deduced from the data fit of heavy
and SHN (known until 1992).

Notice that the T SM values obtained from Eq. (10) are
greater than the T exp values obtained from Eq. (9) and rmsexp >
rmsSM.

The α decay involving unpaired nucleons (Z, N ) = (e-o,
o-e, o-o) always proceeds more slowly than that involving pairs
(Z, N ) = (e-e). This suggests some “hindrance” of α transitions
in odd nuclei due to internal selection rules. Therefore, it is
interesting to fit the experimental and calculated α half-lives
for SHN, separately, with the distinct (Z, N ) parities. Doing
so, the experimental and calculated points appear to fall on
nearly parallel straight lines which represent the best fits of
the data, with the lowest rms deviation from the straight line
fit as shown in Figs. 6 and 10.

From the two-line fits of experimental and calculated half-
lives for (e-e) and (o-e, e-o, o-o) nuclei, respectively, we get

log T exp
α (s) = 10.91

(
Z0.6

d Q−1/2
α

) − 58.27,

rmsexp = 0.20, for 14 (e-e) nuclei, (11)

log T exp
α (s) = 9.30

(
Z0.6

d Q−1/2
α

) − 49.20,

rmsexp = 0.47, for 85 (e-o, o-e, o-o) nuclei, (12)

log T SM
α (s) = 10.04

(
Z0.6

d Q−1/2
α

) − 53.74,

rmsSM = 0.12, for 14 (e-e) nuclei, (13)

log T SM
α (s) = 10.19

(
Z0.6

d Q−1/2
α

) − 53.46,

rmsSM = 0.15, for 85 (e-o, o-e, o-o) nuclei. (14)

The value rmsexp = 0.20 in the two-line fit [see Eq. (11)
and Fig. 10] is lower than the value rms = 0.33 of the
single-line plot of Brown (see Ref. [38]). The big rmsexp value
corresponding to Eq. (12) indicates large data errors for old
nuclei. The rmsSM values for (e-e) and (e-o, o-e, o-o) nuclei
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[see Eqs. (13) and (14)] are comparable and are lower than the
rmsexp values [see Eqs. (11) and (12)].

IV. SUMMARY AND OUTLOOK

In summary, we defined and evaluated an approximation
scheme that can be used to determine α half-lives of shell
stabilized SHN. This scheme takes into account the evolution
of the structure in the open shell nuclei and the sensible
interplay between the microscopic structure and the reaction
mechanism. In general, our estimations for α half-lives
agree with the experimental data. Also, the quantitative and
qualitative fits to current experimental data and theoretical
results are in relatively good accord. The systematics of the
α-decay data is very well reproduced by the results of the
SMRT.

The influence of different effects and corrections (even-odd,
shell closures, resonance scattering, finite size, screening) on
α half-lives has been evidenced and plausible explanations for
some discrepancies between calculated and experimental α
half-lives are given. For the SHN nuclei it is of importance to
predict, even roughly, the radioactive properties of unknown
species. Such predictions can be made with a fair degree
of confidence and this may help in the preparation and
identification of new nuclear species in the superheavy region.

Comparison of experimental and calculated α half-lives
and their systematics provides insight into the accuracy of
modern approaches for the nuclear structure and dynamics of
the heaviest nuclei.
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APPENDIX A: MATRIX ELEMENTS Vnm

The diagonal elements Vnn of the potential are given by a
sum of nuclear and Coulomb terms:

Vnn(r) = V nucl
0 (r) + V Coul

0 (r).

For the nuclear potential we use the Woods-Saxon
parametrization:

V nucl
0 (r) = − V0

1 + exp[(r − R0)/a]
,

where V0 is the depth, R0 = r0(A1/3
P + A

1/3
D ), with r0 being

a given parameter, while AP andAD are the particle and the
daughter masses, respectively, and a is the diffuseness.

The Coulomb potential is taken as the usual form:

V Coul
0 (r) =

{
ZP ZDe2

2Rc

[
3 − (

r
Rc

)2]
, r � Rc,

ZP ZDe2

r
, r > Rc.

where e is the electron charge; ZP and ZD are the atomic
numbers of the particle and the target, respectively; and Rc =
rc(A1/3

P + A
1/3
D ), with rc being an input parameter.

Also the matrix elements Vij of the coupling Hamiltonian
consist of nuclear and Coulomb components. The nuclear
component can be generated by changing the daughter radius
in the nuclear potential to a dynamical operator,

R0 → R0 + Ô = R0 + β2RDY20 + β4RDY40,

where RD = r0A
1/3
D , Y20 and Y40 are the spherical harmonic

functions, and β2, β4 are the quadrupole and hexadecapole
deformation parameters of the deformed target nucleus,
respectively. The nuclear coupling term is thus given by

V nucl(r, Ô) = − V0

1 + exp[(r − R0 − Ô)/a]
.

To obtain the matrix elements of this coupling Hamiltonian,
one first looks for the eigenvalues and eigenvectors of the
operator. This is done by diagonalizing the matrix with the
elements (see [47,48]):

Ônm =
√

5(2I + 1)(2J + 1)

4π
β2RD

(
I 2 J

0 0 0

)2

+
√

9(2I + 1)(2J + 1)

4π
β4RD

(
I 4 J

0 0 0

)2

, (A1)

where I = 2(n − 1), J = 2(m − 1), and Wigner 3j symbols
are used. Denoting the eigenvalues by ωk , k = 1, . . . , n,
and the components of the eigenvector corresponding to the
eigenvalue ωk by �ik , i = 1, . . . , p, the nuclear coupling
matrix elements are then given by

V nucl
nm (r) =

p∑
k=1

�ikV
nucl(r, ωk)�jk − V nucl

0 (r)δn,m. (A2)

The last term in this equation is included to avoid the double
counting of the diagonal component.

For the Coulomb interaction, we include terms up to the
second order with respect to β2 and up to the first order with
respect to β4.

With the notations I = 2(n − 1) and J = 2(m − 1), the
Coulomb matrix elements are given by

V Coul
nm (r) = 3ZP ZD

5
F2(r)

√
5(2I + 1)(2m + 1)

4π

×
(

β2 + 2

7

√
5

π
β2

2

)(
I 2 J

0 0 0

)2

+ 3ZP ZD

9
F4(r)

√
9(2I + 1)(2J + 1)

4π

×
(

β4 + 9

7
β2

2

)(
I 4 J

0 0 0

)2

, (A3)

044618-8



SYSTEMATIC STUDY OF α-DECAY PROPERTIES . . . PHYSICAL REVIEW C 88, 044618 (2013)

where, for p = 2 and p = 4,

Fn(r) =
⎧⎨
⎩

rp

R
p+1
D

, r � RD,

R
p
D

rp+1 , r > RD.

The total coupling matrix element is given by the sum of
V nucl

nm and V Coul
nm .

APPENDIX B: EMPIRICAL FORMULAS

The Geiger-Nuttall law [36] relates the half-life of a
radioactive isotope with the energy of the α particle emitted.
This was the observation that the experimental values of
log Tα plotted vs Q

−1/2
α , where Qα is the α-decay energy,

fall on straight lines for the isotopes of a given element. The
law also shows that half-lives are exponentially dependent
on decay energy, so that short-lived isotopes emit more
energetic α particles than long-lived ones. Gamow [49] and
independently Gurney and Condon [50] have solved the
one-body problem of the α-decay and derived the known
Geiger-Nuttall rule from the first principles of quantum

mechanics. An explicit functional dependence of the half-time
on the energy Qα and on the proton number of the daughter
nucleus Zd was introduced later in formulations given in Refs.
[37,38]. Here we consider two phenomenological formulas.
The first one is the Viola-Seaborg formula [37], which
reads as

log Tα(s) = (aZd + b)Q−1/2
α + (cZd + d) + he−o, (B1)

where Qα is the decay energy in MeV units; Zd is the charge
number of the daughter nucleus; a, b, c, and d are parameters;
and he−o is an even-odd hindrance term. The parameters
used are from Ref. [51]: a = 1.66175; b = −8.5166; c =
−0.20228; d = −33.9069, he−e = 0.0 (Z = even, N = even);
ho−e = 0.772 (Z = odd, N = even); he−o = 1.066 (Z = even,
N = odd); and ho−o = 1.114 (Z = odd, N = odd).

The second one is the Brown formula [38] written as

log Tα(s) = 9.54Z0.6
d Q−1/2

α − 51.37 + he−o, (B2)

where the constants are determined from the best linear fit of
119 data points (Tα , Qα) in a range of Zd from 74 to 106 for
even-even nuclei.
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