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Dynamics of energy dissipation in heavy-ion fusion reactions
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The dynamics of energy dissipation in head-on fusion reactions of mass-symmetric systems at low bombarding
energies is studied by exploiting the improved quantum molecular dynamics model. The results indicate that
the form and magnitude of the mass parameter and friction coefficient show strong dependence on system size,
bombarding energy, and relative distance. The dynamical mass parameter has almost no effect on the friction
coefficient. Two-body collisions play an important role in energy dissipation even when the incident energy is
much lower than the Fermi energy. The nucleon-nucleon collisions not only attenuate the energy dissipation but
also hinder the nucleon transfer process.
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I. INTRODUCTION

To understand nuclear reactions, the macroscopic model
plays a very important role, in which a few selected collective
degrees of freedom are usually expected to contain the
main information on the dynamics and are used to describe
the complex dynamical process. Within such a macroscopic
model, nuclear friction is a crucial ingredient introduced
along the line of thought of classical friction to deal with
the phenomenon that energy and angular momentum dissipate
irreversibly from collective to intrinsic degrees of freedom in
large-amplitude collective motion of nuclear systems, such as
fusion reactions, fission, giant resonances, etc. [1–6].

The dynamics of nucleus-nucleus reactions are expected
to change strongly in the energy region between E/A = 10
and 100 MeV. It is commonly believed that in this energy
region there are two extreme mechanisms of energy dissipation
in nuclear matter: one- and two-body dissipation. At low
energies, due to the inhibition of nucleon-nucleon collisions
by the Pauli principle which makes the nucleon-collision
mean-free path comparable to or larger than the nuclear size,
the one-body dissipation [7–11] is generally assumed to be
the main mechanism responsible for the damping of collective
motion. Above the Fermi energy (E/A ≈ 35 MeV), nucleon-
nucleon collisions are increasingly allowed, and eventually
these collisions will dominate the reaction dynamics. Thus
the dissipation mechanism is expected to change from mainly
one-body dissipation to a mechanism governed by two-body
dissipation [12–15]. Their interplay and mutual balance,
however, are still a question of debate and represent a long-term
controversy.

There are many theoretical approaches to the one-body
dissipation problem in heavy-ion collisions (HICs). Based on
phenomenological friction forces fit to the experimental data,
the surface friction model (SFM) [10,16,17] and the wall-and-
window formula [11,18,19] are introduced with several free
parameters. The free parameters in these models, however,
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have no solid theoretical background. From the microscopic
point of view, the friction coefficient was calculated by using
time-dependent perturbation theory [7], linear response theory
(LRT) [20], and the two-center shell model [21]. But the
results given by these models are difficult to interpret in
terms of reversible kinetic and irreversible dissipative energies.
Another important and powerful tool for describing systems
with long mean-free path is time-dependent Hartree-Fock
(TDHF) [22,23], which is a fully microscopic quantal and self-
consistent many-body theory. Unfortunately, it turns out that
only the mean value can be well described by TDHF but not
the fluctuations that are important for any dissipation [24,25].

There are also many different theoretical methods proposed
to describe two-body dissipation, among them the Werner-
Wheeler (W-W) method which is based on the assumption that
the nucleus is an incompressible and nearly irrotational viscous
fluid [12–14], methods based on LRT [15,26], TDHF with
two-body correlations [27], etc. However, all these methods
involve some strong assumptions. The uncertainty in both the
strength of the nuclear friction and its form factor is still very
large [28,29].

Recently, information on dissipation in the entrance chan-
nel of HICs at energies around the Coulomb barrier has
been extracted by the macroscopic reduction procedure of
TDHF theory, where the so-called fusion window problem
due to underestimation of energy dissipation in old TDHF
calculations was solved by including spin-orbit interactions
and time-odd terms in the energy density functional as well
as by breaking symmetries [30]. However, it is known that
this study with TDHF theory still only considers a one-body
dissipation mechanism from the microscopic point of view,
because of the treatment of the self-consistent mean field, and
an unphysical behavior of the friction coefficient exists for
all the systems investigated, where the magnitude of friction
coefficient rapidly decreases for decreasing relative distances
within the Coulomb barrier. It seems to be worthwhile for us
to perform a microscopic dynamic study of energy dissipation
mechanisms which is embedded in a quantum microscopic
many-body model and properly includes both one- and two-
body dissipation mechanisms.
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In this paper, the improved quantum molecular dynamics
(ImQMD) model is adopted to simulate HICs. The ImQMD
model has been successfully applied to the study of HICs
at both intermediate energies and at energies near the
Coulomb barrier by making serious improvements [31–34].
In the model, both the nuclear mean field and the collision
term allowing for nucleon-nucleon scattering, including Pauli
blocking, are treated properly. Thus, in principle, the dis-
sipation, diffusion, and correlation effects are all included
without introducing any freely adjustable parameter. Using
the ImQMD model, the Coulomb barriers for many reaction
systems were well described [31], and the fusion excitation
functions for a series of fusion reactions, including neutron-
rich projectile and target reactions, were well reproduced [32].
Thus, the ImQMD model is appropriate to study the dissipation
mechanism of HICs at low and intermediate energies.

The paper is organized as follows: The theoretical approach
is briefly introduced in Sec. II. In Sec. III, the simulation results
and detailed discussions on the dynamical nucleus-nucleus
interaction potential, mass parameter, and friction coefficient
are presented. In the final part of Sec. III, the relation between
particle exchange and energy dissipation and the effect of two-
body collisions on the dynamics of dissipation are illustrated.
A summary is given in Sec. IV.

II. THEORETICAL APPROACH

The ImQMD model, like the original QMD model [35,36],
is a microscopic transport model based on a molecular
dynamics picture, in which each nucleon is described by a
coherent state of a Gaussian wave packet singly peaked at the
center of the particle. The spatial spread of the wave packet,
which is an empirical parameter, is treated as system-size
dependent. The total N -body wave function of the system
is assumed to be a direct product of these single-particle wave
packets and the one-body phase-space distribution function
f (r, p) for N distinguishable particles is obtained through a
Wigner transformation [37]. Then the density of the system
can easily be obtained. To describe the fermionic nature
of the N -body system and to improve the stability of an
individual nucleus, the phase-space occupation constraint
method [33] is adopted. The two-body collision correlations
are introduced in a phenomenological way analogous to the
test-particle calculation of the Boltzmann-Uhling-Uhlenbeck
(BUU) collision term, with the interaction following [38],
while Pauli blocking is handled as in Refs. [33,39].

In the ImQMD model, nucleons move in the self-consistent
mean field generated by all other nucleons and the propagation
satisfies the Hamiltonian canonical equations of motion on the
basis of the time-dependent variational principle [40]. The
Hamiltonian of the system includes the kinetic energy and
effective interaction potential

H = T + Ueff, (1)

T =
∑

i

pi
2

2m
. (2)

The effective interaction potential includes the nu-
clear interaction potential and the Coulomb interaction

potential,

Ueff = Uloc + UCoul, (3)

where UCoul is written as the sum of the direct and the exchange
contributions, with the latter taken into account in the Slater
approximation [41],

UCoul = e2

2

∫
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)
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where ρp is the proton density. The nuclear interaction
potential reads

Uloc =
∫

Vloc[ρ]dr, (5)

where Vloc[ρ] is the potential energy density that is obtained
by the effective Skyrme interaction and is taken to be the same
as that in Ref. [31]:

Vloc = α

2

ρ2

ρ0
+ β

γ + 1

ργ+1

ρ0
γ

+ gsur

2ρ0
(∇ρ)2

+ gτ

ρη+1

ρ0
η

+ Cs

2ρ0
[ρ2 − κs(∇ρ)2]δ2, (6)

where δ is the relative neutron excess; δ = (ρn − ρp)/(ρn +
ρp). ρ = ρn + ρp and ρn are the nucleon and neutron densities,
respectively. The parameters in Eq. (6) are related to the stan-
dard Skyrme interaction parameters, with α = −356 MeV,
β = 303 MeV, γ = 7/6, gsur = 7 MeV fm2, gτ = 12.5 MeV,
η = 2/3, cs = 32 MeV, κs = 0.08 fm2, and ρ0 = 0.165 fm−3.
The corresponding incompressibility coefficient is K∞ =
195 MeV.

We use the above-mentioned ImQMD model to study the
dynamics of energy dissipation in head-on fusion reactions
of mass-symmetric systems along the β-stability line, i.e.,
40Ca + 40Ca, 64Ni + 64Ni, 90Zr + 90Zr, and 120Sn + 120Sn.
Each system is investigated for two different beam energies:
one near the Coulomb barrier and the other well above it.

For dynamical calculations, we first prepare the two collid-
ing nuclei such that all the nucleons give good properties of
the ground states (the binding energies and root-mean-square
radii) based on the Fermi gas model. Also the nuclei should
be stable without spurious emission in a sufficiently long time.
After the initialization, we place the two nuclei at a separation
of 3.5R0 on the z axis, where R0 = 1.16(AP + AT )1/3 is the
radius of the compound spherical nucleus and AP and AT are
the mass numbers of projectile and target, so that both of them
are approximately in their ground states. Then they approach
each other with a given bombarding energy. We generate
thousands of reaction events and finally choose fusion ones
from them by using the method mentioned in Ref. [42].

III. RESULTS AND DISCUSSIONS

In this work, the collective motion is studied classically
while the intrinsic motion of nucleons is treated micro-
scopically with the ImQMD model. In order to study the
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collective motion with the microscopic transport model, one
has to first define the collective coordinates by means of the
microscopic quantities. In the QMD model, the density of
the system changes dynamically and self-consistently in the
whole reaction process and thus the contour plot of the density
distribution of the system can be defined at each time step. An
illustration of such a contour plot can be found in our previous
paper [43], within which a neck position is defined at the place
where densities of the projectile and target are equal. For later
calculations, the portion on the right side of the neck is defined
as the projectile-like fragment (PLF), and the other side is the
target-like fragment (TLF).

It should be pointed out here that in the fusion process
of head-on HICs, the dynamics of neck formation also plays
a very important role. As discussed in Ref. [44], however,
the relative and neck motions are coupled weakly and can be
discussed individually. Based on this understanding, in this
paper, we confine ourselves to the relative motion in head-on
reactions.

With the definition of the neck position, we can easily get
the collective coordinate and conjugate radial momentum of
each portion for the relative motion in head-on reactions on an
event-by-event basis as in Ref. [45],

Ri = 1

Ai

∫
Vi

drz
∫

dpf (r, p), (7a)

Pi =
∫

Vi

dr
∫

dppzf (r, p), (7b)

where,f (r, p) is the one-body distribution function in phase
space and Vi denotes the subspace with i referring to PLF and
TLF, respectively. Ai = ∫

Vi
dr

∫
dpf (r, p) is the mass of each

subsystem. Then the mass parameter of each part is obtained as
mi = Pi/Ṙi . R(t) = RPLF − RTLF and P (t) = (mTLFPPLF −
mPLFPTLF)/(mPLF + mTLF) are the relative distance and the
associated momentum, respectively. Note here that in Eq. (7)
and other equations hereafter, variables are extracted on an
event-by-event basis. The corresponding results presented
in the figures are averaged over all fusion events through
〈Q〉(x) = N−1

fus

∑Nfus
j=1 Qj (x), where Qj (x) means a specific

variable value of Q for the j th fusion event and x = t or R.
Nfus denotes the total number of fusion events. If x = R,
Qj (R) = Qj (tj )|{tj |R(tj )=R} [46]. Under this definition, the
nearest distance will approach 3

4R0 when the spherical nucleus
forms. We should keep in mind that the method just mentioned
may collapse when the overlap of the two subsystems is very
large. In this case, it is unreasonable to separate the highly
composite system into two parts.

The relative motion in head-on collisions can be described
by one-dimensional classical equations of motion expressed
as [13,47]

dR

dt
= P

μ(R)
, (8a)

dP

dt
= −dV (R)

dR
− d

dR

(
P 2

2μ(R)

)
− γ (R)Ṙ, (8b)

where V is the interaction potential given later in Eq. (11), μ
denotes the dynamical reduced mass, and γ (R) is the friction
coefficient.

It can be clearly seen from Eq. (8) that in the macroscopic
description of the large-amplitude collective motion, the
potential-energy surface, the mass parameter, and the viscosity
are the most important quantities. In this section, we first show
the time evolution of the relative distance R(t), accompanied
by the shape deformation (the mass quadrupole moment)
and thermalization properties (the nuclear stopping power)
of the reaction systems. Then we extract the dynamical
nucleus-nucleus interaction potentials and the reduced mass
parameters. In terms of the above quantities, we present
the results and a detailed discussion of the system- and
energy-dependent friction coefficient. In the final part, we
investigate the relation between particle exchange and energy
dissipation, and the role of two-body dissipation.

A. Dynamics of collective coordinates and thermalization
property of reaction systems

Let us first discuss the dynamics of the collective coordinate
and the thermalization property of the reaction systems. As an
example, we show the time evolution of the relative distance
and mass quadrupole moment of 90Zr + 90Zr in Fig. 1. Here
the mass quadrupole moment is defined as

Q20 =
√

5

16π

∫
(2z2 − x2 − y2)f (r, p)drdp. (9)

In order to clearly understand such dynamical behavior, the
corresponding density contour plots in the X-Z plane as well
as the relative distances at some typical stages are also shown
in the insets to give an impression of the reaction process. The
outermost contour line corresponds to ρ = 0.5ρ0.

One can see from Fig. 1 that in the head-on collisions the
two colliding nuclei approach each other with the boost energy.
They start to merge after they get into contact. The neck forms
at the same time, and grows with increasing overlap of the two
nuclei. This process is accompanied by conversion of energy
from collective to intrinsic degrees of freedom. After a certain
period of time, the neck disappears and the compound system
is well formed. Here we should mention that medium-size
systems, i.e., 40Ca + 40Ca, 64Ni + 64Ni, 90Zr + 90Zr, undergo
a slight elongation in the direction perpendicular to the beam
before the formation of the compound system, while the heavy
system 120Sn + 120Sn, elongates in the beam direction during
the whole process because of the strong Coulomb repulsion.
From Fig. 1, one can also see that the reaction progress is
different for the two energies at the same relative distance.
The reorganization of densities in the approaching stage is
more prominent when the energy is near the barrier. This
effect makes neck formation take place at relatively larger
distance than at higher energy. When R = 10.65 fm, the two
nuclei begin to deform and contact each other, and a neck can
be seen clearly for Ec.m. = 195 MeV. At the same distance,
for Ec.m. = 300 MeV, however, there are two nearly spherical
isolated nuclei. The deformation also reduces the barrier at
lower energy, which will be shown in the following section.

It is interesting that the above results differ from those
obtained by TDHF theory, in which the two-body collision
effect has been neglected [48]. At energies near the Coulomb
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FIG. 1. (Color online) Time evolution of the relative distance and quadrupole moment scaled by their initial values for 90Zr + 90Zr. The
data are for head-on collisions and for two different incident energies (a) Ec.m. = 195 MeV and (b) Ec.m. = 300 MeV. As an illustration, the
density contour plots of some typical stages are given.

barrier, the TDHF results have shown a collective vibration
behavior. The two ions may penetrate each other and bounce
back under the repulsive force. Then they approach again
when the attractive force offsets the repulsive force and stops
the relative motion. The system thus flows into collective
vibrations. The fusion process is much longer than in the
ImQMD model where the nucleon-nucleon correlations are
included. This difference indicates that two-body collisions
may play an important role in the dynamics of fusion reactions.
The role of two-body collisions in the energy dissipation
process will be discussed further in the following Sec. III E.

To see the dynamical process clearly we also calculate
the isotropy ratio Rp in momentum space which reflects the
thermalization property and nuclear stopping of the composite
system and is expressed as [50]

Rp = 2

π

�p⊥(i)

�pz(i)
, (10)

where p⊥(i) = [px
2(i) + py

2(i)]1/2 and pz(i) = [pz
2(i)]1/2,

the indices x, y, z stand for the three Cartesian components of
momentum of the ith particle, and the sum is over all particles
in the composite system. The results of Rp are shown in Fig. 2.
The arrows stand for the time when the Coulomb barrier is
reached. When the incident energy is around the barrier, the
change of Rp is not drastic compared with higher energy,

FIG. 2. (Color online) Time evolution of the nuclear stopping
power of 90Zr + 90Zr. The center-of-mass energies are the same as in
Fig. 1.

because at low energy most of the momentum is associated
with Fermi motion. From the figure one can see that the linear
momentum in the z direction does convert into the x and y
directions because of Coulomb repulsion in the approaching
stage. After they come across the barrier, the inverse process
happens because of the nuclear attraction effect. After reaching
a minimum, Rp rises again with the increase of the overlap
and the more violent nucleon collisions. We should notice
that Rp > 1 indicates a preponderance of momentum flow
in the direction perpendicular to the beam, while Rp < 1
is characteristic of partial transparency [50]. This result
shows the same properties as in Fig. 1. The equilibration
process takes much more time if the energy is close to the
barrier.

B. Dynamical nucleus-nucleus interaction potential

In order to evaluate Eq. (8) and obtain the friction
coefficient, we have to calculate in advance the dynamical
nucleus-nucleus interaction potential and the mass parameter
of relative motion. The nucleus-nucleus interaction potential
is very important for interpreting the fusion cross sections
because it determines the fusion path and the mechanism of
fusion. From the experimental point of view, the fusion barrier
distributions can be obtained directly from the measured
fusion excitation functions, with which information on the
nucleus-nucleus potential around the fusion barrier can be
obtained. In theory, the obtained barrier heights with different
models are close to one another and all of them are comparable
to the extracted mean barrier height, while the calculated
nucleus-nucleus potentials at short distances strongly depend
on the models and methods.

By using the ImQMD model, we can calculate the dynam-
ical nucleus-nucleus interaction potential in fusion reactions
even at short distance [43], because in the ImQMD model,
the position and momentum of each nucleon can be followed
at every time step. In our calculations, the nucleus-nucleus
potential is described self-consistently in a way like the
entrance channel potential [51],

V (R) = E(ρPLF + ρTLF) − E(ρPLF) − E(ρTLF), (11)
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where E(ρ) is the integral of the time-dependent energy-
density functional corresponding to Eq. (1), in which the
kinetic-energy density functional is described by the extended
Thomas-Fermi (ETF) method [52] in order to remove the
contribution of collective motion.

In our previous paper [43], we applied the ImQMD model to
study the dynamical barrier of heavier and asymmetric reaction
systems. We concluded that the dynamical barrier encountered
in the fusion process strongly depends on the incident energy.
Its height decreases with decreasing incident energy and finally
approaches a value which is close to the adiabatic barrier
calculated by Strutinsky’s macroscopic-microscopic method.
With increasing incident energy the dynamic barrier increases
and approaches the result calculated with the frozen-density
approximation.

Following the procedure proposed in our previous paper
[43], we extracted the dynamical interaction potentials of
the lighter and symmetric reaction systems, as shown in
Fig. 3. For comparison, we also show the results of TDHF
for the 40Ca + 40Ca system [49] and the Bass nucleus-nucleus
potential [53] for each system. The barrier positions (RB)
are labeled by arrows. We can clearly find the same trend
as shown in Ref. [43]. One can see that both the Coulomb
barrier and its position depend on incident energy. The barriers
increase while the barrier positions decrease with increasing
bombarding energies. The dynamical potentials are different
from the Bass ones, especially for the incident energies around
the barriers and for heavier systems (except for 120Sn + 120Sn
around the barrier). This means that the reorganization of
densities due to the strong mean field should be taken into

account. It is intriguing that the dynamical potential and barrier
height obtained in this paper are comparable to the results of
the TDHF calculations [54].

C. Dynamics of mass parameter of relative motion

We now study the dynamical mass parameters according
to Eq. (8a). Figure 4 shows μ(R)/μ0 as a function of the
scaled relative distance for two different energies. μ0 =
mAP AT /(AP + AT ) is the static reduced mass when both of
the two nuclei are in their ground states, where m is the nucleon
mass. The fluctuations, especially for the case of energies
around the Coulomb barrier, are mainly due to a small number
of fusion events simulated by the ImQMD model. They do not,
however, prevent an understanding of the underlying physics.

From Fig. 4, it can be seen that the mass parameters show
a universal strong dependence on the relative distance, the
size of the reaction system, and the incident energy. In the
approaching configuration (R 	 RB), μ(R) ≈ μ0. As the two
colliding nuclei get closer, μ(R) increases as a function of
the relative distance. The system-size and energy dependence
of μ(R) can be seen from the steepness of this increase with
respect to R. For the heavier system and/or higher energy, a
steeper slope is observed at smaller relative distance.

The mass parameters finally reach values between 1.01
to 1.3 times μ0 when R = 0.9R0 in the given range of
incident energies. Note that the above-mentioned results are
comparable with those obtained by other models, such as
TDHF theory [54].

FIG. 3. (Color online) Dynamic interaction potentials of the four systems. Each system is investigated under two different energies (see
text). The Bass interaction potentials and DC-TDHF results [49] are given for comparison. The corresponding barrier positions are labeled by
arrows.
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FIG. 4. (Color online) Dynamic reduced mass parameters of the
four different systems as functions of the internuclear distance divided
by R0. Each system is investigated at two different beam energies. The
solid and dashed lines are related to lower and higher center-of-mass
energies, respectively.

D. Dynamics of friction coefficient

We are now in a position to investigate the friction
coefficient based on the above results for the dynamical
nucleus-nucleus interaction potential and mass parameter of
relative motion, which is regarded as a main purpose of this
paper.

We focus on the reduced friction coefficient, which is
defined as β(R) = γ (R)/μ(R), for the reaction systems
40Ca + 40Ca, 64Ni + 64Ni, 90Zr + 90Zr, and 120Sn + 120Sn for
different energies, where μ(R) and γ (R) are derived from
Eq. (8). In Fig. 5 we show β(R) for the same systems and
energies as in Fig. 4 as a function of the scaled relative distance.
One can see from Fig. 5 that the friction coefficient shows a
strong dependence on the relative distance, the incident energy,

FIG. 5. (Color online) Friction coefficient for the same systems
and energies as in Fig. 4. The solid and dashed lines are related to
lower and higher center-of-mass energies, respectively. The results of
DD-TDHF are taken from Ref. [30].

and the size of the reaction system. This property is similar
to the dynamical mass parameter shown in Fig. 4. When the
two colliding nuclei are far apart, β(R) is almost 0, which is in
accordance with μ(R) ≈ μ0 in Fig. 4 where both projectile and
target are almost in their ground states. Then β(R) increases
with decreasing relative distance, but the form factor depends
strongly on the bombarding energy. When the center-of-mass
energy is much higher than the Coulomb barrier, the reduced
friction coefficient increases monotonically and the trend is
almost independent of the reaction system. This result is in
accordance with that reported in Refs. [26,30,55,56]. When the
incident energy is around the Coulomb barrier, the behavior of
β(R) becomes complicated after the touching configuration.
From Fig. 5, one can see that there is a peak around the
barrier position RB for all systems investigated here (except
for 120Sn + 120Sn, as the lower incident energy of this system is
higher than the Coulomb barrier due to “extra-push” energy for
fusion). This enhanced dissipation around the Coulomb barrier
energies is partly due to early neck formation accompanied by
an increase of nucleon exchange between projectile-like and
target-like nuclei and long mean-free path of the nucleons.
The magnitude of the peaks is about 8 × 1021 s−1, which is
identical with that of dissipative dynamics TDHF (DD-TDHF)
[30]. With the increase of the incident energy, the peak moves
toward smaller relative distance and the maximum decreases
until it vanishes. Finally, β(R) reaches a magnitude of 20
to 40 × 1021 s−1, which is in the range of those given in
Refs. [13,55,57].

In particular, we compare the results of the system 40Ca +
40Ca with those obtained by DD-TDHF [30]. The trends are
almost the same when R > 2.0R0, which indicates that the
mean field may play a dominant role in energy dissipation
before reaching this distance. After that, the pure mean-field
theory gives unphysical results [30], which gives another
evidence that two-body collisions are important in energy
dissipation. A detailed study of the role of the two-body
collisions in the dissipation process of fusion reactions will
be given in the following section.

We also studied the effect of the dynamical mass parameter
on the friction coefficient. In Fig. 6, as an example, this is
presented for 64Ni + 64Ni. Similar results are obtained for

FIG. 6. (Color online) Friction coefficients for 64Ni + 64Ni reac-
tions obtained with and without the second term on the rhs of Eq. (8b)
at two different energies.
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other reaction systems. The solid and dashed lines are the
results for Ec.m. = 95 MeV while the dash-dotted and short
dash-dotted lines refer to Ec.m. = 190 MeV. The solid and
dash-dotted lines indicate results with the second term for
μ(R) in the right-hand side (rhs) of Eq. (8b) included, while
the dashed and dotted lines correspond to the results neglecting
this term. We find that this term almost does not affect the
friction coefficient in the whole process, although μ(R) shows
a strong dependence on the relative distance and incident
energy. So in practical simulations the second term on the rhs
of Eq. (8b) could be neglected without causing any physical
problems.

E. Effect of particle exchange and two-body
collisions on dissipation dynamics

Particle and mass exchange are very important in HICs and
are associated with the energy dissipation. It is well known that
the nucleon transfer from projectile to target and vice versa is
the main reason for energy dissipation in HICs. In this section,
we illustrate the relation between particle exchange and energy
dissipation. The number of nucleons transferred through the
neck from target to projectile is estimated by

Ntrans =
AT∑
i=1

∫ ∞

Zneck

ρi(r)dr, (12)

where ρi(r) is the density distribution of the ith particle. The
result is the same for the inverse process in mass-symmetric
systems.

We can extract the dissipated energy from energy conser-
vation as follows:

Ediss(R) = Ec.m. − P 2

2μ(R)
− V (R), (13)

where the second term is the kinetic energy of relative motion.
Note here that the kinetic energy of the neck is considered as
a part of the intrinsic excitation energy. V (R) is obtained from
Eq. (11).

We take 40Ca + 40Ca as an example to see the relation
of particle exchange and energy dissipation at two different
incident energies, and to study the role of two-body collisions
in energy dissipation. First we give the results of particle
exchange and dissipated energies in the left panels of Fig. 7.
The results are qualitatively the same for the two different
energies. From Fig. 7(a), however, one can see that there are
more nucleons transferred at lower energy compared to the
case of higher energy at the same distance. This is caused by
the density reorganization and neck formation which could be
seen clearly in Fig. 1. One can also see that both the number
of transferred nucleons and the amount of dissipated energy
increase with decreasing relative distance. This indicates that
energy dissipation in the early stage of the fusion reactions is
strongly correlated to the nucleon transfer process.

In order to see the effect of two-body collisions, we carry
out simulations on relative distance, quadrupole moments,
and the isotropy ratio in momentum space, and find out
that without two-body collisions, the results are similar to
TDHF theory; namely, the two nuclei will bounce back after

FIG. 7. (Color online) (left panels) Relative distance dependence
of the nucleons transferred and energies dissipated at two different
energies, and (right panels) the effect of two-body collisions in
nucleon transfer and energy dissipation at Ec.m. = 100 MeV of
40Ca + 40Ca.

a specific distance is reached and the system flows into
collective vibrations before the compound nucleus forms. In
particular, we compare the results for the number of transferred
particles, the friction coefficient, and the dissipated energy
by using the ImQMD model with and without two-body
collisions. The results are presented in the right panels of
Fig. 7 as a function of the scaled internuclear distance; the
panels from top to bottom show transferred nucleons, friction
coefficients, and dissipated energies, respectively. The transfer
of nucleons is unaffected by collisions down to a distance of
about 1.4R0 and then it is reduced because particles can be
deflected before or during their traversal of the neck. This
should lead to a reduction of one-body dissipation according
to the wall-and-window formula. In contrast, the dissipated
energy with two-body collisions gives larger values than that
without two-body collisions at all R. The friction coefficient
of two-body collisions is larger at R > 1.1R0 and smaller
at R < 1.1R0. Since it multiplies the relative velocity Ṙ in
Eq. (8b), which goes to zero at the turning point, this might
not be significant.

The separation of the effects of one-body and collisional
dissipation is not trivial. The case of one-body dissipation
is well defined, as it requires only the absence of two-body
collisions. If two-body collisions are added, however, it
cannot be said that the dissipation is a sum of two separate
contributions. Instead, the total dissipation arises from an
interplay of these two effects; if classical transport theory
can be used as a guidance, the two-body collisions are
responsible for the establishment of local equilibrium and the
one-body dissipation is related with transport of momentum
(viscosity) and energy (thermoconductivity) with coefficients
proportional to the mean-free path. In a recent paper on the
Wigner function in TDHF [58] it was also found that one-body
dissipation does not suffice to reach thermal equilibrium.
While the reduction of the mean-free path, which is clearly
visible in the decreased nucleon transfer, should reduce the
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contribution of the one-body dissipation, it is not possible
to separate which part of relative slowing down is due to
exchanging particles through the neck (window formula),
reflection from the moving potential wall (wall formula), or
randomization by direct collisions, at least not on the basis of
a macroscopic analysis as set up in Eqs. (8a) and (8b).

IV. SUMMARY

We have investigated the dynamics of energy dissipation
in head-on fusion reactions of mass-symmetric systems along
the β-stability line and at low bombarding energies by using
the ImQMD model in which both the mean field and two-
body collisions are taken into account. The motion of the
single particles inside the nuclei is studied microscopically
under the self-consistent mean field combined with nucleon-
nucleon collisions while the collective motion is classically
treated by a set of one-dimensional macroscopic transport
equations.

The dynamics of the relative motion and nuclear stopping
power of the reactions indicate that the density reorganization
and neck formation take place at relative larger distance for
beam energies around the barrier and that the system will be
elongated in the direction perpendicular to the beam before
the final compound nucleus forms. We extract dynamical
interaction potentials, which suggest that the barriers depend
strongly on the size of the systems and the incident energies.
Crucial attention is paid to the dynamics of the mass parameter
and friction coefficient. The results show that the reduced
mass parameter has almost the same behavior as the friction

coefficient. The form and magnitude of both show a strong
universal dependence on the relative distance and incident
energy. Nevertheless, the dynamical mass parameter has very
little effect on the evolution of the friction coefficient. When
the incident energy is much higher than the Coulomb barrier,
the reduced friction coefficient increases monotonically with
decreasing relative distance, and the magnitude is 20 ∼ 40 ×
1021 s−1 at short distance, which is in satisfactory agreement
with other models. The behavior becomes complicated, how-
ever, when the incident energy is close to the barrier. There
is a peak with a magnitude of 8 × 1021 s−1. Both the number
of transferred nucleons and the amount of dissipated energy
increase as a function of the relative distance, which indicates
that the energy dissipation is strongly associated with the
particle exchange process.
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