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Connecting the pygmy dipole resonance to the neutron skin
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We study the correlation between the neutron skin development and the low-energy dipole response associated
with the pygmy dipole resonance (PDR) in connection with the properties of symmetry energy. We perform our
investigation within a microscopic transport model based on the Landau-Vlasov kinetic equation by employing
three different equations of state in the isovector sector. Together with the giant dipole resonance, for all studied
systems, we identify a PDR collective mode whose energy centroid is very well described by the parametrization
EPDR = 41A−1/3. A linear correlation between the energy-weighted sum rule (EWSR) associated to PDR and
the neutron skin thickness is evidenced. An increase of 15 MeV fm2 of EWSR, in correspondence to a change of
0.1 fm of the neutron skin size, is obtained. We conjecture that different nuclei having close neutron skin sizes
will exhaust the same EWSR in the pygmy region. This suggests that a precise experimental estimate of the total
EWSR exhausted by the PDR allows the determination of the neutron skin size, constraining the slope parameter
of the symmetry energy.
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I. INTRODUCTION

The nuclear symmetry energy, which originates from both
Pauli correlations and the specific features of nuclear forces,
accounts for the effects related to the difference between the
number of protons Z and neutrons N of the system. It appears
in the expression of total energy per particle, E

A
(ρ, I ) =

E
A

(ρ) + Esym

A
(ρ)I 2, factorizing the isospin parameter I = N−Z

A
,

where ρ is the nucleon density. Several features of atomic
nuclei [1,2] and neutron stars [3] are determined by this
quantity and one of the major tasks of recent experimental and
theoretical investigations is to determine a consistent density
parametrization of the symmetry energy which can provide a
unified picture of nuclear properties below saturation as well
as at large compression of asymmetric nuclear matter [4].

The fragmentation facilities at GANIL, GSI, MSU, and
RIKEN, allowing for the study of very neutron-rich systems,
stimulated new investigations along this direction. In this
context, understanding the exotic modes of excitation [5] and
the role of the neutron skin on the collective dynamics in
nuclei far from stability is a challenge in modern nuclear
physics [6–8]. Indeed, several experiments performed during
the past 10 years reported the occurrence of an electric
dipole (E1) response well below the giant dipole resonance
(GDR), more clearly evidenced in neutron-rich nuclei [9–15];
see Refs. [16,17] for recent overviews. It manifests as a
resonant-like shape exhausting few percentages of the dipolar
energy-weighted sum rule (EWSR) and its controversial nature
attracted a considerable interest for theory too [18]. The
pygmy dipole resonance (PDR) was interpreted as a collective
motion in phenomenological, hydrodynamic descriptions [19];
in nonrelativistic microscopic models [20–23]; or in transport
models [24–26]. Also in a relativistic microscopic approach
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[27] it was observed that the dipole spectra of even-even Ni
and Sn isotopes show two well-separated collective struc-
tures, the lower one being identified with pygmy resonance,
consistent with previous results based on relativistic quasi-
particle random-phase approximation (RPA) [28–30]. Other
studies, however, associate the concentration of strength to the
contributions from single-particle-type excitations excluding
coherent, collective properties [31,32]. It is possible that in the
low-energy region the dipolar response manifests both single-
particle and collective features. Moreover, a fragmentation of
the E1 response is expected to determine a weakening of the
collectivity [33,34].

A promising approach aiming to clarify the nature of PDR
as well as the role of the symmetry energy and the neutron
skin is based on a systematic analysis of the influence of
the neutron excess on observables as the energy centroid or
the low-energy E1 strength. Following this approach, several
experimental investigations have been focused on the study of
Ca [35], Ge [36], and Mo [37] isotopes as well as of N = 50
[38] and N = 82 isotones [39]. From the measurements for
stable Sn isotopes [40–43] and neutron-rich systems 129−132Sn
and 133,134Sb [13], a trend of strength increasing with the
neutron-proton asymmetry I 2 was reported. A threshold value
of the isospin I , beyond which a sizable fraction of the pygmy
strength appears, was related to the skin development [13].
The goal of this paper is to address the connection between
the development of the neutron skin and the emergence of a
low-energy E1 response in relation with the symmetry energy
density dependence, a subject under intense debate during the
past few years.

Theoretically, in a semiphenomenological description
using a Hartree-Fock-Bogoliubov (HFB) treatment within the
quasiparticle-phonon model (QPM) [44] for the neutron-rich
Sn isotopes from 120Sn to 132Sn, it was stressed that the
concentration of E1 strength, evidenced between 6 and
8 MeV, cannot be considered a low-energy tail of GDR.
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The corresponding states, having a genuine character
with a dominance of neutron excitations, were considered
noncollective. The evolution of the strength distribution and
of the energy location was closely related to the features
of neutron mantle enclosing the more isospin symmetric
core. However, in a nonrelativistic RPA treatment [20] for
zirconium isotopes, the investigation of the role played
by the neutrons in excess has shown that these strongly
contribute to the E1 excitation at about 8.5 MeV and make it
collective. Moreover, the analysis [23] of neutron and proton
contributions to PDR, based on a nonrelativistic self-consistent
HF + RPA approximation, indicates that the pattern of the
PDR changes with the increasing neutron number, becoming
a quite collective resonant oscillation of the neutron skin. It
was noticed a large collectivity of low-energy dipole states in
68Ni and 132Sn displaying a mixed isovector-isoscalar motion.

Piekarewicz [45] raised the important question if a strong
correlation between the neutron skin and the low-energy
E1 strength can be distinguished. For Sn isotopes, within
a relativistic RPA model, he concluded that the fraction of
EWSR acquired in the energy region between 5 MeV and
10 MeV manifests a linear dependence with the neutron skin
size up to mass A = 120 followed by a mild anticorrelation.
However, such strong correlation was questioned in Ref. [46].
The authors introduced an investigation based on a covariance
analysis aimed to identify a set of good indicators that correlate
very well with the isovector properties and suggested that
the low-energy E1 strength is very weakly correlated with
the neutron skin while the dipolar polarizability should be a
much stronger indicator of isovector properties. This intriguing
finding was challenged recently [47] in the relativistic RPA
approach with mixed results. A strong correlation between the
neutron skin thickness of 208Pb and the dipole polarizability
of 68Ni was indeed reported. But a strong correlation was also
claimed between the skin thickness of 208Pb and low-energy
E1 features, including the strength and dipole polarizability
associated to the pygmy mode, identified in 68Ni as exhausting
about 5%–8% of the EWSR.

Here we shall address these controversial issues, proposing
an investigation based on a semiclassical transport model.
Because the neutron skin is an isovector indicator, we
employ three different parametrizations with the density of
the symmetry term and perform a comparative study in a
model based on the Landau theory of Fermi liquids where
the dynamics of the nucleons is described by Landau-Vlasov
kinetic equations. In this paper we first explore the properties of
the neutron skin and its sensitivity to the density dependence of
symmetry energy. Then we determine the E1 strength function
and study the mass dependence of the PDR peak. Finally, we
estimate the EWSR exhausted by the PDR and discuss its
relation with the neutron skin thickness. Since, as in the case of
GDR, the evolution with mass of the low-energy E1 response
provides an additional insight upon the nature of the mode, we
shall consider the systems 48Ca, 68Ni, 86Kr, and 208Pb, as well
as a chain of Sn isotopes, 108,116,124,132,140Sn.

II. THEORETICAL FRAMEWORK

Having as main ingredients the fermionic nature of the
constituents and the self-consistent mean-field, the Vlasov

equation represents the semiclassical limit of time-dependent
Hartree-Fock (TDHF) and, for small-oscillations, of the RPA
equations. While the model is unable to account for effects
associated with the shell structure, our self-consistent approach
is suitable to describe robust quantum modes, of zero-sound
type, in both nuclear matter and finite nuclei. It provides
important information about the dynamics of such collective
modes, allowing for a systematic study over an extended
mass and isospin domain. In this context we notice that in
a TDHF study with a Skyrme interaction [48] a pygmylike
peak was identified for the deformed 34Mg at around 10 MeV.
From time-dependent density plots it was recognized as a
superimposed surface mode not fully coupled to the bulk
motion. Similarly, studies based on Landau-Vlasov equations
were also inquiring on the collective nature of PDR [24,49]
and on the role of the symmetry energy on its dynamics [25]. It
was observed that, as in the TDHF investigation, a pygmylike
collective motion in 132Sn manifests. Moreover, it was found
that the symmetry energy does not affect the energy centroid
but influences the EWSR acquired by it.

The two coupled Landau-Vlasov kinetic equations for
neutrons and protons,

∂fq

∂t
+ p

m

∂fq

∂r
− ∂Uq

∂r
∂fq

∂p
= Icoll[fn, fp], (1)

determine the time evolution of the one-body distribution
functions fq(�r, �p, t), with q = n, p [1]. In the following we
shall switch-off the collision integral but we have tested that
the results are not strongly influenced, as expected, when it is
included. For the nuclear mean field we consider a Skyrme-like
(SKM∗) parametrization,

Uq = A
ρ

ρ0
+ B

(
ρ

ρ0

)α+1

+ C(ρ)
ρn − ρp

ρ0
τq

+ 1

2

∂C

∂ρ

(ρn − ρp)2

ρ0
, (2)

with τn(τp) = +1(−1). The saturation properties of the sym-
metric nuclear matter, ρ0 = 0.16 fm−3, E/A = −16 MeV and
a compressibility modulus K = 200 MeV, are reproduced if
the values A = −356 MeV, B = 303 MeV, α = 1/6 are fixed.
Concerning the density dependence of the symmetry energy,
we consider, in the mean-field structure, different parametriza-
tions of C(ρ). While keeping the value of symmetry energy at
saturation almost the same, we shall allow for three different
dependencies with density away from equilibrium. For the
asystiff equation of state (EOS) C(ρ) is constant, C(ρ) =
32 MeV. Then the symmetry energy Esym/A = εF

3 + C(ρ)
2

ρ
ρ0

at
saturation takes the value Esym/A = 28.3 MeV while the slope

parameter L = 3ρ0
dEsym/A

dρ
|ρ=ρ0 is L = 72 MeV. The asysoft

case corresponds to a Skyrme-like, SKM*, parametrization
with C(ρ)

ρ0
= (482–1638 ρ) MeV fm3, which leads to a small

value of the slope parameter L = 14.4 MeV. Last, for the asy-
superstiff EOS, C(ρ)

ρ0
= 32

ρ0

2ρ
(ρ+ρ0) , the symmetry term increases

rapidly around saturation density, being characterized by a
value of the slope parameter L = 96.6 MeV.

The integration of the transport equations is based on the
test-particle (or pseudoparticle) method, with a number of
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FIG. 1. (Color online) The time evolution of the neutron mean-
square radius Rn (thick lines) and of the proton mean-square radius
Rp (thin lines) after a weak perturbation of the ground state. From
the top the pairs of lines correspond to 208Pb (red), 132Sn (blue), 68Ni
(green), and 48Ca (maroon). The asystiff EOS case.

1300 test particles per nucleon in the case of Sn isotopes,
ensuring in this way a good spanning of the phase space. This
method is able to reproduce accurately the equation of state
of nuclear matter and provide reliable results regarding the
properties of nuclear surface [50] and ground-state energy for
finite nuclei [51].

Since in the next section we shall explore the possible
correlations between the properties of PDR and the neutron
skin, we present here the predictions of the model for the
neutron and proton distributions for different asy-EOS. From
the one-body distribution functions one obtains the local
densities: ρq(�r, t) = ∫ 2d3p

(2πh̄)3 fq(�r, �p, t) as well as the quadratic

radii 〈r2
q 〉 = 1

Nq

∫
r2ρq(�r, t)d3r and the width of the neutrons

skin �Rnp =
√

〈r2
n〉 −

√
〈r2

p〉 = Rn − Rp.
An efficient method to extract the values of Rn and Rp is by

observing their time evolution after a gentle monopolar pertur-
bation. Both quantities perform small oscillations around equi-
librium values and we remark that the numerical simulations
keep a very good stability of the dynamics for at least 1800
fm/c; see Fig. 1. Using this procedure, we obtain for the charge
mean-square radius of 208Pb a value around Rp = 5.45 fm, to
be compared with the experimental value Rp,exp = 5.50 fm.
For Sn isotopes we display the mass dependence of Rn,Rp in
Fig. 2(a) and of �Rnp, respectively, in Fig. 2(b). The charge
radii predictions from the three asy-EOS virtually coincide
and we notice a good agreement with the experimental data
reported in Refs. [52,53]. However, the calculations somehow
underestimate the charge radii at smaller A and tend to
overestimate it towards larger A, thus providing a stronger
rise tendency than observed experimentally. For all adopted
parametrizations the values of the neutron skin thickness are
within the experimental errors bars; see the data presented in
Ref. [54] for the stable Sn nuclei. In the case of 208 Pb we find
�Rnp = 0.19 fm for asysoft, �Rnp = 0.25 fm for asystiff,
and �Rnp = 0.27 fm for asysuperstiff EOS while for 68Ni
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FIG. 2. (Color online) (a) The neutron and proton mean-square
radius for Sn isotopes: asysoft (the green squares), asystiff (the red
circles), and asysuperstiff (the blue diamonds) EOS. The stars are
experimental data from Refs. [52,53]. (b) The neutron skin thickness
as a function of mass for Sn isotopes: asysoft (green squares),
asystiff (the red circles), and asysuperstiff (the blue diamonds).
The stars and the error bars (maroons) are experimental data from
Ref. [54].

the corresponding values are �Rnp = 0.17, 0.19, 0.20 fm. As
expected, the neutron skin thickness increases with the slope
parameter L, an effect related to the tendency of the system to
stay more isospin symmetric even at lower densities when the
symmetry energy changes slowly below saturation, as in the
case of the asysoft EOS.

III. COLLECTIVE PYGMY DIPOLAR RESPONSE

We study the E1 response considering a GDR-like initial
condition [25], determined by the instantaneous excitation
Vext = ηδ(t − t0)D̂ at t = t0 [55]. This situation corresponds
to a boost of all neutrons against all protons while keeping the
center of mass (c.m.) at rest. Here D̂ is the dipole operator.
If |�0〉 is the state before perturbation, then the excited state
becomes |�(t0)〉 = eiηD̂|�0〉. The value of η can be related to
the initial expectation value of the collective dipole momentum
�̂,

〈�(t0)|�̂|�(t0)〉 = h̄η
NZ

A
. (3)

Here �̂ is canonically conjugated to the collective coordinate
X̂, which defines the distance between the center of mass of
protons and the center of mass of neutrons, i.e., [X̂, �̂] = ih̄
[49]. Then the strength function

S(E) =
∑
n>0

|〈n|D̂|0〉|2δ(E − (En − E0)), (4)
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FIG. 3. (Color online) The strength function for 208Pb (a) and
140Sn (b) for asysoft [the green (dot-dashed) lines], aystiff [the red
(dashed) lines], and asysuperstiff [the blue (solid) lines] EOS.

where En are the excitation energies of the states |n〉 while E0

is the energy of the ground state |0〉 = |�0〉, is obtained in our
approach from the imaginary part of the Fourier transform of
the time-dependent expectation value of the dipole momentum
D(t) = NZ

A
X(t) = 〈�(t)|D̂|�(t)〉 as

S(E) = Im(D(ω))

πηh̄
, (5)

where D(ω) = ∫ tmax

t0
D(t)eiωtdt . We consider the initial pertur-

bation along the z axis and follow the dynamics of the system
until tmax = 1830 fm/c. At t = t0 = 30 fm/c we extract the
collective momentum and determine η. A filtering procedure,
as described in Ref. [56], was applied in order to eliminate
the artifacts resulting from a finite-time domain analysis of
the signal. A smooth cut-off function was introduced such
that D(t) → D(t)cos2( πt

2tmax
). For the three asy-EOS the E1

strength functions of 208Pb and 140Sn are represented in Fig. 3.
As a test of the quality of our method we compared the numeri-
cally estimated value of the first moment m1 = ∫ ∞

0 ES(E)dE
with the value predicted by the Thomas-Reiche-Kuhn (TRK)
sum rule m1 = h̄2

2m
NZ
A

. In all cases the difference was only a
few percentages.

The energy peak of the PDR for 208Pb, see Fig. 3(a),
is located around 7–7.5 MeV, in good agreement with
experimental data which indicate EPDR,Pb = 7.36 MeV [14].
For 68Ni we obtain 9.8 MeV, quite close to the recent reported
data EPDR,Ni = 9.9 MeV [57]. We observe that the GDR energy
centroid is underestimated in comparison with experimental
data, a fact related with the choice of the interaction which
has not an effective mass [58]. In any case, a clear dependence
on the slope parameter manifests as a consequence of the
isovector nature of the mode. This feature shows that also
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FIG. 4. (Color online) (a) The energy centroid of PDR as a
function of mass. The blue circles and red diamonds are the
predictions of the model; see the text. The best fit, the solid (blue)
line, corresponds to the parametrization EPDR = 41A−1/3. rfit refers
to the correlation coefficient. (b) The energy centroid of PDR from
experimental data. The maroon squares are experimental data points;
see the text. The solid blue line corresponds to the parametrization
41A−1/3.

the symmetry energy values below saturation are affecting the
dipole oscillations of the finite systems. Figure 4(a) displays
the predicted position of the PDR energy centroid as a function
of mass for all studied systems (blue circles). Since in all
cases a very weak influence of the symmetry energy on
the PDR peak was observed, we take the average of the
values corresponding to the three asy-EOS. Then the error
bars represent the deviation of the determined values from
the average. In addition, by using the same procedure, we
represent the position of the PDR energy peaks as results from
the power spectrum analysis of the pygmy dipole Dy(t) after
a pygmylike initial condition, see Ref. [25] (red diamonds).
The differences between the two methods are within a half of
a MeV. An appropriate parametrization, obtained from the fit
of numerical results, is

EPDR = 41A−1/3 MeV, (6)

quite close to what is expected in the harmonic oscillator shell-
model (HOSM) approach [49]. In Fig. 4(b) this parametriza-
tion is compared with the experimental data available from the
works where information about the position of the low-energy
E1 centroid was reported (maroon square).1 The formula
seems to describe quite well the position of the low-energy
centroid observed experimentally for several systems. While
the isovector residual interaction pushes up the value of the

1For 68Ni from Refs. [12,57]; for 100Mo from Ref. [37]; for 122Sn
from Ref. [43]; for 124Sn from Ref. [42]; for 132Sn from Ref. [11]; for
142Nd from Ref. [59]; for 208Pb from Refs. [14,15].
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GDR energy, it seems that the PDR energy centroid is not
much affected by this part of the interaction. This feature may
explain the better agreement with experimental observations
in comparison with the GDR case. The agreement also
suggests that the PDR peak energy should not be significantly
influenced by the momentum dependence of the interaction.
Let us mention that for Ni, Sn, and Pb isotopic chains, based
on a HFB and RQRPA treatment, Paar et al. [60] studied the
isotopic dependence of the PDR energy and a collective mode
with the energy centroid around 10 MeV for 68Ni, 8 MeV for
132Sn, and 7.5 MeV for 208Pb was predicted. A comparison
with our results shows a good concordance between the two
theoretical approaches for the position of the PDR energy
centroid.

Having obtained the strength function, we can calculate the
nuclear dipole polarizability,

αD = 2e2
∫ ∞

0

S(E)

E
dE, (7)

as an additional test of the numerical method. In the case
of 68Ni αD varies from 4.1 fm3 to 5.7 fm3 when we
pass from asysoft to asysuperstiff EOS while for 208Pb it
changes from 21.1 fm3 to 28.6 fm3. Since for proposed
interactions the position of the GDR peak is below the
experimental observations, we expect that the values of the
polarizabilities to be somehow overestimated in comparison
with data. Experimentally, the dipole polarizability is below
4 fm3 for 68Ni [57] and around 20 fm3 for 208Pb [14]. We
display this quantity as a function of mass and asy-EOS
in Fig. 5. For a given system, the larger the neutron skin
thickness, the greater the value of the dipole polarizability
obtained.

The EWSR exhausted by the PDR is calculated by integrat-
ing over the low-energy resonance region as follows:

m1,y =
∫

PDR
ES(E)dE. (8)
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FIG. 5. (Color online) The dipole polarizability as a function of
mass for asysoft (the green squares), asystiff (the red circles), and
asysuperstiff (the blue diamonds) EOS. All systems mentioned in
text are included.
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FIG. 6. (Color online) The fraction of EWSR exhausted by PDR
as a function of mass for asysoft (green squares), asystiff (red circles),
and asysuperstiff (blue diamonds) EOS for the systems 48Ca, 68Ni,
86Kr, 108Sn, 116Sn, 124Sn, 132Sn, 140Sn, and 208Pb. The stars (maroon)
are experimental data points obtained by various methods for 48Ca,
68Ni, 88Sr, 116Sn, 122Sn,132Sn, and 208Pb, reported in Ref. [17].

We carefully determined the limits of the pygmy resonance
region, identifying the minima of the response around the
PDR centroid. When an overlap with the GDR region exists,
the contribution from the GDR tail is substracted. In Fig. 6 the
fraction fy = m1y

m1
exhausted by the pygmy dipole resonance

as a function of mass is reported. Some comments are
valuable when we compare our results with experimental
data concerning the same quantity obtained from various
experiments, as presented in Fig. 26 of Ref. [17]. For 48Ca the
fraction is obtained experimentally from the strength observed
to 10 MeV and is below 0.3%. However, our calculations
point out that the PDR is mainly above 10 MeV and we
obtain a fraction, depending on the asy-EOS, between 2.3%
and 3.8%. For 68Ni, our model, with a calculated fraction
between 1.8% and 3.5%, underestimates the experimental
value, which is around fy = 5%. In the mass region A =
88–90 the experimental fraction is situated at fy = 2% and
for 86Kr we obtain between 1.1% and 2.3%. For the stable
Sn isotopes, in the mass region A = 116–124, the fraction
measured experimentally is between 1.2% and 2.2% while our
calculations suggest values between 0.95% and 1.1% for 116Sn
and between 1.6% and 2.6% for 124Sn. In the case of 132Sn our
results are between 2.2% and 4.2% while experimentally the
reported fraction is around 3%. Finally, for 208Pb we obtain a
fraction between 1% and 2%, which is the same range as that
in the existing experimental data. We conclude that, despite
the fact that our approach has the tendency to underestimate
the experimental results (except for Calcium, for the reasons
discussed above), the model reveals that a substantial part of
the total fraction fy exhausted in the low-energy region can be
attributed to the collective PDR.

We investigate now if some correlation between the
absolute value of EWSR exhausted in the PDR region and
the development of neutron skin manifests in our approach.
The dependence of the moment m1,y on the neutron skin thick-
ness is shown in Fig. 7, where the information concerning all
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FIG. 7. (Color online) The EWSR exhausted by PDR as a
function of neutron skin for 108Sn (empty up-triangles), 116Sn
(down-triangles), 124Sn (stars), 132Sn (left triangles), 140Sn (right
triangles), 48Ca (circles), 68Ni (squares), 86Kr (diamonds), 208Pb (full
up-triangles) for asysoft (green), asystiff (red), and asysuperstiff
(blue) EOS. The error bars are related to the uncertainties in defining
the integration domain for the PDR response. rfit refers to the
correlation coefficient.

mentioned systems was included. The error bars are associated
with the uncertainty in the identification of the limits of the
pygmy resonance region. While below 0.15 fm the EWSR ac-
quired by the PDR manifests a saturation tendency, above this
value a linear correlation arises. For the same nucleus, when
we pass from the asysuperstiff to asysoft parametrization,
the neutron-skin shrinks and, correspondingly, the value of
m1,y decreases. This behavior is in agreement with the results
reported in Ref. [61] in a self-consistent RPA approximation
based on relativistic energy-density functionals. Moreover, we
notice that the variation rate appears to be system independent,
obtaining an increase of 15 MeV fm2 of the exhausted EWSR,
versus a change of 0.1 fm of the neutron skin width. Such
features suggest that the acquired EWSR should not differ
too much even for different nuclei if they have close values
of neutrons skin thickness. These findings look qualitatively
in agreement with those of Inakura et al. [62], based on
systematic calculations within a RPA treatment with a SkM*
Skyrme functional, where a linear correlation of the fraction
of EWSR exhausted in the the energy region up to 10 MeV
and neutron skin thickness was evidenced for several isotopic
chains.

However, some differences are also worth mentioning.
While we observe the total amount of EWSR exhausted in
the PDR region, m1y , manifests a system-independent, linear
dependence with the neutron skin thickness, with a slope
s = 150 MeV fm, Inakura et al. deduce a linear correlation
of the fraction fy as a function of �Rnp. In this case, the
corresponding universal rate is 0.18–0.20 fm−1 for even-even
nuclei with 8 � Z � 40. To establish a connection between
the two approaches, we shall assume that within a specific
isotopic chain the ratio NZ/A does not change too much,
i.e., the value of m1 is approximately the same for all those
nuclei. With this approximation, for a fixed isotopic chain, the

two predictions are similar, i.e., an universal slope for fy is
equivalent with an universal slope for m1y . Consequently, in
the Inakura approach, it can be deduced that the value of the
slope s is around 70 MeV fm for Ca isotopes, 95 MeV fm for
Ni chain, and 120 MeV fm for Kr isotopes.

We also remark that, in Ref. [62], for very neutron-rich
systems a mild anticorrelation of fy with the neutron skins
begin to manifest, similarly to the results of Refs. [45,63].
This feature is missing in our model. We obtain a continuous
rise of m1,y with the neutron skin size, in concordance with
other studies based on microscopic treatments [44,64]. One can
relate these differences to some shell and angular-momentum
effects but further investigations are required for a definite
answer.

IV. CONCLUSIONS

Summarizing, we addressed some of the open questions
raised recently [17] regarding the nature of the PDR. By
performing a systematic investigation over an extended mass
domain, new features, providing a more complete picture of
the PDR dynamics, were evidenced. In a microscopic transport
approach, a low-energy dipole collective mode occurs as a
ubiquitous property of all investigated systems. The analysis
leads us to a dependence of the PRD energy centroid with mass
very well described by the parametrization EPDR = 41A−1/3,
in agreement with several recent experimental results. This
indicates a close connection with the distance between major
shells, h̄ω0 = 41A−1/3, and a weak influence of the residual
interaction in the isovector sector. Such behavior can be related
to the isoscalar-like nature of this mode. We notice that the
EWSR exhausted by the collective pygmy dipole depends
on the symmetry energy slope parameter L and represents
a significant part of the value determined experimentally.
From our investigation, a universal, linear correlation of
m1y with the neutron skin thickness emerges. It appears as
a very specific signature, showing that the neutrons which
belong to the skin play an essential role in shaping the E1
response in the PDR region. However, this fact should not lead
to an oversimplified picture of the PDR, as corresponding
only to the oscillations of the excess neutrons against an
inert isospin symmetric core. Within our transport model, the
dynamical simulations show a more complex structure of the
PDR [25], which includes an isovector excitation of the core
and the neutrons skin oscillation. We consider that the new
findings presented here can be useful for further, systematic
experiments searching for this, quite elusive, mode. A precise
estimate of the EWSR acquired by the PDR can provide
indications about the neutron skin size, which in turn will add
more constraints on the slope parameter L of the symmetry
energy.
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