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Probing vector mesons in deuteron breakup reactions
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We study vector meson photoproduction from the deuteron at high momentum transfer, accompanied by the
breakup of the deuteron into a proton and neutron. The large −t involved allows one of the nucleons to be
identified as struck, and the other as a spectator to the γN → V N subprocess. Corrections to the plane wave
impulse approximation involve final-state interactions (FSIs) between the struck nucleon or the vector meson,
either of which is energetic, with the slow spectator nucleon. In this regime, the eikonal approximation is valid,
and so is employed to calculate the cross section for the reaction. Due to the high-energy nature of the FSIs,
the maxima of the rescatterings are located at nearly transverse directions of the fast hadrons. This results in
two peaks in the angular distribution of the spectator nucleon, each corresponding to either the V -N or the p-n
rescattering. The V -N peak provides a means of probing the V -N interaction. This is checked for near-threshold
φ and J/� photoproduction reactions, which demonstrate that the V -N peak can be used to extract the largely
unknown amplitudes of φ-N and J/�-N interactions. Two additional phenomena are observed when extending
the calculation of J/� photoproduction to the subthreshold and high-energy domains. In the first case we observe
overall suppression of FSI effects due to a restricted phase space for subthreshold production in the rescattering
amplitude. In the second, we observe cancellation of the V -N rescattering amplitudes for vector mesons produced
off of different nucleons in the deuteron.
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I. INTRODUCTION

Photoproduction of vector mesons from nuclei with subse-
quent rescattering is the main approach in extracting the cross
sections of V -N interactions, which does not require the as-
sumption of vector meson dominance [1]. To enhance the
measured cross sections, experiments have been carried out
on medium to heavy nuclei, where the extraction of the V -N
scattering amplitude is based on the Glauber theory of multiple
hadronic interactions [2]. In several instances a deuteron target
has been used, as it provides higher theoretical accuracy in
the extraction of the V N → V N amplitude [1]. In the case
of the deuteron target, one method is to study the coherent
photoproduction at large −t � 0.8 GeV2 [3–6], for which the
γ d → V d ′ cross section is primarily due to rescattering of
the vector meson (first produced on a struck nucleon) off the
spectator nucleon. This property has been used for probing
both ρ-N [3,4] and φ-N [5,6] cross sections. In these studies,
calculations involving the elastic V -N scattering amplitude are
fit to experimental data to extract the total V -N cross section,
the slope factor BV N , and the ratio of the real and imaginary
parts of the amplitude, αV N . However, this procedure has had
limited success, since these parameters cannot be unambigu-
ously disentangled by just the measurement of cross sections.
This situation can be improved by considering polarization
observables of the coherent reaction [4], but the experimental
realization of polarization processes is more difficult.

In this work we suggest measuring the V -N scattering cross
section by considering vector meson photoproduction from
the deuteron with subsequent breakup of the deuteron into
a proton and neutron. We focus on kinematics with a large
momentum transfer, for which the fast, struck nucleon can be
unambiguously identified apart from the slow, recoil nucleon,
which is a spectator to the γN → V N subprocess in the plane

wave impulse approximation (PWIA). In this case, the final
state interactions are characterized by a rescattering of either
of the fast outgoing hadrons—the vector meson or the struck
nucleon—with the spectator nucleon. By selecting the momen-
tum and the direction of the spectator nucleon, one can increase
the sensitivity of the reaction to small angle V -N scattering,
thereby probing the parameters of the V N → V N amplitude.

In addition to allowing identification of the struck and
spectator nucleons, the large −t establishes the applicability of
the eikonal approximation to the hadronic rescatterings. In par-
ticular, we use the generalized eikonal approximation (GEA)
[7–10], which was developed to account for the finite target
and recoil nucleon momenta neglected in the conventional
Glauber approximation. GEA has been successfully applied
to high-energy electrodisintegration of the deuteron [11],
semi-inclusive deep inelastic scattering [12], and coherent
photoproduction of ρ [4] and φ [5] mesons from the deuteron.

The most relevant of these to this paper is deuteron
electrodisintegration, i.e., ed → e′pn, in which one of the
nucleons is struck and the other is a spectator in PWIA.
In this case the eikonal approximation predicts a clear p-n
rescattering peak when the differential cross section is plotted
against the spectator angle for spectator momenta larger than
400 GeV/c. This feature was experimentally confirmed in high
momentum transfer deuteron breakup reactions [13,14], which
were successfully described within the diagrammatic approach
of Ref. [15], as well as within GEA [11].

In the reaction considered in this work, we see that in the
eikonal regime the small angle rescattering of two outgoing
energetic hadrons off the slow spectator nucleon gives the
possibility of observing two peaks in the angular distribution
of the slow spectator nucleon, one associated with the V -N
and the other with the p-n scattering. One of our goals is to
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investigate whether the V -N peak can be used to study the
properties of the V -N interaction amplitudes.

The article is organized as follows. In Sec. II we consider
the kinematics of the reaction and justify the application of the
generalized eikonal approximation. In Sec. III we calculate
the amplitude for the reaction within the virtual nucleon
approximation, in which the rescatterings are calculated based
on GEA. In Sec. IV we present numerical estimates for the
breakup reaction, with photoproduction of φ(1020) and of
J/�. The Appendix provides details of the calculation of the
double-rescattering amplitude.

II. REACTION, KINEMATICS, AND VALIDITY
OF EIKONAL APPROXIMATION

We study large momentum transfer (−t � 1 GeV2) pho-
toproduction from the deuteron accompanied by deuteron
breakup:

γ + d → V + p + n. (1)

Our main goal is to investigate the feasibility of using this
reaction to study the amplitude of V -N scattering. This goal
can be achieved only if it is possible to unambiguously isolate
and reliably calculate the contribution of V -N rescattering to
the total cross section to this reaction.

The experience of recent years [4,6,10,11,13–17] demon-
strates that such an isolation can be achieved in the eikonal
regime, where the momenta of the rescattered fast hadrons
are on the order of a GeV/c and above. The main advantage
of the eikonal approximation is that the part of the γ d →
Vpn amplitude corresponding to the pole values of the
intermediate hadronic propagators is expressed through the
on-shell hadronic rescattering amplitudes, which can be related
to the experimental values of the total V -N and p-n cross
sections. The contribution from the principal value parts
is expressed through half-off-shell hadronic amplitudes. In
situations where the latter contributions are small, the eikonal
regime provides the possibility of extracting on-mass-shell
amplitudes of V -N and p-n elastic scattering in kinematics
dominated by final-state interactions.

To establish the eikonal regime for the reaction (1), we
concentrate on kinematics where the subprocess γN → V N
has a large momentum transfer, and where just one of
the nucleons emerges with a momentum �1 GeV/c. For
definiteness we consider this to be the proton, so that the final
state of the reaction consists of two energetic hadrons (the
vector meson and the proton) and a slow recoil neutron. In
such a situation, the final-state interactions can be calculated
within the eikonal approximation.

For light vector mesons, such a regime can be established if
one considers kinematics where the momentum transfer at the
γN → V N vertex is sufficiently large, namely −t � 1 GeV2.
As Fig. 1 demonstrates, for t = −1.2 GeV2 both the φ meson
and the proton are sufficiently energetic for different values
of the neutron momentum. The photon energy in this figure is
5 GeV and the value of t is chosen on the proven feasibility
of probing φ photoproduction at this t value in coherent
processes at Jefferson Lab [6]. Hereafter, we represent the

FIG. 1. (Color online) Dependence of the momenta of struck
nucleon and φ meson on the momentum and direction of the recoil
nucleon, at q0 = 5 GeV and t = −1.2 GeV2, for the reaction (1).
The dashed (red), dotted (blue), and solid (black) curves correspond
respectively to recoil momenta of 200, 400, and 600 MeV. The angle
is defined with respect to the momentum transfer l defined in Eq. (2).

neutron direction using the angle it makes with respect to the
direction of the momentum transfer.

For heavier mesons such as J/�, the eikonal regime is
established naturally near threshold kinematics due to the large
value of −tthr. (as calculated for a stationary proton target). This
can be seen in Fig. 2, where the momenta of the proton and
J/� meson are presented for different values of the neutron
momentum, given a near-threshold photon energy of 10 GeV
(the threshold being 8.2 GeV), and t = tthr..

Provided the eikonal regime is established, we can use a
diagrammatic approach to calculate the reaction amplitude,
which is expanded in the number of rescatterings (see,
e.g., Ref. [9]). In such an expansion, we will have only
three categories of scattering amplitudes: a zeroth-order term
corresponding to the plane wave impulse approximation, and
first- and second-order terms corresponding to terms with one
or two hadronic rescatterings.

FIG. 2. (Color online) Dependence of the momenta of the struck
nucleon and J/� meson on the momentum and direction of the
recoil nucleon, given q0 = 10 GeV and t = −2.23 GeV2, for the
reaction (1). The curves have the same meaning as in Fig. 1.
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III. CALCULATION OF THE SCATTERING AMPLITUDE
AND CROSS SECTION

We denote the four-momenta of the deuteron, photon,
vector meson, proton, and neutron as pd = (Ed, pd ),
q = (q0, q), pV = (EV , pV )pp = (Ep, pp) and pn = (En, pn),
respectively. We also denote the initial momenta of the
proton and neutron within the deuteron (prior to vector
meson photoproduction) as p′

p and p′
n, respectively. The

four-momentum transfer to the deuteron is defined as

lμ = (l0, l) ≡ (q0 − EV , q − pV ) (2)

with t = l2. As was mentioned above, the direction of the
outgoing neutron is defined by the angle it makes with the
momentum transfer l, and is denoted θnl .

The general expression for the differential cross section of
the reaction (1) is

dσ = 1

4(q · pd )
| M |2(2π )4δ4(q + pd − pV − pp − pn)

× d3pV

(2π )32EV

d3pp

(2π )32Ep

d3pn

(2π )32En

, (3)

where we sum over the final and average over the initial particle
polarizations. In our approach, the Feynman amplitude M is
expanded in terms of the number of hadronic rescatterings
(see, e.g., Ref. [9])

M = M0 + M1 + M2, (4)

where, M0, M1, and M2 correspond respectively to PWIA
and the single- and double-rescattering amplitudes. These
amplitudes will be calculated within the virtual nucleon
approximation (VNA), in which only the pn component of the
deuteron wave function and only the positive-energy pole of
each nucleon’s propagator is considered. This allows us to re-
late the covariant d → pn transition amplitude to the deuteron
wave function with a virtual struck and an on-shell spectator
nucleon (see, e.g., Ref. [18]). Because the non-nucleonic
components of the deuteron and the negative-energy poles
of the nucleon propagators are neglected, the deuteron wave
function does not saturate the momentum sum rule. However,
the relativistic normalization of the wave function is fixed by
baryon number conservation (see, e.g., Ref. [19]). Previous
estimates [11] demonstrate that this approximation works
reasonably well for deuteron internal momenta �700 MeV/c,
which will be considered as a kinematical limit for the present
calculations.

A. Plane wave impulse approximation

In plane wave impulse approximation (PWIA), we neglect
the final-state interactions between outgoing hadrons, treating
them as plane waves (Fig. 3). The covariant scattering
amplitude M0 within PWIA can be calculated based on
effective Feynman diagram rules (see, e.g., Ref. [9]) which give

M(λV λpλn;λγ λd )
0 = −ū(λp)(pp)ū(λn)(pn)φ†(λV )

ν (pV )
μν
γN→V Nε

(λγ )
μ

× (q)
/p′

p
+ mN

p′2
p − m2

N + iε

dpnχ

(λd )
d (pd ). (5)

v

FIG. 3. (Color online) Feynman diagram for PWIA scattering.

Here, 
dpn and 

μν
γN→V N are the covariant vertices for the tran-

sitions d → pn and γN → V N . The spin wave functions of
the deuteron, nucleons, photon and vector meson are denoted
χd , u, εμ, and φν , respectively. The spin degree of freedom of
each particle is identified by a superscript in parentheses.

As was discussed above, we evaluate Eq. (5) by considering
only the positive-energy pole in the bound nucleon propagator.
Then, in accordance with VNA we use the approximate
completeness relation /p′

p
+ mN ≈ ∑

λ′
p
u(λ′

p)(p′
p)ū(λ′

p)(p′
p) in

which the four-momentum of the struck nucleon is defined
through the off-shell kinematic condition p′

p = pd − pn,
meaning that p′2

p �= m2
N (see, e.g., Ref. [11]). This allows us to

introduce the deuteron wave function within VNA [11] as

�
(λd ;λ1λ2)
d (p) = − ū(λ1)(p1)ū(λ2)(p2)

p2
1 − m2

N


dpnχ
(λd )
d (pd )√

2(2π )32E2

, (6)

where p = 1
2 (p1 − p2) and pd = p1 + p2. Further calculations

we perform in the laboratory frame (i.e., the deuteron rest
frame), for which p = p1 = −p2.

Using Eq. (6) and introducing the invariant Feynman
amplitude for vector meson photoproduction from the struck
nucleon, i.e.,

M(λV λp ;λγ λ′
p)

γN→V N (sγN∗ , tγN∗ )

= ū(λp)(pp)φ†(λV )
ν (pV )
μν

γN→V Nεμ(q)u(λ′
p)(p′

p) (7)

into Eq. (5), we find the PWIA amplitude to be

M(λV λpλn;λγ λd )
0

=
√

2(2π )32Ep

∑
λ′

p

M(λV λp ;λγ λ′
p)

γN→V N (sγN∗ , tγN∗ )�
(λd ;λ′

pλn)
d (pn),

(8)

where sγN∗ and tγN∗ are the Mandelstam variables at the
γN → V N vertex. Note that the vector meson photoproduc-
tion amplitude that enters above is half off shell since the struck
nucleon is initially in a virtual state. In these calculations,
however, we use on-shell spinors for the bound nucleon and ac-
count for off-shell effects only kinematically by identifying the
four-momentum of the bound nucleon as p′

p = pd − pn. Ear-
lier estimates [11] demonstrated this approximation to be rea-

sonable when
|p′

p |√−t
,

|p′
p |√
s

	 1, both of which are satisfied here.

B. Single-rescattering contribution

Within GEA, there are four single-rescattering processes
to consider (Fig. 4). The processes can be separated into two
groups. In the first group [Figs. 4(a) and 4(b)], the proton
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FIG. 4. (Color online) Feynman diagrams for single-rescattering
contribution.

receives its large momentum due to a hard photoproduction
vertex, while in the second [Figs. 4(c) and 4(d)], its large
momentum comes from a hard rescattering vertex.

While the first three diagrams in Fig. 4 can be identified
as having one hard and one soft rescattering vertex, the
fourth one requires two hard vertices in order to provide a
large momentum to both the vector meson and proton. In

principle, a possible one-hard and one-soft scenario can be
realized for the fourth diagram if the high momentum of the
intermediate neutron is transferred to the final proton by means
of a small angle charge interchange reaction. However, this
contribution is negligible due to the pion exchange nature
of charge interchange scattering at the considered energies,
which results in an overall contribution that decreases with
spn and contributes at most a few percent in the forward
direction.1

It is worth noting that due to antisymmetry of the nuclear
wave function, the amplitude of Fig. 4(c) enters with the
opposite sign relative to the amplitude of Fig. 4(a). However its
contribution will be suppressed for near-threshold production
of heavy vector mesons (such as J/�), since the high −tthr. of
the photoproduction reaction will make the first vertex hard.
Thus we expect appreciable contribution from Fig. 4(c) only
for higher photon energies, or when the produced vector meson
is light.

We will calculate only the contributions of Figs. 4(a)–4(c),
for which we use effective Feynman rules (see Ref. [9]).
Denoting the invariant amplitudes of the processes as M1a ,
M1b and M1c, we obtain

M(λV ,λp,λn;λγ ,λd )
1a = −ū(λp)(pp)ū(λn)(pn)φ(λV )

π (pV )
∫

d4p′
n

(2π )4i

[



ρπ
V N→V N

Gνρ(p′
V )

(p′
V )2 − m2

V + iε



μν
γN→V Nε

(λγ )
μ

× /p′
p

+ mN

(p′
p)2 − m2

N + iε

/p′
n
+ mN

(p′
n)2 − m2

N + iε

dpnχ

(λd )
d

]
, (9)

M(λV ,λp,λn;λγ ,λd )
1b = −ū(λp)(pp)ū(λn)(pn)φ(λV )

ν (pV )
∫

d4p′
p

(2π )4i

[

pn→pn

/p′′
p

+ mN

(p′′
p)2 − m2

N + iε

/p′
n
+ mN

(p′
n)2 − m2

N + iε

×

μν
γN→V Nε

(λγ )
μ

/p′
p

+ mN

(p′
p)2 − m2

N + iε

dpnχ

(λd )
d

]
, (10)

M(λV ,λp,λn;λγ ,λd )
1c = −ū(λp)(pp)ū(λn)(pn)φ(λV )

π (pV )
∫

d4p′
p

(2π )4i

[



ρπ
V N→V N

Gνρ(p′
V )

(p′
V )2 − m2

V + iε



μν
γN→V Nε

(λγ )
μ

× /p′
p

+ mN

(p′
p)2 − m2

N + iε

/p′
n
+ mN

(p′
n)2 − m2

N + iε

dpnχ

(λd )
d

]
, (11)

where Gμν(pV ) = gμν − (pV )μ(pV )ν/m2
V is the propagator of the intermediate vector meson. The momentum notations of

intermediate particles are given in Fig. 4.
Our derivations follow the prescription of virtual nucleon approximation (cf. Sec. III A and Ref. [11]), in which the spectator

to the photoproduction subreaction is placed on its mass shell by considering only the positive-energy pole in the spectator energy
integration, i.e., we take ∫

dp′0
p/n

p′2
p/n − m2

N + iε
= −i

2π

2E′
p/n

, (12)

where E′
p/n = +

√
m2

N + p′2
p/n. Since this integration places the spectator on its mass shell, the completeness relation

/p′
p/n

+ mN = ∑
λ′

p/n
u(λ′

p/n)(p′
p/n)ū(λ′

p/n)(p′
p/n) is exact. This, together with the approximate completeness relation used for the

off-shell nucleon propagator allows us to introduce the deuteron wave function of Eq. (6) into the rescattering amplitudes

1A detailed discussion of charge interchange FSI for d(e, e′N )N is given in Ref. [11].
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as follows:

M(λV ,λp,λn;λγ ,λd )
1a = −ū(λp)(pp)ū(λn)(pn)φ(λV )

π (pV )
∑
λ′

p,λ′
n

∫
d3p′

n

(2π )3

[√
2(2π )3

2E′
n



ρπ
V N→V Nu(λ′

n)(p′
n)

× Gνρ(p′
V )

(p′
V )2 − m2

V + iε



μν
γN→V Nε

(λγ )
μ u(λ′

p)(p′
p)�

(λ′
p,λ′

n;λd )
d (p′

n)

]
, (13)

M(λV ,λp,λn;λγ ,λd )
1b = −ū(λp)(pp)ū(λn)(pn)φ(λV )

ν (pV )
∫

d3p′
n

(2π )3

[√
2(2π )3

2E′
n


pn→pnu
(λ′

n)(p′
n)

× /p′′
p

+ mN

(p′′
p)2 − m2

N + iε



μν
γN→V Nε

(λγ )
μ u(λ′

p)(p′
p)�

(λ′
p,λ′

n;λd )
d (p′

n)

]
, (14)

M(λV ,λp,λn;λγ ,λd )
1c = −ū(λp)(pp)ū(λn)(pn)φ(λV )

π (pV )
∫

d3p′
p

(2π )3

[√
2(2π )3

2E′
p



ρπ
V N→V Nu(λ′

p)(p′
p)

× Gνρ(p′
V )

(p′
V )2 − m2

V + iε



μν
γN→V Nε

(λγ )
μ u(λ′

n)(p′
n)�

(λ′
n,λ

′
p ;λd )

d (p′
p)

]
. (15)

Note that, due to the fact the deuteron wave function is antisymmetric with respect to a p-n permutation, the amplitude M1c

has a negative sign relative to M1a and M1b.
We consider next the remaining fast propagator in each amplitude: the vector meson propagators for M1a and M1c and the

proton propagator for M1b. In each case we introduce the momentum transfer at the rescattering vertex as K = pn − p′
n and

rewrite the propagators in terms of it.
For the propagator in M1a , we obtain

(p′
V )2 − m2

V + iε = (pV + pn − p′
n)2 − m2

V + iε = (pV + K)2 − m2
V + iε = 2pV,z(�1a − Kz + iε), (16)

where

�1a = K2 + 2K0EV − 2K⊥ · pV

2pV,z

. (17)

To proceed with the integration, we use the fact that the rescattering amplitude is dominated by small angle scattering. This
means that K2

z 	 K2
⊥, so K0 and K2 are approximately equal to their Kz = 0 values. Moreover, ∂�1a

∂Kz
∼ Kz

pV,z
	 1 so we may treat

�1a as independent of Kz, effectively linearizing the denominator of Eq. (16). With this in mind, and the fact that the integration
over p′

n in Eq. (13) can be rewritten as an integration over K, the dKz integration can be performed using∫
f (z)dz

� − z + iε
= −iπf (�) + P

∫
f (z)dz

� − z
, (18)

where the symbol P indicates that the Cauchy principal value of the integral is to be taken.
In applying the decomposition (18) to M1a , we can separate M1a into on-shell and off-shell parts, since the condition

�1a = Kz imposed by the δ function corresponds to the on-shell condition for the intermediate vector meson—i.e., it happens
when (p′

V )2 = m2
V . We shall henceforth refer to this part of M1a as the pole term. Because, in this term, the internal vector

meson line is on its mass shell, we can now use the completeness relation Gνρ(p′
V ) = ∑

λ′
V
φν

(λ′
V )(p′

V )φ∗
ρ

(λ′
V )(p′

V ) and gather terms
together into the invariant amplitudes for the γN → V N and V N → V N transitions:

M(λV ,λp,λn;λγ ,λd )
1a,pole

= i

4pV,z

∑
λ′

V ,λ′
p,λ′

n

∫
d2K⊥
(2π )2

[√
2(2π )3

2E′
n

M(λV ,λn;λ′
V ,λ′

n)
V N→V N (sV N , tV N )M(λ′

V ,λp ;λγ ,λ′
p)

γN→V N (sγN∗ , tγN∗ )�
(λ′

p,λ′
n;λd )

d (pn,z − �1a, pn,⊥ − K⊥)

]
.

(19)

Here, as in PWIA the invariant amplitudes appearing on the right-hand side are functions of the Mandelstam variables for
their respective transitions.

For the other two rescattering amplitudes, similar decompositions of the fast propagators are possible. For M1b, we have

(p′
p)2 − m2

N + iε = (pp + pn − p′
n)2 − m2

N + iε = (pp + K)2 − m2
N + iε = 2pp,z(�1b − Kz + iε), (20)

where

�1b = K2 + 2K0Ep − 2K⊥ · pp

2pp,z

. (21)
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This gives us a pole part of the amplitude equal to

M(λV ,λp,λn;λγ ,λd )
1b,pole

= i

4pp,z

∑
λ′

p,λ′′
p,λ′

n

∫
d2K⊥
(2π )2

[√
2(2π )3

2E′
n

M(λp,λn;λ′′
p,λ′

n)
pn→pn (spn, tpn)M(λV ,λ′′

p ;λγ ,λ′
p)

γN→V N (sγN∗, tγN∗ )�
(λ′

p,λ′
n;λd )

d (pn,z − �1b, pn,⊥ − K⊥)

]
.

(22)

As for M1c, we have

(p′
V )2 − m2

V + iε = (q + p′
n − pn)2 − m2

V + iε = (q − K)2 − m2
V + iε = 2q0(Kz − �1c + iε), (23)

where

�1c = m2
V − K2

2q0
+ K0, (24)

which gives us a pole part of the amplitude equal to

M(λV ,λp,λn;λγ ,λd )
1c,pole

= i

4q0

∑
λ′

V ,λ′
p,λ′

n

∫
d2K⊥
(2π )2

[√
2(2π )3

2E′
p

M(λV ,λp ;λ′
V ,λ′

p)
V N→V N (sV N , tV N )M(λ′

V ,λn;λγ ,λ′
n)

γN→V N (sγN∗ , tγN∗ )�
(λ′

n,λ
′
p ;λd )

d (−pn,z + �1c,−pn,⊥ + K⊥)

]
.

(25)

For the principal value (PV) parts of each amplitude, we simplify the notation by introducing half-off-shell V N → V N and
pn → pn amplitudes that allow us to write the following:

M(λV ,λp,λn;λγ ,λd )
1a,pv = 1

2pV,z

∑
λ′

V ,λ′
p,λ′

n

∫
d2K⊥
(2π )2

P
∫

dKz

2π

[√
2(2π )3

2E′
n

M(λV λn;λ′
V λ′

n)
V ∗N→V N (sV ∗N, tV ∗N )M(λ′

V λp ;λγ λ′
p)

γN∗→V N (sγN∗ , tγN∗ )

× �
(λ′

p,λ′
n;λd )

d (pn,z − �1a, pn,⊥ − K⊥)

Kz − �1a

]
, (26)

M(λV ,λp,λn;λγ ,λd )
1b,pv = 1

2pp,z

∑
λ′

V ,λ′
p,λ′

n

∫
d2K⊥
(2π )2

P
∫

dKz

2π

[√
2(2π )3

2E′
n

M(λpλn;λ′′
pλ′

n)
p∗n→pn (sp∗n, tp∗n)M(λV λ′

p ;λγ λ′
p)

γN∗→V N (sγN∗ , tγN∗ )

× �
(λ′

p,λ′
n;λd )

d (pn,z − �1b,−pn,⊥ + K⊥)

Kz − �1b

]
, (27)

M(λV ,λp,λn;λγ ,λd )
1c,pv = − 1

2q0

∑
λ′

V ,λ′
p,λ′

n

∫
d2K⊥
(2π )2

P
∫

dKz

2π

[√
2(2π )3

2E′
p

M(λV λp ;λ′
V λ′

p)
V ∗N→V N (sV ∗N, tV ∗N )M(λ′

V λn;λγ λ′
n)

γN∗→V N (sγN∗ , tγN∗ )

× �
(λ′

n,λ
′
p ;λd )

d (−pn,z + �1c, pn,⊥ − K⊥)

Kz − �1c

]
, (28)

where we have written V ∗ and p∗ to indicate that these particles
are off shell in their intermediate states. We will estimate these
amplitudes numerically by substituting off-shell rescattering
amplitudes with on-shell counterparts evaluated at off-shell
kinematics. However, it is important to note that our approach
can only be used to probe the V N → V N amplitude when the
principal value parts are negligible.

C. Double-rescattering contribution

The last term in Eq. (4) corresponds to double-rescattering
contributions (Fig. 5). They, like the single-rescattering

processes, can be split into two groups. The first group
[Figs. 5(a) and 5(b)] correspond to hard vector meson
production from the proton, followed by two consecutive
soft rescatterings from the slow neutron. The two remaining
diagrams [Figs. 5(c) and 5(d)] correspond to vector meson
production from the neutron, and provide the proton with a
large final momentum by means of a hard rescattering vertex.

It is worth noting that, for heavy vector meson production
near threshold, the last two diagrams are negligible due to
the large −t involved in both the photoproduction vertex and
one of the proton rescatterings. However, the contribution of
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FIG. 5. (Color online) Feynman diagrams for double-rescattering
contribution.

Fig. 5(c) becomes relevant for high energies. The contribution
of Fig. 5(d) remains negligible at high energies due to
the fact that it contains an intermediate state with a slow

proton-neutron pair, the momentum of which is integrated
over. This warrants the application of a closure condition
as an approximation, which results in a cancellation of any
correction this diagram would make to the contribution of
Fig. 4(b).2

In calculating the diagrams in Figs. 5(a)–5(c), we will
concentrate only on the contributions from the pole terms of
the fast hadron propagators that contain on-shell p-n and V -N
scattering amplitudes. As discussed in the previous section,
this is justified by focusing only on kinematics where the
principal value contributions are a small correction. Since one
would expect that M2 	 M1, the PV parts of M2 should be
significantly smaller than the overall amplitude.

Applying the effective Feynman rules and performing the
loop integrations in accordance with the same prescription
used for the single-rescattering amplitudes, we find the pole
terms of the diagrams in Figs. 5(a)–5(c) to be

M(λV ,λp,λn;λγ ,λd )
2a = − 1

4pp,zpV,z

∑
spins

∫
d2K

(2π )2

∫
d2K′

(2π )2

[√
2(2π )3

2E′
n

1

2E′′
n

M(λp,λn;λ′′
p,λ′′

n)
pn→pn (pp, pn; p′′

p, p′′
n)M(λV ,λ′′

n;λ′
V ,λ′

n)
V N→V N

× (pV , p′′
n; p′

V , p′
n)M(λ′

V ,λ′′
p ;λγ ,λ′

p)
γN→V N (p′

V , p′′
p; pγ , p′

p)�
(λ′

p,λ′
n;λd )

d (pn,z − �2a − �′
2a; pn,⊥ − K⊥ − K′

⊥)

]
, (29)

M(λV ,λp,λn;λγ ,λd )
2b = − 1

4pp,zpV,z

∑
spins

∫
d2K

(2π )2

∫
d2K′

(2π )2

[√
2(2π )3

2E′
n

1

2E′′
n

M(λV ,λp ;λ′
V ,λ′′

p)
V N→V N (pV , pp; p′

V , p′′
p)M(λp,λ′′

n;λ′′
p,λ′

n)
pn→pn

× (pp, p′′
n; p′′

p, p′
n)M(λ′

V ,λ′′
p ;λγ ,λ′

p)
γN→V N (p′

V , p′′
p; pγ , p′

p)�
(λ′

p,λ′
n;λd )

d (pn,z − �2b − �′
2b; pn,⊥ − K⊥ − K′

⊥)

]
, (30)

M(λV ,λp,λn;λγ ,λd )
2c = − 1

4q0pp,z

∑
spins

∫
d2K

(2π )2

∫
d2K′

(2π )2

[√
2(2π )3

2E′
p

1

2E′′
n

M(λp,λn;λ′′
p,λ′′

n)
pn→pn (pp, pn; p′′

p, p′′
n)M(λV ,λ′′

p ;λ′
V ,λ′

p)
V N→V N

× (pV , p′′
p; p′

V , p′
p)M(λ′

V ,λ′′
p ;λγ ,λ′

p)
γN→V N (p′

V , p′′
n; pγ , p′

n)�
(λ′

n,λ
′
p ;λd )

d (−pn,z + �2a + �′
2a; −pn,⊥ + K⊥ + K′

⊥)

]
,

(31)

where the � factors are

�2a = K2 + 2EpK0 − 2pp · K⊥
2pp,z

, (32)

�′
2a = (K ′)2 + 2EV K ′

0 − 2pV · K′
⊥

2pV,z

, (33)

�2b = K2 + 2EV K0 − 2pV · K⊥
2pV,z

, (34)

�′
2b = (K ′)2 + 2EpK ′

0 − 2pp · K′
⊥

2pp,z

, (35)

�2c = K2 + 2EpK0 − 2pp · K⊥
2pp,z

, (36)

�′
2c = m2

V − (K ′)2

2q0
+ K ′

0. (37)

A derivation of these results can be found in the Appendix.

D. Differential cross section

The differential cross section of reaction (1) is given by
Eq. (3). We consider the particular case in which the vector
meson and proton are detected, and the neutron is inferred
from missing mass. In accordance with this, we integrate out
the neutron momentum to obtain

dσ = |M|2
2
(
sd − M2

d

) (2π )δ
(
(pd + q − pV − pp)2 − m2

N

)

× d3pV

(2EV )(2π )3

d3pp

(2Ep)(2π )3
. (38)

2This is the same approximation by which the interactions
between scatterers in the target are neglected in the conventional
Glauber theory [20] or in GEA [9].
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We eliminate the remaining δ function by integrating over
the magnitude of the proton momentum, which results in the
following form of the differential cross section:

d5σ

d3pV d�p

= |M|2
2
(
sd − M2

d

) 1

(2π )5

1

8EV E1f En

p3
p

|pp · (vp − vn)| .

(39)

Here the outgoing nucleon velocities are v = p
E

and the total
scattering amplitude is defined according to Eq. (4).

IV. NUMERICAL ESTIMATES

For numerical estimates, it is convenient to express the
invariant Feynman amplitude M(λC,λD ;λA,λB )

AB→CD for the process
AB → CD through the diffractive amplitude f

(λC,λD ;λA,λB )
AB→CD in

the following form:

M(λC,λD ;λA,λB )
AB→X (s, t) =

√
(s − (mA − mB)2)[s − (mA + mB)2]

× f
(λC,λD ;λA,λB )
AB→CD (s, t). (40)

Furthermore, we will parametrize the diffractive amplitude in
the form:

f
(λC,λD ;λA,λB )
AB→CD = A(s)[i + α(s)]e

B(s)
2 t δλAλC δλBλD , (41)

which assumes helicity conservation, and which is most
appropriate for the case of small angle scattering. In the
case that the reaction is elastic, f is normalized so that
Imf (s, 0) = σtot(s), meaning in these cases A(s) = σtot(s).
Since helicity is conserved, we will hereafter omit indices.

For the pn → pn amplitude, σtot, α, and B are determined
for low energies using SAID data [21] and for high energies
using a parametrization based on particle data [22]. For the
γN → V N amplitude, we use existing parametrizations both
in the invariant Feynman amplitude form or in the form of
Eq. (40).

Since the main goal of the present work is to investigate
the feasibility of using reaction (1) to extract the amplitude of
V N → V N scattering, our main focus in this section will be
to study the sensitivity of the cross section to the parameters
σV N

tot and BV N .

A. Geometry of the reaction

For simplicity, we consider the coplanar case, in which
the three final-state particles are all contained in the same
plane. This fixes two of the five final-state degrees of
freedom. The last three are the momentum transfer t , the final
neutron momentum pn, and the angle θnl between the neutron
direction and the three-momentum transfer l (cf. Fig. 6). When
performing numerical estimates, we hold t and pn fixed, and
vary the value of θnl from zero to 180◦, or at least to whatever
limit is kinematically allowed.

It is worth noting that l and pp are not fixed, but are them-
selves functions of θnl . Both the direction and magnitude of l
change, and since l = pp + pn, as θnl gets larger, so does θpl .

One expects rescattering peaks to occur where the fast
scattered hadron is roughly transverse with the scatterer. As
can be seen in Fig. 6, this will occur for fairly small θnl for the

θnl l

p

V

n

FIG. 6. (Color online) Geometry of reaction (1).

V -n rescattering peak, but for larger θnl for the p-n rescattering
peak. Thus, we expect as a general rule, θpn

nl > θV N
nl , where the

superscript indicates that this angle is where a rescattering
peak occurs.

B. Photoproduction of φ mesons

Recent studies of φ meson photoproduction from nuclei
have generated much interest due to a large φ-N cross
section observed at near-threshold energies [23,24]. The
φ-N cross sections are usually extracted by studying the A
dependence of the differential cross section and employing
a Glauber-like analysis. The extracted results vary from
20–70 mb [25], significantly exceeding the vector meson
dominance prediction of 10 mb.

A deuteron target was used in several recent experiments
[6,25,26]. In Ref. [26], the analysis of the d(γ, pK+K−)n
exclusive reaction for photon energies in the range 1.65–
3.59 GeV yielded a φ-N cross section above 20 mb. While
measurements of the coherent reaction d(γ, φ)d clearly
indicate the presence of φ-N rescattering, they could not
distinguish between the vector meson dominance value of
σφN = 10 mb and the recently measured σφN = 30 mb, pro-
vided the slope factor is assumed to be around 10 GeV−2 [6].

To demonstrate the sensitivity of the breakup reaction
to the φ-N scattering parameters, we performed numerical
evaluations of the cross section (39) at energies for which a
coherent φ production experiment was performed at JLab [6].
We use a φ photoproduction amplitude from Eqs. (3.85b),
(3.85c) of Ref. [1], based on a Pomeron exchange model, in
our calculations. Namely, we have

fγN→φN =
(

s

1 GeV2

)αR(t)−1

A[i + α(s)]e
1
2 (Bt+Ct2), (42)

with αR(t) = 1.14 − 0.27t/GeV2, A = 0.372 GeV−2, B =
4.8 GeV−2, and C = 1.7 GeV−4.

In Fig. 7, we present the angular distribution of the cross
section at different values of the recoil neutron momentum,
calculated assuming σφN = 30 mb and B = 10 GeV−2. The
cross section value of 30 mb is suggested by recent experiments
(cf. Refs. [23,24]) and the value of the slope factor by an
analysis in Ref. [6]. Here we use the shorthand notation

σ ≡ d5σ

dpV d�V d�p

. (43)

The figure shows an angular distribution qualitatively
similar to what is observed in d(e, e′p)n reactions [11,13,14],
and to a previous study of photoproduction reactions [27]:
for neutron momenta �200 MeV screening effects are
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FIG. 7. (Color online) Angular dependence of the φ photopro-
duction cross section at different neutron momenta, assuming σφN =
30 mb and B = 10 GeV−2. The dotted (red) line indicates PWIA.
Dashed (green) indicates PWIA and the first two single-rescattering
terms (off-neutron production is neglected). Dash-dotted (blue) indi-
cates PWIA + all single-rescattering. Solid (black) indicates PWIA,
single, and double-rescattering. q0 = 5 GeV and −t = 1.2 GeV2.

dominant, as FSIs decrease the overall cross section due to
destructive interference between the PWIA amplitude M0

and the single-rescattering amplitudeM1 = M1a + M1b. For
pn � 400 MeV the cross section is dominated by the square of
single-rescattering amplitude, which results in an increase in
the cross section as compared to the PWIA value. The present
case differs from the d(e, e′p)n reaction, however, in that two
distinct screening minima are observed for pn = 200 MeV,
due to the presence of both a φ-N and a p-n rescattering.
Likewise, two distinct peaks can be seen for pn = 400 MeV: a
φ-N rescattering peak at θnl = 8◦ and a p-n rescattering peak
at θnl = 65◦, in agreement with the discussion of Sec. IV A
(cf. as well Fig. 6).

Another notable feature of the angular distributions in
Fig. 7 is the presence of a rescattering amplitude M1c, which
corresponds to production of the φ meson from the neutron,
which partially cancels the overall effect of the other FSIs
since it enters with a negative sign relative to M1a and M1b.
This negative sign is due to antisymmetry of the deuteron wave
function under a p ↔ n transposition.

The presence of either screening or peaks at different recoil
neutron momenta suggests the ratio

R = σ (pn = 400 MeV)

σ (pn = 200 MeV)
(44)

as especially conducive to our study, as the valleys in
the angular distribution for pn = 200 MeV entering into
the denominator of R will enhance the peaks entering into
the numerator.

In Fig. 8 we present predictions for the ratio (44) for two
models of φ-N scattering. Figure 8(a) uses σφN = 30 mb and
BφN = 10 GeV−2 (the same parametrization as in Fig. 7),
while Fig. 8(b) uses σφN = 10 mb and assumes vector meson
dominance, so φ-N scattering has the same t dependence as
photoproduction [see Eq. (42)]. In both cases we use α = −0.5.
As the figure shows, the two models predict significantly

0 20 40 60 80 100 120 140 160 180
(a)

10−2

10−1

100

101

R

σφN = 30 mb
B = 10 GeV−2

0 20 40 60 80 100 120 140 160 180
(b)

θnl (deg)

10−2

10−1

100

R

σφN = 10 mb
VMD model

FIG. 8. (Color online) Angular dependence of the ratio defined
in Eq. (44), for two models of the φ-N interaction. Lines have the
same meaning as in Fig. 7. q0 = 5 GeV and −t = 1.2 GeV2.

different ratios for the φ-N cross section. Qualitatively, no
φ-N rescattering peak is seen for the σφN = 10 mb model, as
M1a and M1c almost completely cancel. Quantitatively, the
magnitudes of R for the two models differ by almost an order
of magnitude at the φ-N rescattering peak.

Some discussion is in order regarding the cancellations in
Fig. 8. In our calculation we assume that the amplitudes for
photoproduction and scattering of the φ meson are the same for
both the proton and neutron. If the photoproduction and φ-N
scattering amplitudes have different t dependences, however,
then the cancellation is not complete for the considered
kinematics.3 This is the case in Fig. 8(a), where for the
photoproduction amplitude we use the parametrization of
Eq. (42), whereas the φ-N scattering amplitude is in the form
of Eq. (41) with a slope factor B = 10 GeV−2.

However, we obtained almost complete cancellation for the
VMD model, as depicted in Fig. 8(b), since in this case the
photoproduction and φ-N scattering amplitudes have the same
t dependence. The cancellation is not perfect due to different
longitudinal momenta entering into the rescattering amplitudes
in M1a and M1c.

Concluding this section we note that these estimates
indicate that the breakup reaction (1) is able to effectively dis-
criminate between different models of φ-N scattering, and can
complement other methods of studying the φ-N interaction.

C. Photoproduction of J/� mesons

In studying the photoproduction of J/� in reaction (1), we
focus on several aspects of the eikonal dynamics of the FSIs.
Namely, for the near-threshold kinematics we will concentrate
on identifying the J/�-N rescattering peak in the angular

3In our approximation, the cancellation would be complete for
symmetric kinematics where the proton and neutron are produced
with the same momenta on opposite sites of the scattering plane with
l ‖ ẑ.
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distribution as we did in the case of φ. For below-threshold
production we will elaborate the kinematic requirements of
photoproduction, which result in a strong suppression of
FSI effects. Finally, for J/� production at collider energies,
we demonstrate almost complete cancellation of the J/�-N
rescattering due to destructive interference between single-
rescattering amplitudes.

1. Near-threshold photoproduction of J/� mesons

The upcoming 12- GeV upgrade at Jefferson Lab [28] will
cross the J/� photoproduction threshold for a proton target.
This will provide unprecedented opportunities for studies of
J/� photoproduction at near-threshold kinematics, for which
there are currently very limited data (see, e.g., Refs. [29,30]).

This has renewed interest in theoretical studies of the
J/�-N interaction at near-threshold kinematics through pho-
toproduction and electroproduction from the deuteron [31,32].
The present analysis is focused on studying the sensitivity of
the reaction (1) to the cross section of the J/�-N interaction
through ratios similar to that of Eq. (44).

The J/�-nucleon interaction near threshold is not well un-
derstood. At high energies, vector meson dominance suggests
a total cross section of around 1 mb [33], while experimental
data indicates a higher value of 3.5 mb [34]. On the theoretical
side, the two-gluon exchange models suggest a monotonically
increasing total cross section that approaches an asymptotic
value at large energies [35], and accordingly a smaller cross
section near threshold. While these models are based on a
leading twist approximation, other models that attempt to
account for nonperturbative effects suggest a significantly
larger cross section, as large as 17 mb near threshold [36].

To ascertain the sensitivity of the considered breakup
reaction to the J/�-N cross section, we consider the ratio

R = σ (pn = 600 MeV)

σ (pn = 200 MeV)
, (45)

where for the numerator we choose the cross section at larger
value of recoil nucleon momenta to maximize the rescattering
effects, and thereby the sensitivity of the R to the J/�-N
scattering amplitude.

Since the J/� photoproduction amplitude is not factorized
from the FSI amplitudes, care should be given to the treatment
of the γN → J/�N amplitude, which can be strongly energy
dependent at near-threshold kinematics. For this reason we
consider two alternative models for J/� photoproduction near
the threshold. In the first model, the energy dependence of the
photoproduction amplitude is estimated based on the leading-
twist two-gluon exchange model [37], according to which the
function A(s) entering into Eq. (41) can be parameterized as

A2g(s) = N2g√
1 + α2

(
s − sthr.,N

s − m2
N

)
, (46)

with the constant N2g = 1.38 GeV−2 found from a fit to
photoproduction data [30]. The slope factor B is estimated
from the two-gluon form factor of the nucleon as [38]

Beff. = 4

1 GeV2 − t
. (47)
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FIG. 9. (Color online) Angular dependence of the ratio defined
in Eq. (45), for the two- and three-gluon exchange models of
J/� photoproduction. Assumes σ�N = 5 mb. Lines have the same
meaning as in Fig. 7. q0 = 10 GeV and t = tthr. = −2.23 GeV2.

It is worth noting that at t = −2.23 GeV2, Beff. ≈ 1.24 GeV−2,
which is close to the low-energy B value of 1.25 GeV−2

measured at a Cornell experiment [29].
The observation that the very limited phase space near

threshold may favor a coherent interaction of all three quarks in
the nucleon suggests the possible dominance of a three-gluon
exchange mechanism, which predicts much weaker energy
dependence at the threshold [37]:

A3g(s) = N3g√
1 + α2

, (48)

with the constant N3g = 0.36 GeV−2 fit to the results of
Ref. [29]. For this model, we adopted a constant slope factor
B = 1.25 GeV−2, consistent with experimental data [29]. In
both cases, we use α = −0.2.

In Fig. 9 we present the prediction of above models, where
the diffractive part of the J�-N amplitude is parameterized
with σ�N = 5 mb and B = 1.25 GeV−2. This figure indicates
the presence of two rescattering peaks, with the peak at
θnl = 30◦ corresponding to J/�-N rescattering. This pattern
of two rescattering peaks, each corresponding to one of the
rescattering diagrams, has also been observed in Ref. [31].

These estimates also demonstrate the sensitivity of the
reaction (1) to the energy dependence of the photoproduction
amplitude. For the two-gluon mechanism, a dip should be
present near the kinematical limit of θnl due to the threshold
factor of s − s0

thr.,N . At this θnl , the angle between the outgoing
proton and the J/� meson becomes smaller, thus making
sγp = m2

N + m2
� + 2EpE� − 2pp · p� smaller as well. No

such suppression factor exists for the three-gluon model.
Besides this, Fig. 9 demonstrates that the effect of M1c is
negligible, owing to the large value of −tthr.. These features can
also be seen in Fig. 10, where we present numerical estimates
for the absolute cross section assuming a two-gluon production
mechanism.
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FIG. 10. (Color online) Angular dependence of the J/� pho-
toproduction cross section at different neutron momenta, using the
two-gluon parametrization of [37]. Lines have the same meaning as
in Fig. 7. q0 = 10 GeV and −t = 2.23 GeV2.

We conclude our discussion of near-threshold J/� produc-
tion from the deuteron by presenting, in Fig. 11, estimates of
R [see Eq. (45)] for the two-gluon exchange model of Eq. (46)
for several values of σ�N , thus demonstrating the sensitivity
of reaction (1) to the total J/�-N cross section.

2. Sub-threshold photoproduction of J/� mesons

While the threshold for J/� photoproduction from a
stationary proton is Ethr.,N = 8.2 GeV, the threshold for
production from the deuteron is only 5.6 GeV, making it
kinematically possible to produce J/� with q0 < Ethr.,N .
This requires that the bound nucleon struck by the photon
be sufficiently fast so that sγN � sthr.,N = (mn + m�)2. The
kinematics of reaction (1) allow for this when the recoil
neutron flies off in the forward direction. Within PWIA this
will correspond to the J/� meson off a backward-moving
proton that satisfy the condition

(q + p′
p)2 > sthr.,N . (49)

FIG. 11. (Color online) Angular dependence of the ratio defined
in Eq. (45) with different J/�-N cross sections, using the two-
gluon parametrization of Ref. [37]. Estimated at pn = 400 MeV,
q0 = 10 GeV and −t = 2.23 GeV2. Includes all diagrams.

FIG. 12. (Color online) The threshold value for J/� photopro-
duction of the bound proton momentum as a function of photon
energy for various proton-photon angles.

This condition can only be satisfied for fast, backward-going
protons that satisfy the condition

|p′
p| � pthr.(q0, θ

′
p), (50)

where θ ′
p is the angle between the bound proton and the photon.

This threshold momentum is shown as a function of q0 in
Fig. 12 for several values of θ ′

p. The value of pthr. can be very
large for small photon energies, even above 700 MeV. At these
photon energies, we expect the applicability of VNA to break
down, so its predictions will be rather qualitative. However, key
features such as the onset of the eikonal regime for rescattering
will be relevant to other (e.g., light cone) approximations,
which are better suited to describing subthreshold production.

As for FSIs, we may expect immediately that M1c does not
contribute, since −tthr. is large and q0 is small. As for M1a

and M1b, one of the analytic properties of their pole parts
[Eqs. (19) and (22)] is that

pn,z = p′
n,z + �1a/1b, (51)

which, because of momentum conservation at the d → pn
vertex, implies

pn,z = −p′
p,z + �1a/ab/1c = −|p′

p| cos(θ ′
p) + �1a/1b. (52)

As can be seen in Eqs. (17) and (21), the factors �1a and �1b

are both positive. This means that pn,z > −|p′
p| cos(θ ′

p), with
the lesser quantity a positive number since the struck proton
will be backward going. To be compatible with the inequality
(50), this requires an especially large pn,z. However, the
� factors monotonically increase with pn,z, making the
condition (52) more difficult to fulfill. Thus, we expect a
suppression of FSIs for subthreshold kinematics. This is
illustrated in Fig. 13, where we present numerical estimates
for the J/� production cross section at q0 = 7 GeV using
the two- and three-gluon exchange models of Ref. [37]. As
the figure shows, the FSI effects are small and, contrary to
above threshold kinematics, do not increase with increased
pn. Looking back at Fig. 12, we conclude that at subthreshold
kinematics the reaction (1) in the limit q0 → Edeut.

thr. will allow
probing of the internal structure of the deuteron at large Fermi
momenta with little distortion from FSIs.
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FIG. 13. (Color online) Angular dependence of the J/� pho-
toproduction cross section at different neutron momenta below
threshold. Assumes σ�N = 5 mb. The curves I, II, and III represent
pn equal to 200, 400, and 600 MeV, respectively. The dotted and solid
lines are PWIA and full calculations, respectively. q0 = 7 GeV and
t = tthr.,N = −2.23 GeV2.

D. Photoproduction of J/� at collider energies

As was mentioned in Sec. III B, due to antisymmetry of the
deuteron wave function, the J/�-N rescattering amplitude
of Fig. 4(c) enters with the opposite sign relative to the other
J/�-N rescattering amplitude of Fig. 4(a). It was observed
in Sec. IV C that the contribution of M1c will be small for
near-threshold kinematics, so there is little cancellation with
the contribution of M1a . This was due to the large value of
tmin. ∼ tthr., which required both vertices in Fig. 4(c) to be hard.

However, for large photon energies, tmin. → 0 and thus we
expect almost complete cancellation between M1a and M1c.
This represents a situation where the J/� meson will not
participate in FSIs.

To estimate the cancellation effect numerically, we calcu-
lated the cross section of the reaction (1) for collider energies.
We parametrize the s dependence of the γN → J/�N
amplitude using a leading-order pQCD approximation [39].
In particular, for the function A(s) entering into Eq. (41), we
use

A(s) = Nαs(μ
2)xGT (x, μ2), (53)

where GT (x, μ2) is the gluonic distribution of the target

nucleon at factorization scale μ2. Here x = m2
�

sγN∗ , and we

choose μ2 = m2
�

4 similar to Ref. [39]. For these estimates
we used the CJ12 next-to-leading order partonic distribution
functions [40], and we modeled the t dependence using a slope
factor of B = 4.73 GeV−2 [41].

The results for three photon beam energies (with a recoil
neutron momentum of 400 MeV) are given in Fig. 14.
They demonstrate significant cancellation of the two J/�-
N rescattering amplitudes, with the cancellation becoming
predominant with increasing photon energy. Even for q0 =
30 GeV the FSI effects at θnl ≈ 30◦ (where one expects

FIG. 14. (Color online) Angular dependence of the J/� photo-
production cross section at collider energies, given t = −1.5 GeV2

and pn = 400 MeV. Assumes σ�N = 5 mb. Lines have the same
meaning as in Fig. 7.

maximal J/�-N rescattering) contribute less than a few
percent of the total cross section. The overall FSI effects are
due only to p-n reinteractions.

It is worth noting that the observed cancellation is also
valid for other nuclei, since it is due to the antisymmetry of
the nuclear wave function. Thus the present result suggests
that J/� mesons produced from nuclei in coincidence with
a knockout nucleon will not undergo first-order J/�-N
rescattering, which may significantly reduce their absorption.

V. CONCLUSIONS

With the virtual nucleon approximation, we calculated the
large −t � 1 GeV2 cross section for vector meson photopro-
duction from the deuteron accompanied by deuteron breakup.
We focused on kinematics where one of the nucleons could
be identified as struck and the other as a spectator to the
γN → V N subprocess. The large −t involved validates the
generalized eikonal approximation in calculating the final-
state interactions.

Our results indicate that, similarly to the γ ∗d → pn
reaction, one can observe a minimum or peak in the recoil
nucleon angular distribution associated with a p-n reinterac-
tion. However, a novelty of the photoproduction reaction is that
a second minimum or peak appears due to V -N rescattering.
Using φ(1020) and J/� as examples, we showed that this
second peak (or minimum) can be used to probe characteristics
of the largely unknown V -N interaction. In the case of J/� in
particular, we extended our calculations into the subthreshold
and high-energy domains.

The subthreshold calculations demonstrated and over-
all suppression of final-state interactions due to restrictive
kinematical limitations. This result indicates that subthresh-
old production can be used to probe the deuteron at ex-
tremely large internal momenta with little distortion due to
FSIs.

In the high-energy limit, we observe a significant cancella-
tion between J/�-N rescattering amplitudes associated with
production from different nucleons in the deuteron. In this
limit, FSI effects are due entirely to p-n rescattering. This
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result suggests experiments where the J/� meson is detected
in coincidence with a knocked out nucleon as a means of
probing the J/� photoproduction with little contribution from
J/�-N rescattering, as the cancellation strongly suppresses
this contribution.
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APPENDIX: DOUBLE-RESCATTERING TERM

Here we give the details of the derivation of the double-
scattering amplitudes presented in Sec. III C. The derivation
follows these steps of GEA:

(i) The full amplitude is written out using the effective
Feynman rules.

(ii) Energy integration places the spectator to photoproduc-
tion and a low-momentum internal nucleon on its mass
shell.

(iii) Terms are gathered into the VNA deuteron wave
function.

(iv) A decomposition into pole and principal
value parts is performed for each remaining
propagator.

(v) Completeness relations are used and terms gathered
into subprocess (photoproduction and reinteraction)
amplitudes.

All of the steps shall be here carried out in full detail for
M2a , whereas a more cursory description shall be given for
M2b and M2c.

To begin, the full amplitude for the process in Fig. 5(a) is

M(λV ,λp,λn;λγ ,λd )
2a = −ū(λp)(pp)ū(λn)(pn)φ∗

π
(λV )(pV )

∫
d4p′

n

(2π )4i

∫
d4p′′

n

(2π )4i

[

pn→pn

/p′′
p

+ mN

(p′′
p)2 − m2

N + iε

/p′′
n
+ mN

(p′′
n)2 − m2

N + iε

×

ρπ
V N→V N

Gρν(p′
V )

(p′
V )2 − m2

V + iε



μν
γN→V Nε

(λγ )
μ (q)

/p′
p

+ mN

(p′
p)2 − m2

N + iε

/p′
n
+ mN

(p′
n)2 − m2

N + iε

dpnχ

(λd )

]
, (A1)

where we have chosen the integration variable in anticipation of the positive-energy, on-shell projections that shall be executed.
First, as prescribed by VNA, a slow nucleon with momentum p′

n shall be placed on its mass shell. Of the remaining internal
lines, p′′

n has the smallest momentum, since the photoproduction vertex is hard, giving the proton a large momentum, whereas
the V -N rescattering is soft. Doing these energy integrations and keeping the positive-energy parts, as well as using the exact
completeness relations entailed by placing the neutron on-shell, gives

M(λV ,λp,λn;λγ ,λd )
2a = −ū(λp)(pp)ū(λn)(pn)φ∗

π
(λV )(pV )

∑
λ′

nλ
′′
n

∫
d3p′

n

(2π )3

∫
d3p′′

n

(2π )3

[
1

2E′
n

1

2E′′
n


pn→pnu
(λ′′

n)(p′′
n)ū(λ′′

n)(p′′
n)

/p′′
p

+ mN

(p′′
p)2 − m2

N + iε

×

ρπ
V N→V N

Gρν(p′
V )

(p′
V )2 − m2

V + iε
u(λ′

n)(p′
n)
μν

γN→V Nε
(λγ )
μ (q)

/p′
p

+ mN

(p′
p)2 − m2

N + iε
ū(λ′

n)(p′
n)
dpnχ

(λd )

]
. (A2)

Next, we use the approximate completeness relation /p′
p

+ mN ≈ ∑
λ′

p
u(λ′

p)(p′
p)ū(λ′

p)(p′
p) for the virtual, struck proton so that

we may gather terms into the deuteron wave function defined in Eq. (6), as follows:

M(λV ,λp,λn;λγ ,λd )
2a = −ū(λp)(pp)ū(λn)(pn)φ∗

π
(λV )(pV )

∑
λ′

pλ′
nλ

′′
n

∫
d3p′

n

(2π )3

∫
d3p′′

n

(2π )3

[√
2(2π )3

2E′
n

1

2E′′
n


pn→pnu
(λ′′

n)(p′′
n)ū(λ′′

n)(p′′
n)

× /p′′
p

+ mN

(p′′
p)2 − m2

N + iε



ρπ
V N→V N

Gρν(p′
V )

(p′
V )2 − m2

V + iε
u(λ′

n)(p′
n)
μν

γN→V Nε
(λγ )
μ (q)u(λ′

p)(p′
p)�

(λ′
p,λ′

n;λd )
d (p′

n)

]
. (A3)

From here, we change the integration variables to the transferred momentum at each vertex, namely

K = pn − p′′
n (A4)

K ′ = p′′
n − p′

n (A5)

and write the remaining propagators in terms of these momenta. For the proton propagator,

(p′′
p)2 − m2

N + iε = (pp + pn − p′′
n)2 − m2

N + iε = (pp + K)2 − m2
N + iε

= K2 + 2EpK0 − pp · K⊥ − pp,zKz + iε = 2pp,z(�2a − Kz + iε), (A6)
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where

�2a = K2 + 2EpK0 − 2pp · K⊥
2pp,z

(A7)

and for the vector meson propagator

(p′
V )2 − m2

V + iε

= (pV + p′′
n − p′

n)2 − m2
V + iε

= (pV + K ′)2 − m2
V + iε

= (K ′)2 + 2EV K ′
0 − pV · K′

⊥ − pV,zK
′
z + iε

= 2pV,z(�
′
2a − K ′

z + iε), (A8)

where

�′
2a = (K ′)2 + 2EV K ′

0 − 2pV · K′
⊥

2pV,z

. (A9)

With the propagator denominators in this form, we can
decompose the integrals over each of Kz and K ′

z into
pole and principal value parts. Because the principal value
part will be small compared to the pole part, and because
double-rescattering will itself be small compared to single-
rescattering, we consider only the pole parts of each integral,
placing both the proton and vector meson on their mass shells.
This allows us to use completeness relations for both, giving

M(λV ,λp,λn;λγ ,λd )
2a = − 1

4pp,zpV,z

∑
λ′

pλ′
nλ

′′
pλ′′

nλ
′
V

∫
d2K⊥
(2π )2

∫
d2K′

⊥
(2π )2

[√
2(2π )3

2E′
n

1

2E′′
n

ū(λp)(pp)ū(λn)(pn)
pn→pnu
(λ′′

n)(p′′
n)u(λ′′

p)(p′′
p)

×ū(λ′′
n)(p′′

n)φ∗
π

(λV )(pV )
ρπ
V N→V Nφ∗

ν
(λ′

V )(p′
V )u(λ′

n)(p′
n)ū(λ′′

p)(p′′
p)φ

(λ′
V )

ρ (p′
V )
μν

γN→V Nε
(λγ )
μ (q)u(λ′

p)(p′
p)

×�
(λ′

p,λ′
n;λd )

d (pn,z − �2a − �′
2a; pn,⊥ − K⊥ − K′

⊥)

]
. (A10)

Terms are then gathered into subprocess (photoproduction and rescattering) amplitudes, giving

M(λV ,λp,λn;λγ ,λd )
2a = − 1

4pp,zpV,z

∑
spins

∫
d2K

(2π )2

∫
d2K′

(2π )2

[√
2(2π )3

2E′
n

1

2E′′
n

M(λp,λn;λ′′
p,λ′′

n)
pn→pn (pp, pn; p′′

p, p′′
n)M(λV ,λ′′

n;λ′
V ,λ′

n)
V N→V N

× (pV , p′′
n; p′

V , p′
n)M(λ′

V ,λ′′
p ;λγ ,λ′

p)
γN→V N (p′

V , p′′
p; pγ , p′

p)�
(λ′

p,λ′
n;λd )

d (pn,z − �2a − �′
2a; pn,⊥ − K⊥ − K′

⊥)

]
, (A11)

where the sum is over all internal spins. This is exactly Eq. (29).
The same process is followed for calculatingM2b andM2c,

but with a few minor differences. First, regarding M2b. The
momentum line p′

n corresponds to the spectator, so it is to
be taken on-shell via energy integration. Of the remaining
momentum lines, p′′

n is slow, so it too is placed on-shell by
energy integration. The propagator for p′

p is absorbed into the
deuteron wave function, so the remaining propagators are for
p′′

p and p′
V . Momentum conservation, as before, can be used

to rewrite the propagators in terms of the transferred momenta
K = pn − p′′

n and K ′ = p′′
n − p′

n and to find what the � factors
are. In particular,

(p′
V )2 − m2

V + iε = (pV + pn − p′′
n)2 − m2

V + iε

= (pV + K)2 − m2
V + iε

= K2 + 2EV K0 − pV · K⊥ − pV,zKz + iε

= 2pV,z(�2a − Kz + iε), (A12)

(p′′
p)2 − m2

N + iε = (pp + p′′
n − p′

n)2 − m2
N + iε

= (pp + K ′)2 − m2
N + iε

= (K ′)2 + 2EpK ′
0 − pp · K′

⊥ − pp,zK
′
z + iε

= 2pp,z(�
′
2b − K ′

z + iε), (A13)

where

�2b = K2 + 2EV K0 − 2pV · K⊥
2pV,z

, (A14)

�′
2b = (K ′)2 + 2EpK ′

0 − 2pp · K′
⊥

2pp,z

. (A15)

Next, regarding M2c. The momentum line p′
p is the spectator

to photoproduction, so it is placed on-shell by energy inte-
gration. The V -N rescattering vertex is hard, so p′′

p is fast,
whereas the photoproduction vertex is soft, making p′′

n slow.
Thus, it is p′′

n that will also be put on its mass shell. The
propagator for p′

n is absorbed into the deuteron wave function,
so the remaining propagators are those for p′

V and p′′
p. By

momentum conservation, we rewrite them in the following
forms and find the � factors:

(p′′
p)2 − m2

N + iε = (pp + pn − p′′
n)2 − m2

N + iε

= (pp + K)2 − m2
N + iε

= K2 + 2EpK0 − pp · K⊥ − pp,zKz + iε

= 2pp,z(�2c − Kz + iε), (A16)
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(p′
V )2 − m2

V + iε = (q + p′′
n − p′

n)2 − m2
V + iε = (q − K ′)2 − m2

V + iε = (K ′)2 − 2q0K
′
0 − q0K

′
z

+ iε = 2q0(K ′
z − �′

2c + iε), (A17)

where

�2c = K2 + 2EpK0 − 2pp · K⊥
2pp,z

, (A18)

�′
2c = (K ′)2 − m2

V

2q0
+ K ′

0. (A19)

After this procedure is done for M2b and M2c, the pole term in each integral is kept, completeness relations are used, and terms
are gathered into subprocess amplitudes, resulting in Eqs. (30) and (31).
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