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Charge-symmetry breaking forces and isospin mixing in 8Be
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We report Green’s function Monte Carlo calculations of isospin-mixing (IM) matrix elements for the 2+, 1+, and
3+ T = 0 and 1 pairs of states at 16–19 MeV excitation in 8Be. The realistic Argonne v18 (AV18) two-nucleon
and Illinois-7 three-nucleon potentials are used to generate the nuclear wave functions. Contributions from
the full electromagnetic interaction and strong class III charge-symmetry breaking (CSB) components of the
AV18 potential are evaluated. We also examine two theoretically more complete CSB potentials based on ρ-ω
mixing, tuned to give the same neutron-neutron scattering length as AV18. The contribution of these different
CSB potentials to the 3H-3He, 7Li-7Be, and 8Li-8B isovector energy differences is evaluated and reasonable
agreement with experiment is obtained. Finally, for the 8Be IM calculation we add the small class IV CSB terms
coming from one-photon, one-pion, and one-ρ exchange, as well as ρ-ω mixing. The expectation values of the
three CSB models vary by up to 20% in the isovector energy differences, but only by 10% or less in the IM
matrix element. The total matrix element gives 85–90% of the experimental IM value of −145 keV for the 2+

doublet, with about two thirds coming from the Coulomb interaction. We also report the IM matrix element
to the first 2+ state at 3 MeV excitation, which is the final state for various tests of the standard model for
β decay.
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I. INTRODUCTION

The 8Be nucleus has a unique excitation spectrum among
the light nuclei, exhibiting a low-lying rotational band topped
by a set of three isospin-mixed doublets. The experimental
spectrum [1] for low-lying states in 8Be and its isobaric
neighbors 8Li and 8B is shown in Fig. 1. The structure of
these nuclei is well understood on the basis of the allowed
spatial symmetries and spin-isospin combinations. Realistic
nucleon-nucleon forces are strongly attractive in relative S
waves; hence the most spatially symmetric states will be the
most tightly bound because they maximize the number of
S-wave pairs [2]. For 8Be, the most symmetric states are total
isospin T = 0 with the Young diagram spatial symmetry [44].
In LS coupling the allowed combinations within the p shell
are the 2S+1LJ combinations 1S0, 1D2, and 1G4. These are
the dominant pieces of the Jπ = 0+ ground-state and the first
2+ and 4+ excitations, respectively, as shown in Fig. 1. The
ground state is unstable against breakup into two α particles
by 0.1 MeV, but is a very narrow (6 eV) resonance, while the
two excited states, which have the structure of two α particles
rotating about each other, have much larger widths of about
1.5 and 3.5 MeV, respectively.

The next highest spatial symmetry states are [431] in
character and come in both total isospin T = 0 and 1
combinations. The T = 0 states are the spin triplets 3P0,1,2,
3D1,2,3, and 3F2,3,4, while the T = 1 states come both as
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these spin triplets and as spin singlets 1P1, 1D2, and 1F3.
When diagonalized with a realistic Hamiltonian containing
nucleon-nucleon (NN ) and three-nucleon (3N ) potentials in
a microscopic quantum Monte Carlo (QMC) calculation, the
first three [431] T = 0 states are ordered 2+, 1+, and 3+, with
about 1 MeV separation, and their dominant components are
3P2, 3P1, and 3D3, respectively [3]. The first three [431] T = 1
states have the same ordering and about the same spacing, with
the only difference being that there is a moderate amount of
1P1 mixed into the 1+ state. These T = 1 states are the isobaric
analogs seen in 8Li and 8B, giving their 2+ ground states and
low-lying 1+ and 3+ excited states. The number of S-wave NN
pairs in the [431] symmetry states is the same in both T = 0
and 1 combinations, so it is reasonable to expect that these
states could appear very close to each other in the spectrum
of 8Be. Experimentally there are two 2+ states at 16.626 and
16.922 MeV excitation, two 1+ states at 17.64 and 18.15 MeV,
and two 3+ states at 19.07 and 19.235 MeV, and there is strong
experimental evidence for these states being isospin mixed.

An early detailed analysis of this mixing was given by
Barker [4] in the course of making intermediate coupling shell-
model calculations for light nuclei. The eigenfunctions in his
study exhibit the same dominant spatial symmetry components
found in the later QMC calculations. A clear experimental
signal for isospin mixing of the 2+ states is that both decay
by 2α emission, which is the only particle-decay channel that
is energetically allowed and which is available only through a
T = 0 component in the initial state. Following Barker [4], the
eigenfunctions �a and �b of the observed states may be written
as linear combinations of the T = 0 and 1 wave functions:

�a = αJ �0 + βJ �1,
(1)

�b = βJ �0 − αJ �1,
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FIG. 1. (Color online) Experimental spectrum of A = 8 nuclei:
blue lines are T = 0 states, red lines are T = 1 states, and magenta
lines are mixed T = 0 + 1 states. Dotted lines indicate the thresholds
for breakup and shaded areas denote the large widths of the 8Be
rotational states.

with α2
J + β2

J = 1. The mixing parameters are related to the
ratio of α decay widths:

�a

�b

= α2
J

β2
J

. (2)

The current experimental values for the widths are �a =
108.1(5) keV and �b = 74.0(4) keV for the 16.626 and 16.922
MeV states, respectively [1]. This implies α2 = 0.7705(15)
and β2 = 0.6375(19).

The eigenenergies Ea and Eb (with Ea < Eb) are given by

Ea,b = H00 + H11

2
±

√(
H00 − H11

2

)2

+ (H01)2, (3)

where H00 is the diagonal energy expectation in the pure T = 0
state, H11 is the expectation value in the T = 1 state, and H01 is
the off-diagonal isospin-mixing (IM) matrix element that con-
nects T = 0 and 1. The experimental eigenvalues and eigenen-
ergies imply that these matrix elements are H00 = 16.746(2)
MeV, H11 = 16.802(2) MeV, and H01 = −145(3) keV. These
values are very close to those deduced originally by Barker
[4], and the values of the mixing parameters for the 2+
states are supported by a variety of other experimental
data.

The analysis for the 1+ and 3+ doublets is somewhat less
direct because multiple decay channels are available. For the
1+ doublet, Barker [4] used the ratio of M1 γ transitions
from the 17.64 MeV state to the 16.626 and 16.922 MeV 2+
states, which at the time were in the ratio 1:0.07, to deduce
mixing parameters of α1 = 0.24 and β1 = 0.97. More recent
experiments and analyses by Oothoudt and Garvey [5] pro-
duced slightly less mixing, with α1 = 0.21(3) corresponding
to H01 = −103(14) keV. For the 3+ doublet, Barker examined
the ratio of neutron to proton widths for the 19.235 MeV

TABLE I. GFMC ground-state energy and excitations in MeV
for the AV18 + IL7 Hamiltonian compared to the empirical energies
of the isospin-unmixed states and the experimental (isospin-mixed)
energies of the 8Be spectrum; also given are the GFMC point proton
(=neutron) radii in fm. Theoretical or experimental errors �1 in the
last digit are shown in parentheses.

J π ; T GFMC Empirical Experiment rp

0+ −56.3(1) −56.50 2.40
2+ + 3.2(2) + 3.03(1) 2.45(1)
4+ +11.2(3) +11.35(15) 2.48(2)
2+; 0 +16.8(2) +16.746(3) +16.626(3) 2.28
2+; 1 +16.8(2) +16.802(3) +16.922(3) 2.33
1+; 1 +17.5(2) +17.66(1) +17.640(1) 2.39
1+; 0 +18.0(2) +18.13(1) +18.150(4) 2.36
3+; 1 +19.4(2) +19.10(3) +19.07(3) 2.31
3+; 0 +19.9(2) +19.21(2) +19.235(10) 2.35

state and deduced mixing parameters α3 = 0.41, β3 = 0.91,
and H01 = −63 keV. However, according to Oothoudt and
Garvey [5], the data are consistent with 0.31 < α3 < 0.52,
corresponding to an IM matrix element ranging from −47
to −71 keV, and we use this as the empirical value. But
Oothoudt and Garvey [5] also find, on the basis of newer
experimental data, an even broader range of possible mixing,
so the experimental situation for the 3+ doublet is quite unclear.

The energies of the isospin-unmixed states inferred by using
these IM parameters are given in Table I, along with the
experimental energies and the Green’s function Monte Carlo
(GFMC) energies for the AV18 + IL7 Hamiltonian discussed
below.

Barker [4] evaluated the Coulomb contribution to the IM
matrix element HC

01 in all three cases and found it to have
the correct negative sign, but only about half the required
magnitude. A variational Monte Carlo (VMC) evaluation
of the mixing using the microscopic Argonne v18 (AV18)
nucleon-nucleon interaction, which has additional electromag-
netic terms and strong charge-independence breaking, found
significant additional contributions to H01 [3]. In this paper we
carry out more accurate GFMC evaluations of these terms and
consider extensions of the charge-independence breaking of
the original AV18 model. We also evaluate the mixing matrix
element with the first 2+ state of 8Be, which is the final state
for the β decay of both 8Li and 8B and a testing ground for
weak decay terms beyond the standard model.

II. HAMILTONIAN

Charge symmetry implies the invariance of a system under
a rotational transformation that reverses the sign of the third
component of isospin for all its components, e.g., in nuclei
p → n and n → p. The classification of NN forces according
to their dependence on isospin or charge has been given by
Henley and Miller [6]. The dominant NN forces are class I
or charge-independent (CI) forces, which may depend on the
total isospin of a pair, but not on the charges of the individual
nucleons. Thus in a T = 1 state, a CI force between pp, np,
and nn pairs is identical, while the force for a T = 0 np pair
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can be different. A class II force is charge dependent (CD)
but maintains charge symmetry, so in T = 1 states, a CD
force for pp and nn pairs is identical, but different for np
pairs. Both class III and class IV potentials violate charge
independence and charge symmetry, with a class III charge-
symmetry breaking (CSB) force differentiating between pp
and nn pairs, while a class IV force can mix T = 0 and 1
np pairs. The Coulomb force between two protons can be
written as a linear combination of class I–III terms, while the
interaction between nucleon magnetic moments involves all
four classes. The relative magnitude of these NN forces is in
the order class I > II > III > IV [7].

The Hamiltonian used in this work has the form

H =
∑

i

Ki +
∑
i<j

vij +
∑

i<j<k

Vijk, (4)

where Ki is the nonrelativistic kinetic energy and vij and Vijk

are, respectively, the Argonne v18 (AV18) [8] and Illinois-7
(IL7) [9,10] potentials. The kinetic energy includes both CI and
CSB contributions, the latter coming from the neutron-proton
mass difference:

Ki = KCI
i + KCSB

i

= −h̄2

4

(
1

mp

+ 1

mn

)
∇2

i − h̄2

4

(
1

mp

− 1

mn

)
τiz∇2

i ,

(5)

where τiz is the third component of isospin for nucleon i. The
AV18 potential has the structure

vij = vγ (rij ) +
∑

p=1,18

[
vp

π (rij ) + v
p
I (rij ) + v

p
S (rij )

]
O

p
ij . (6)

Here vγ is a complete electromagnetic interaction, including
Coulomb, magnetic moment, vacuum polarization, and other
terms. The nuclear part of the potential has long-range one-
pion-exchange (OPE) vπ , intermediate vI , and short-range
vS phenomenological parts. The operators O

p
ij include 14 CI

terms:

O
p=1,14
ij = [1, σi · σj , Sij , L · S, L2, L2(σi · σj ), (L · S)2]

⊗ [1, τi · τj ], (7)

plus three CD terms and one class III CSB term:

O
p=15,18
ij = [1, σi · σj , Sij ] ⊗ Tij , (τi + τj )z. (8)

Here σi is the Pauli spin operator for nucleon i, Sij = 3(σi ·
r̂ij )(σj · r̂ij ) − σi · σj is the tensor operator, S = (σi + σj )/2
is the total pair spin, L is the pair orbital momentum operator,
and Tij = 3τizτjz − τi · τj is the isotensor operator.

The long-ranged OPE yields a significant CD term arising
from the difference between neutral and charged-pion masses.
The intermediate and short-range contributions to the force
are constrained by the differences between the considerable
amount of pp and np scattering data in the 1S0 channel.
Additional charge dependence, such as that arising from a
spin-orbit term, might be expected. Extracting such a term
would require an independent analysis of np data in 3PJ

channels, which has not yet been made available.

The CSB term was determined by a slight alteration
of the 1S0(pp) potential to fit the only available piece
of nn scattering data, the singlet scattering length 1ann.
When AV18 was constructed, the best data for 1ann came
from π−d → nnγ experiments, with a deduced value of
−18.5(4) fm [11]; subsequent experiments and analyses have
not changed this significantly, with a current best value of
−18.6(4) fm [12]. The difference between the strong pp
and nn scattering lengths in AV18, i.e., after removal of the
electromagnetic contributions, is 1.65 fm, so the experimental
error bar suggests an uncertainty in the strong CSB term of
order 25%.

A major source for the nuclear CSB term is expected to
be mixed π -η-η′ and ρ-ω meson exchanges, with the latter
heavy-meson term dominant [6]. Consequently only the short-
range vS part of AV18 was altered, with the added assumption
of spin independence. Again, one might well expect there to
be additional CSB terms, of spin-spin, tensor, and spin-orbit
character, but additional nn scattering data would be required
to identify them empirically.

A more complete model for ρ-ω exchange has been
discussed by Friar and Gibson [13] (hereafter FG) and we
use a slightly simplified version as an alternative to the single
CSB term from AV18 above. FG [13] describe their model
as a supplement to earlier work by McNamee, Scadron, and
Coon [14]. We wish to have a local potential for our many-body
calculations, so we neglect terms quadratic in momentum and
reduce Eq. (9) in FG [13] to the following form:

vρω =
{

v + 1

4M2
(μV + μS)∇2v

+ 1

4M2

2μV μS

3
∇2vσi · σj

− 1

4M2

μV μS

3

[
∇2v − 3v′

r

]
Sij

+ 1

4M2
4(μV + μS)

v′

r
L · S

}
(τi + τj )z

+ 1

4M2
4(μV − μS)

v′

r
L · A(τi − τj )z. (9)

Here μS = 1 + κS and μV = 1 + κV , where κ is the ratio of
tensor to vector couplings of the isoscalar ω and isovector ρ
mesons and M = 938.9 MeV is the average nucleon mass.
The first four lines are class III CSB terms, while the last line
is an antisymmetric spin-orbit term with A = (σi − σj )/2 that
is a class IV CSB contribution.

We emphasize here that our object is to explore the
consequences of having a more complete operator structure
for CSB than AV18, one that acts differently in different
partial waves. However, we would like to use a form consistent
with AV18 for these new terms, so instead of using an
explicit heavy-meson exchange, we adopt the same short-range
behavior for v, i.e., a modified Woods-Saxon potential with
zero slope at the origin:

v(r) = C(1 + Fr)W (r), (10)
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TABLE II. Values of constants for different vρω models and the
resultant nn scattering length.

Model C (MeV) κV κS
1ann

AV18 0.98025 0 0 −18.487
AV18(s) 1.11160 3.7 −0.12 −18.488
AV18(L) 1.50875 6.1 0.14 −18.494

where C is an overall strength factor adjusted to reproduce
1ann, and

W (r) = 1/{1 + exp[(r − R)/a]}, (11)

F = exp(−R/a)

a[1 + exp(−R/a)]
. (12)

We set R = 0.5 fm and a = 0.2 fm as in the original AV18.
This choice of radial form for v has the useful feature that both
(v′/r) and ∇2v in Eq. (9) remain finite and well-behaved at
the origin.

The form above gives a specific estimate for the relative
strengths of the central, spin-spin, tensor, and spin-orbit CSB
terms, once values for κS and κV are specified. We consider two
variations of this model, with “small” and “large” values of
the constants, designated AV18(s) and AV18(L), as suggested
by FG [13] and Williams, Thomas, and Miller [15] (hereafter
WTM), respectively. The values for C, κS , and κV are given in
Table II along with the nn scattering lengths. The pp and np
scattering lengths of AV18 are unchanged with these model
variations.

The vCSB values in the 1S0 channel for the three different
models are shown in Fig. 2 where they are compared with the
static Coulomb potential VC1(pp) with the form factor used
in AV18.

For the class IV CSB forces, we use the work of WTM
who studied CSB in neutron-proton elastic scattering, where
these forces can produce a difference in n and p analyzing
powers. The parameters used by WTM [15] lead to values
of CSB analyzing power differences that are consistent with
the TRIUMF [16] and IUCF [17] measurements. WTM [15]
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FIG. 2. (Color online) Radial shapes of vCSB in the 1S0 channel for
the three different models AV18 (solid blue line), AV18(s) (short-dash
magenta line), and AV18(L) (long-dash red line), compared to the
proton-proton Coulomb interaction with form factor (solid black line).

identify one-photon-, one-pion-, and one-ρ-exchange (ORE)
contributions to class IV CSB terms, in addition to the ρ-ω
mixing term above. The one-photon-exchange term acts only
between np pairs and can be written as

vIV
γ = α

μn

2M2

Fls(r)

r3
L · A(τi − τj )z, (13)

where μn = −1.91 n.m. is the neutron magnetic moment and
Fls(r) is a form factor for the finite size of the nucleon. This
is just the antisymmetric spin-orbit part of VMM (np) of AV18,
Eq. (15) of Ref. [8], with the form factor given in Eq. (10); it is
also equivalent to Eq. (3.3) of WTM [15]. The OPE and ORE
terms are of the form

vIV
π+ρ = vρ(r)L · A(τi − τj )z

+{wπ (r) + wρ(r)}L · (σi × σj )(τi × τj )z. (14)

The OPE radial function is given by

wπ (r) = g2
π

4π

m2
π

2M2

(mn − mp)

2M
mπZπ (r), (15)

where mπ = 139.6 MeV is the charged pion mass and

Zx(r) =
[

1

μr
+ 1

(μr)2

]
e−μr

μr

(
1 − e−cxr

2)3/2
, (16)

with μ = mx/h̄c. This is equivalent to Eq. (3.10) of WTM [15],
with a form factor chosen so that Zx(r) goes to a constant as
r → 0. To be consistent with the OPE part of AV18, we take
cπ = 2.1 fm−2 and g2

π/4π = (2Mf/mπ )2 with f 2 = 0.075.
For ρ-meson exchange there are both scalar and tensor terms:

vρ(r) = g2
ρ

4π

m2
ρ

2M2

(mn − mp)

2M
mρZρ(r), (17)

wρ(r) = (1 + κV )2vρ(r). (18)

We use mρ = 770 MeV, the coupling constant g2
ρ/4π = 0.55,

and the form factor cutoff cρ = 2.44 fm−2.

III. QUANTUM MONTE CARLO METHOD

We seek accurate solutions to the many-nucleon
Schrödinger equation

H�(Jπ ; T , Tz) = E�(Jπ ; T , Tz), (19)

where �(Jπ ; T , Tz) is a nuclear wave function with specific
spin-parity Jπ , isospin T , and charge state Tz. We begin
with a VMC calculation, constructing a variational function
�V (Jπ ; T , Tz) from products of two- and three-body correla-
tion operators acting on an antisymmetric single-particle state
of the appropriate quantum numbers. The correlation operators
are designed to reflect the influence of the interactions at
short distances, while appropriate boundary conditions are
imposed at long range [18,19]. The �V (Jπ ; T ) has embedded
variational parameters that are adjusted to minimize the
expectation value

EV = 〈�V |H |�V 〉
〈�V |�V 〉 � E0, (20)

which is evaluated by Metropolis Monte Carlo integration [20].
Here E0 is the exact lowest eigenvalue of H for the specified
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quantum numbers. A good variational trial function has the
form

|�V 〉 = S
A∏

i<j

⎡
⎣1 + Uij +

A∑
k �=i,j

Ũ T NI
ijk

⎤
⎦ |�J 〉, (21)

where the S is a symmetrization operator. The Jastrow wave
function �J is fully antisymmetric and has the (Jπ ; T , Tz)
quantum numbers of the state of interest, while Uij and Ũ T NI

ijk

are the two- and three-body correlation operators. Although
we construct the �V (Jπ ; T , Tz) to be an eigenstate of the
isospin T , we allow isobaric analog states with different
Tz to have different wave functions, reflecting primarily the
difference in Coulomb contributions.

The GFMC method [21,22] improves on the VMC
wave functions by acting on �V with the operator
exp [− (H − E0) τ ]. In practice, a simplified version H ′ of
the Hamiltonian H is used in the operator, which includes the
isoscalar part of the kinetic energy, a charge-independent eight-
operator projection of AV18 called AV8′, a strength-adjusted
version of the three-nucleon potential IL7′ (adjusted so that
〈H ′〉 ∼ 〈H 〉), and an isoscalar Coulomb term that integrates
to the total charge of the given nucleus [23]. The difference
between H and H ′ is calculated using perturbation theory.
More detail can be found in Refs. [3,19].

The operator is applied in small slices of imaginary time τ
to produce a propagated wave function:

�(τ ) = e−(H ′−E0)τ�V = [e−(H ′−E0)
τ ]n�V . (22)

Obviously �(τ = 0) = �V and �(τ → ∞) = �0. The algo-
rithm for propagation produces samples of the wave function
�(τ ) but does not provide gradient information. Quantities of
interest are evaluated in terms of a “mixed” expectation value
between �V and �(τ ):

〈O(τ )〉M = 〈�(τ )|O|�V 〉
〈�(τ )|�V 〉 , (23)

where the operator O acts on the trial function �V . The desired
expectation values, of course, have �(τ ) on both sides; by
writing �(τ ) = �V + δ�(τ ) and neglecting terms of order
[δ�(τ )]2, we obtain the approximate expression

〈O(τ )〉 = 〈�(τ )|O|�(τ )〉
〈�(τ )|�(τ )〉

≈ 〈O(τ )〉M + [〈O(τ )〉M − 〈O〉V ], (24)

where 〈O〉V is the variational expectation value.
For off-diagonal matrix elements relevant to this work the

generalized mixed estimate is given by the expression

〈�f (τ )|O|�i(τ )〉√
〈�f (τ )|�f (τ )〉

√
〈�i(τ )|�i(τ )〉

≈ 〈O(τ )〉Mi
+ 〈O(τ )〉Mf

− 〈O〉V , (25)

where

〈O(τ )〉Mf
= 〈�f (τ )|O∣∣�i

V

〉
〈�f (τ )

∣∣�f
V

〉
√√√√〈

�
f
V

∣∣�f
V

〉
〈
�i

V

∣∣�i
V

〉 , (26)

and 〈O(τ )〉Mi
is defined similarly. For more details see

Eqs. (19)–(24) and the accompanying discussions in Ref. [24].

IV. RESULTS

A. Energies of ground and excited states in 8Be

The GFMC energy for the ground-state and the excitation
energies for the first eight positive-parity excited states of 8Be
are given in Table I; these have been calculated for pure isospin
states of either T = 0 or T = 1. The experimentally observed
energies and the empirical energies for the unmixed states
(derived as discussed in Sec. I) are also shown, along with
the GFMC rms point proton radii. As discussed in Ref. [25],
the physically wide 2+ and 4+ states present a challenge for
GFMC calculations because they tend to break up into separate
α particles as the propagation in imaginary time τ proceeds.
The energy drifts lower and the radii increase with τ , so care
is necessary to extract these quantities from the calculations.
However, no such problem occurs for the physically much
narrower 2+, 1+, and 3+ doublets; their GFMC energies and
radii are quite stable as τ increases.

The AV18 + IL7 Hamiltonian reproduces both the 2α-like
0+, 2+, and 4+ rotational bands and the mixed 2+ and 1+
doublets exceptionally well. Only the 3+ doublet is about
0.5 MeV too high in excitation energy, and with perhaps too
big an energy difference between the states. The radii of the
mixed doublets are all slightly smaller than the 2α-like states.
The energies and other properties of the isobaric analog states
in 8Li and 8B are also in good agreement with experiment for
this Hamiltonian [26].

B. Isovector energy differences of mirror nuclei

We next examine the effect of our different interaction
models on the isovector energy differences in A = 3; A = 7,
T = 1

2 ; and A = 8, T = 1 mirror nuclei. The energy difference
E(3He) − E(3H) for two correlated GFMC propagations [27]
is given in Table III. The starting variational wave functions
were separately optimized for the two different charge states
with the proper experimental charge radii. As stated above,
the propagation is made with AV8′ + IL7′ plus an isoscalar
Coulomb term that integrates to the proper total charge for each

TABLE III. Contributions to the isovector energy difference
E(3He) − E(3H) in keV from different interaction models; Monte
Carlo statistical errors are shown in parentheses.

AV18 AV18(s) AV18(L)

KCSB 14(0) 14(0) 14(0)
VC1(pp) 642(1) 642(1) 642(1)
VC+ 9(0) 9(0) 9(0)
VMM 17(0) 17(0) 17(0)
vCSB 65(0) 71(0) 79(0)
δH CI 8(1) 8(1) 8(1)

H CSB 755(1) 761(1) 769(1)

Experiment 764
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nucleus, and the difference with AV18 + IL7 or the variants of
AV18 is evaluated using perturbation theory.

The different contributions include (1) the kinetic energy
KCSB, (2) the static Coulomb term between two protons (with
finite-range form factor) VC1(pp), (3) all additional charge
contributions to the electromagnetic interaction VC+ (like
Darwin-Foldy and vacuum polarization), (4) the magnetic
moment term VMM , and (5) the strong class III CSB term vCSB,
which is the single term from AV18 or the sum of the first four
rows of Eq. (9) for AV18(s) and AV18(L). The net change in
the energy arising from the CI part of the Hamiltonian δH CI

is an additional second-order perturbation correction due to
differences in the two GFMC propagations. This term is small
for the A = 3 case, although the changes in separate kinetic
and potential parts are much larger.

(We note that the original VC1(pp) from Eq. (4) of Ref. [8]
uses an α′ that has a small relativistic energy dependence;
we drop this from the many-body calculations and just use
α, which is what we mean by the term “static” Coulomb.
However, we add a momentum-dependent orbit-orbit term
to the VC+, which is typically ∼1% of the static term, to
approximate this term.)

The dominant contribution to the isovector energy differ-
ence is of course the static Coulomb interaction between pro-
tons, which is in agreement with model-independent estimates
based on the experimental form factors [28]. Comparing the
three different models for vCSB, the smallest is AV18, with
AV18(s) being about 10% larger and AV18(L) about 20%
larger, as might be expected from the larger size of vCSB in the
1S0 channel shown in Fig. 2. All the models give reasonable
agreement with the experimental difference of 764 keV.

The isovector energy differences for the A = 7, T = 1
2

mirror nuclei are shown in Table IV. Again we show the
difference of two correlated GFMC propagations [27] that
have been started from separately optimized variational trial
functions. The change in the CI part of the Hamiltonian δH CI

is larger than for A = 3 and has a larger error bar, which
now dominates the total error in H CSB. The net GFMC results
are a little smaller than the experimental energy difference of
1645 keV. The vCSB again increases about 20% going from
AV18 to AV18(s) to AV18(L) as in the A = 3 case, because
the CSB force is being probed primarily in S = 0, T = 1 pairs
embedded in the p shell [2].

TABLE IV. Contributions to the isovector energy difference
E(7Be) − E(7Li) in keV from different interaction models; Monte
Carlo statistical errors are shown in parentheses.

AV18 AV18(s) AV18(L)

KCSB 23(0) 23(0) 23(0)
VC1(pp) 1442(2) 1442(2) 1442(2)
VC+ 18(0) 18(0) 18(0)
VMM 18(0) 18(0) 18(0)
vCSB 83(1) 90(1) 105(1)
δH CI 27(10) 27(10) 27(10)

H CSB 1611(10) 1618(10) 1633(10)

Experiment 1645

TABLE V. Contributions to the isovector energy difference
[E(8B) − E(8Li)]/2 in keV from different interaction models; Monte
Carlo statistical errors are shown in parentheses.

AV18 AV18(s) AV18(L)

KCSB 25(0) 25(0) 25(0)
VC1(pp) 1652(3) 1652(3) 1652(3)
VC+ 17(0) 17(0) 17(0)
VMM 1(0) 1(0) 1(0)
vCSB 77(1) 75(2) 84(3)
δH CI 33(11) 33(11) 33(11)

H CSB 1813(11) 1811(11) 1820(11)

Experiment 1770

Finally, the A = 8, T = 1 isovector energy difference
[E(8B) − E(8Li)]/2 is shown in Table V. The static Coulomb
contribution is similar to the A = 7 case, while the magnetic
moment contribution almost vanishes. Notably, the variation
between the AV18, AV18(s), and AV18(L) models is different,
probably because there are now equal numbers of S = 0
and 1, T = 1 pairs embedded in the p shell [2] and the
spin-dependence of Eq. (9) comes into play. The change in
the CI Hamiltonian δH CI is similar to that in A = 7 and
the total H CSB is somewhat overpredicted compared to the
experimental value of 1770 keV.

In all three pairs of mirror nuclei, the static Coulomb inter-
action between protons is the dominant source of the energy
difference, providing about 85–90% of the total, increasing as
A increases. The kinetic and remaining electromagnetic terms
provide another few percent, leaving the remaining amount
due to strong CSB terms. However, these terms are of shorter
range than the Coulomb term, and their total contributions do
not grow as rapidly with A, so they become relatively less
important in larger nuclei.

C. Isospin-mixing matrix elements in 8Be

The GFMC evaluation for the IM matrix element H01

between the 2+ states at 16.6–16.9 MeV excitation in 8Be

TABLE VI. Contributions to the IM matrix element between
8Be(2+) states at 16.6–16.9 MeV excitation for different interac-
tion models in keV; Monte Carlo statistical errors are shown in
parentheses.

AV18 AV18(s) AV18(L)

KCSB −3.6(1) −3.6(1) −3.6(1)
VC1(pp) −89.3(11) −89.3(11) −89.3(11)
VC+ 0.0(0) 0.0(0) 0.0(0)
VMM −10.2(2) −10.2(2) −10.2(2)
vCSB −23.4(4) −24.7(6) −25.7(10)
vIV

γ −0.8(1) −0.8(1) −0.8(1)

vIV
π+ρ −0.8(1) −0.8(1)

vIV
ρω −0.3(1) −0.8(3)

H01 −127.(2) −130.(2) −131.(2)

Experiment −145.(3)
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TABLE VII. Contributions to the IM matrix element between
8Be(1+) states at 17.6–18.1 MeV excitation for different interac-
tion models in keV; Monte Carlo statistical errors are shown in
parentheses.

AV18 AV18(s) AV18(L)

KCSB −2.8(1) −2.8(1) −2.8(1)
VC1(pp) −73.4(11) −73.4(11) −73.4(11)
VC+ 0.0(0) 0.0(0) 0.0(0)
VMM −1.1(1) −1.1(1) −1.1(1)
vCSB −18.5(4) −18.7(6) −19.9(10)
vIV

γ 2.1(1) 2.1(1) 2.1(1)

vIV
π+ρ 0.2(0) 0.2(0)

vIV
ρω 0.5(1) 1.1(2)

H01 −94.(1) −93.(2) −94.(2)
Experiment −103.(14)

is given in Table VI. The first five lines give the contributions
for the same terms as in the energy differences for mirror nuclei
of Tables III–V. In addition there are rows for the additional
class IV CSB terms: vIV

γ of Eq. (13), vIV
π+ρ of Eq. (14), and the

antisymmetric spin-orbit term vIV
ρω that is the last line of Eq. (9).

We note that our Coulomb term of −89 keV is about 30%
larger than Barker’s [4] original estimate of −67 keV. The
additional electromagnetic and kinetic terms that we include
give −15 keV, while the strong CSB terms add another −24 to
−28 keV to the total. Thus, the strong CSB terms are relatively
more important here than in the isovector energy differences
between mirror nuclei, making this system one of the best for
constraining such forces. The variation between AV18 and the
alternative models AV18(s) and AV18(L) is proportionately
the same as in the energy differences. Our total of −127 to
−131 keV is about 90% of the empirical matrix element of
−145 keV.

The GFMC evaluation for the IM matrix element H01

between the 1+ states at 17.6–18.2 MeV excitation in 8Be
is given in Table VII. In this case, our pp Coulomb term of
−73 keV is 35% larger than Barker’s estimate of −54 keV.
The strong class III CSB term is a little bit smaller than
in the 2+ case. The magnetic moment term almost vanishes,
and the class IV CSB terms reduce the magnitude of the mixing
matrix element. This change of sign of the L · A terms relative
to the 2+ (and 3+) doublets is probably due to the significant
admixture of 1P1[431] symmetry components in the T = 1
state. In the end, the three interaction models again give a
very narrow spread of −93 to −94 keV, or about 90% of the
empirical value of −103 keV.

The GFMC evaluation for the IM matrix element H01

between the 3+ states at 19.0–19.2 MeV excitation in 8Be
is given in Table VIII. The Coulomb term at −75 keV is
comparable to the previous cases, but now more than double
Barker’s [4] estimate of −32 keV. The strong class III CSB
terms are similar to those in the previous cases. The regular
magnetic moment contribution is like that in the 2+ doublet,
but the class IV magnetic moment term is larger. Overall,
there is again very little spread between our models, at −111
to −115 keV, but these are now much larger than the poorly

TABLE VIII. Contributions to the IM matrix element between
8Be(3+) states at 19.0–19.2 MeV excitation for different interac-
tion models in keV; Monte Carlo statistical errors are shown in
parentheses.

AV18 AV18(s) AV18(L)

KCSB −3.0(1) −3.0(1) −3.0(1)
VC1(pp) −74.6(12) −74.6(12) −74.6(12)
VC+ 0.0(0) 0.0(0) 0.0(0)
VMM −12.3(2) −12.3(2) −12.3(2)
vCSB −16.6(4) −16.9(6) −17.5(10)
vIV

γ −4.5(1) −4.5(1) −4.5(1)

vIV
π+ρ −0.3(0) −0.3(0)

vIV
ρω −1.3(1) −2.5(0)

H01 −111.(2) −112.(2) −115.(2)

Experiment −59.(12)

determined value of −59 keV for the empirical matrix element.
Further, the maximum possible IM matrix element is one half
the spacing between the two physical states, which in this case
is 165(32) keV. The experimental energy difference would
have to be about 2 standard deviations greater than given in
the compilation [1] to admit an IM matrix element as large
as that predicted by our Hamiltonian. The GFMC calculations
do hint at a bigger energy difference between the isospin pure
states as shown in Table I.

Finally we report the IM matrix element between the first
2+ T = 0 state in 8Be at 3.0 MeV excitation and the 2+ T = 1
state at 16.8 MeV. The former is the final state for β decay from
both 8Li and 8B ground states, while the latter is the isobaric
analog of the initial states. These transitions have been used
to search for tensor components in nuclear β decay [29] and
may be used in future experiments to search for second-class
currents or other violations of the conserved vector-current
hypothesis. The analysis of such experiments relies on the final
state being a T = 0 state with a negligible T = 1 component.
Without giving the detailed breakdown, we get an IM matrix
element of −7(2) keV that, combined with the large separation
in energy, implies an amplitude admixture of the first 2+ T = 1
state into the first 2+ T = 0 state of 5.0(1.5) × 10−4. This
is sufficiently small to not interfere with the goal stated in
Ref. [29] of improving the limit on tensor components by an
order of magnitude.

V. CONCLUSIONS

In summary, we have reported GFMC results for IM
matrix elements in the 2+, 1+, and 3+ doublets at
16–19 MeV excitation in the spectrum of 8Be. We have made
these calculations for the AV18 + IL7 Hamiltonian and two
variants of AV18 with an expanded CSB operator structure,
all constrained to give the same nn scattering length. The
AV18 + IL7 model gives an excellent reproduction of the 8Be
spectrum and a good description of the energy differences in
A = 3, 7, and 8 mirror nuclei. For the IM matrix element,
we add the class IV CSB terms that come from one-photon,
one-pion, one-ρ, and ρ-ω mixing. We have not considered
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possible three-nucleon CSB forces, which have been estimated
to contribute ∼5 keV to the 3He − 3H energy difference [30].
We obtain about 90% of the empirical IM matrix elements
for the 2+ and 1+ doublets, but we overpredict the less
well-measured 3+ doublet. New experiments for these latter
states would be useful.

Our main conclusion is that, while the static Coulomb
interaction between protons is the dominant contributor to
CSB in nuclei, the additional electromagnetic, kinetic, and
strong CSB terms are important, and the IM matrix elements
in 8Be are a particularly valuable place to look for their effect.
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