
PHYSICAL REVIEW C 88, 044315 (2013)

Spectroscopic factors and asymptotic normalization coefficients for 0 p-shell nuclei: Recent updates

N. K. Timofeyuk
Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom

(Received 12 August 2013; revised manuscript received 10 September 2013; published 14 October 2013)

Extended tables are presented for spectroscopic factors, asymptotic normalization coefficients and rms radii
of one-nucleon overlap functions for 0p-shell nuclei calculated in the source term approach using shell model
wave functions. The tabulated data includes both new results and updates on previously published values. They
are compared with recent results obtained in ab initio calculations, and with experimental data, where available.
The reduction of spectroscopic factors with respect to traditional shell model values as well as its neutron-proton
asymmetry is also discussed.
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I. INTRODUCTION

Experimental evidence accumulated over decades of studies
shows that cross sections of nucleon removal reactions are
smaller than predictions made by reaction theories that use
single-particle wave functions and shell model spectroscopic
factors (SFs) [1–5]. This is referred to as reduction of
spectroscopic strength and is often interpreted as reduction
of spectroscopic factors. Almost all knockout and transfer
experiments claim a reduction of the spectroscopic strength by
∼0.55 for stable nuclei (except in Ref. [6] where no reduction
is seen for standard neutron potential well parametrization).
However, the reduction of spectroscopic strength in neutron-
or proton-rich nuclei is controversial: knockout experiments
show evidence of asymmetry in removing a weakly bound
neutron (proton) and a deeply bound proton (neutron) from the
same target [4,7,8] while transfer experiments claim limited
neutron-proton asymmetry in SFs reduction [5,9,10].

The reduction of spectroscopic strength is backed by
ab initio calculations within Green function Monte Carlo
(GFMC) [11], variational Monte Carlo (VMC) [11–13],
no-core shell model (NCSM) [12], coupled-cluster method
(CCM) [14], and self-consistent Green’s function method
(SCGFM) [10,15,16]. These methods predict smaller spectro-
scopic factors than either the independent particle model (IPM)
or the traditional shell model does. They also show neutron-
proton asymmetry in deviation of spectroscopic factors from
IPM or from the shell model which is, however, not as large
as the one observed in knockout experiments but can be larger
than the one claimed by transfer reactions studies.

Whether the experimental and/or predicted SFs should be
compared to the shell model ones needs further clarification.
The shell model spectroscopic factors are calculated from the
wave functions �P obtained in a restricted model space P
usually given by 0h̄ω. �P are obtained from Hamiltonians
HPP that contain effective rather than realistic NN inter-
actions, as required by the missing model spaces Q. The
missing model spaces also require renormalization of any
other operators sandwiched by �P . Such a renormalization
is made, for example, for electromagnetic operators by using
effective charges. However, no renormalization is ever made
when spectroscopic factors are calculated by widely used shell
model codes such as OXBASH, NUSHELL, or ANTOIN. Therefore,
it is not surprising that the shell model spectroscopic factors

obtained in this way differ either from those obtained in more
advanced ab initio approaches involving much larger model
spaces or from the experimental values.

It has been shown that the easiest way to include missing
shell model spaces into the calculation of the overlap functions
is to solve the inhomogeneous equation they satisfy [17–20].
The source term for this equation can be calculated using �P .
Then a proper choice of the effective interaction between the
removed nucleon and the nucleons of the daughter nucleus
will account for the missing model spaces Q. The resulting
spectroscopic factors calculated as norms of the overlap
functions are more suitable for comparison with results from
other approaches and with experimental data.

Whether the experimental determination of spectroscopic
factors is really possible deserves a further comment. It
has been shown in Ref. [21] that spectroscopic factors are
not invariant under finite-range unitary transformations and,
therefore, are not observables. The exact reaction amplitudes
are not parametrized in terms of the spectroscopic factors and
nuclear reactions in the exact approach cannot provide a tool to
determine spectroscopic factor. In practice, the spectroscopic
factors are found on the assumption that the radial part of the
overlap is known, which is not always true. On the contrary,
asymptotic normalization coefficients (ANCs), which are the
amplitudes of the asymptotic tails of the overlap functions [22],
are invariant under finite-range unitary transformations and
thus can be observable [21]. The source term approach (STA)
of [18,20] easily predicts ANCs that can be directly compared
to experimental values where available.

This paper updates available knowledge on spectroscopic
factors and ANCs for 0p-shell nuclei. The necessity of such
an update follows from a growing number of one-nucleon
removal experiments, performed in the last few years since the
publication of STA results for SFs and ANCs in [17,18], and
from more ab initio results for overlap functions published
over the same period. Also, some inaccuracies have been
noticed in the previous publication of ANCs and SFs in [17,18]
that originate from errors in calculating the contributions
from noncentral components of the NN interactions. These
inaccuracies as well as misprints are corrected in the present
paper and the tables of SFs and ANCs are significantly
extended to cover the cases of recent experimental and
theoretical interest. Section II reviews the STA formalism and
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provides the updated values of ANCs, SFs, and rms radii of the
overlap integrals. It also points at neutron-proton asymmetry
in SF reduction from the original shell model calculations. The
ANCs and spectroscopic factors from STA are compared with
the calculations of ab initio approaches and with experimental
data in Secs. III and IV, respectively. The conclusions are
given in Sec. V and new analytical expressions for the STA
two-body matrix elements are presented in the Appendix.

II. OVERLAP FUNCTIONS IN THE SOURCE
TERM APPROACH

The radial overlap function Ilj (r) with orbital momentum
l and angular momentum j is defined as an overlap integral
between the wave functions �JB

and �JA
of two neighboring

nuclei B =A−1 and A with the total spin JB and JA:

Ilj (r) = A1/2〈[[Yl(r̂) ⊗ χτ
1/2]j ⊗ �JB

]JA
|�JA

〉. (1)

Here the integration is carried out over 3A−6 independent
coordinates describing the internal structure of nucleus B, r is
the distance between the center of mass of B and the removed
nucleon, Yl is the spherical function and χτ

1/2 is the spin-isospin
function of the removed nucleon with isospin projection τ .
The coefficient A1/2 comes from antisymmetrization. The
spectroscopic factor Slj is the norm of Ilj (r):

Slj =
∫ ∞

0
dr r2I 2

lj (r). (2)

At r → ∞, the overlap Ilj (r) has the well-known form

Ilj (r) ≈ Clj

W−η,l+1/2(2κr)

r
, r → ∞ , (3)

where Clj is the ANC, W is the Whittaker function, η =
ZBZNe2μ/h̄2κ , ZB and ZN are the charge of B, and the
removed nucleon N , respectively, κ = (2με/h̄2)1/2, ε=EA−
EB , EA and EB are the binding energies of nuclei A and B,
respectively, and μ is the reduced mass.

In the STA, the overlap function is obtained as the solution

Ilj (r)

= A
1
2

〈[[
Gl(r, r ′)

rr ′ Yl(r̂ ′) ⊗ χτ
1
2

]
j

⊗ �JB

]
JA

||V̂||�JA

〉
,

(4)

of the inhomogeneous equation (Tl + V 0
c + ε)Ilj (r) =

−Ulj (r) with the source term Ulj (r) [17,18,20]. In Eq. (4)
the integration over r ′ is implied and Gl(r, r ′) is the Green’s
function for a bound nucleon in the field of a point charge ZB ,

Gl(r, r
′) = − 2μ

h̄2κ
e−πi(l+1+η)/2Fl(iκr<)W−η,l+1/2(2κr>),

(5)

corresponding to the momentum iκ . Here F is the regular
Coulomb function. Also, V̂=∑B

i=1 veff
iA −V 0

c , and V 0
c is the

point Coulomb interaction between the valence nucleon and
B. The source term Ulj (r) is given by the same expression
as Eq. (4) but in which the function Gl(r, r ′)/(rr ′) and the
integration over r ′ is absent. Equation (4) generates an Ilj (r)

which automatically has the correct asymptotic shape when
the experimental value of ε is used, whatever �JA

and �JB
are.

Following Refs. [17,18,20], these functions are represented
by the harmonic oscillator wave functions with the oscillator
radius derived from electron scattering in Ref. [23]. The wrong
tails of the oscillator wave functions are not important since,
due to the short range of the NN interaction, they do not give
any noticeable contribution to the source term.

The matrix elements in Eq. (4) were calculated using
�JA

and �JB
obtained in the 0h̄ω space with effective NN

interactions from [24]. The effective interaction veff
iA of the

removed nucleon with the nucleons in B to be used in Eq. (4)
has been taken from Ref. [25] as the M3Y interaction that fits
the oscillator matrix elements obtained from NN scattering
data in [26]. Unlike in [18], where the calculations were
done in the supermultiplet scheme, the present calculations
were performed within the M-scheme using the formalism
of Ref. [19]. New expressions for two-body matrix elements
were derived (see Appendix) which significantly accelerate
calculations.

The SFs, ANCs, and the rms radii of the overlap functions
obtained in the new STA calculations are shown in Table I.
The STA spectroscopic factors SSTA

lj are compared there with
the spectroscopic factors SDE

lj obtained by direct evaluation
of the overlap integral between the 0h̄ω shell model wave
functions �P . The ratio R = (

∑
j SSTA

lj )/(
∑

j SDE
lj ) is also

plotted in Fig. 1 as a function of difference 
S of neutron
and proton separation energies Sp−Sn or Sn−Sp. The ratios
R corresponding to removal of proton and neutron from the
same nucleus are joined together by a dashed line. The slope of
this line indicates neutron-proton asymmetry of the reduction
of the STA spectroscopic factors with respect to the traditional
shell model ones. For all N 
= Z nuclei the slopes are rather
similar, except for 15N, 11B, and 7Li. They are larger than
that predicted in other theoretical approaches, larger than that
claimed by transfer experiments but smaller than the ones
seen in knockout experiments. The largest asymmetry, about
70%, is obtained for 14O, while for symmetrical N = Z nuclei
it is rather small, being 2–5 %. As explained in [18], the 
S
behavior of SSTA/SDE originates due to the energy dependence
(via κ) of the Green’s function in Eq. (1).

From Table I it is seen that in most cases the STA
spectroscopic factors are smaller than the corresponding shell
model ones. Exceptions are the j = 1/2 component of the
overlap between the wave functions of the 1+ state in 14N and
the wave functions of the 3/2− states in 13O, 15N, and 15O.
These overlaps are particularly sensitive to the shape of the
tensor part of the source term and to its interference with the
contribution from the spin-orbit force. Such a sensitivity can
be used in the future to better tune the effective interactions in
the STA.

III. ASYMPTOTIC NORMALIZATION COEFFICIENTS:
COMPARISON TO EXPERIMENT AND TO

CALCULATIONS FROM ab initio METHODS

The ANCs, being matrix elements of the virtual decay
operator [22], are observable quantities [21]. They can be
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TABLE I. The ANC’s squared C2
lj in comparison with experimental values C2

exp (in fm−1), the rms radii 〈r2〉1/2 (in fm) and the spectroscopic
factors SSTA

lj and SDE
lj calculated in the STA and using direct overlap of the shell model wave functions, respectively, for a range of the 〈A|A − 1〉

overlaps in comparison to Sab values from ab initio calculations.

A A − 1 j C2
lj C2

exp 〈r2〉1/2 SSTA
lj SDE

lj Sab

7Li(3/2−) 6He(0+) 3/2 5.65 6.15a 2.925 0.280 0.693 0.439b;0.406c

7Li(3/2−) 6He(2+) 1/2 3.32 3.007 0.085 0.189 0.137b

3/2 3.95 2.941 0.112 0.255 0.156b

sum 7.27 0.197 0.444 0.293b

7Li(3/2−) 6Li(1+) 1/2 1.20 3.183 0.154 0.284 0.242b;0.230c

3/2 1.79 3.051 0.281 0.586 0.473b;0.438c

sum 2.99 3.17(53)d,e 0.435 0.870 0.715b;0.668c

7Li(3/2−) 6Li(3+) 3/2 4.65 4.24(48)d,e 3.028 0.338 0.699 0.476b;0.435c

7Li(3/2−) 6Li(0+) 3/2 2.46 2.91(35)d,e 2.911 0.139 0.346 0.221f;0.203c

7Li(1/2−) 6He(0+) 1/2 4.08 3.028 0.198 0.485
7Li(1/2−) 6Li(1+) 1/2 0.076 3.018 0.018 0.075 0.069f;0.060c

3/2 3.256 3.101 0.572 1.135 0.854f;0.759c

sum 3.34 0.590 1.210 0.923f;0.819c

7Be(3/2−) 6Li(1+) 1/2 1.29 3.245 0.163 0.284 0.229f;0.225c

3/2 1.96 3.122 0.296 0.586 0.480f;0.438c

sum 3.25 3.13(27)g 0.459 0.870 0.709f;0.663c

7Be(3/2−) 6Li(3+) 3/2 5.20 3.068 0.352 0.699 0.500f;0.457c

7Be(3/2−) 6Li(0+) 3/2 2.81 2.945 0.145 0.346 0.221f;0.210c

7Be(3/2−) 6Be(0+) 3/2 4.81 2.916 0.281 0.693
7Be(3/2−) 6Be(2+) 1/2 2.77 3.003 0.086 0.189

3/2 3.30 2.937 0.114 0.255

sum 6.07 0.200 0.444
7Be(1/2−) 6Li(1+) 1/2 0.087 3.077 0.019 0.075

3/2 3.564 3.166 0.602 1.135

sum 3.66 3.80(35)g 0.621 1.210
8He(0+) 7He(3/2−) 3/2 2.23 3.560 2.57 3.94
8Li(2+) 7He(3/2−) 1/2 3.00 2.915 0.065 0.146

3/2 13.3 2.871 0.328 0.785

sum 16.3 0.393 0.931 0.58h

8Li(2+) 7He(5/2−) 1/2 2.90 2.890 0.032 0.060
3/2 5.39 2.848 0.064 0.139

sum 8.29 0.096 0.199 0.17h

8Li(2+) 7Li(3/2−) 1/2 0.027 3.738 0.044 0.064 0.082b

3/2 0.337 3.627 0.616 1.079 0.884b

sum 0.364 0.432(44)d 0.660 1.143 0.966b

8Li(2+) 7Li(1/2−) 3/2 0.120 3.496 0.157 0.281 0.263b

8Li(1+) 7Li(3/2−) 1/2 0.012 4.153 0.054 0.100
3/2 0.054 4.072 0.268 0.417

sum 0.066 0.083(15)d 0.322 0.517
8Be(0+) 7Li(3/2−) 3/2 90.3 2.794 0.668 1.721
8Be(0+) 7Be(3/2−) 3/2 77.2 2.779 0.653 1.721
8B(2+) 7Be(3/2−) 1/2 0.033 4.537 0.053 0.064 0.082b

3/2 0.418 4.399 0.742 1.079 0.884b

sum 0.441 0.452(81)d 0.795 1.143 0.966b

8B(2+) 7Be(1/2−) 3/2 0.099 3.951 0.183 0.281 0.263b

8B(2+) 7B(3/2−) 1/2 2.51 2.911 0.066 0.146
3/2 11.1 2.868 0.332 0.785

sum 13.6 0.398 0.931
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TABLE I. (Continued.)

A A − 1 j C2
lj C2

exp 〈r2〉1/2 SSTA
lj SDE

lj Sab

9Li(3/2−) 8He(0+) 3/2 22.2 2.819 0.384 0.935 0.573b

9Li(3/2−) 8Li(2+) 1/2 0.035 3.343 0.016 0.029 0.109b

3/2 1.159 3.279 0.584 1.016 0.993b

sum 1.184 1.33(33)d 0.600 1.045 1.104b

9Li(3/2−) 8Li(1+) 1/2 0.127 3.301 0.035 0.060 0.008b

3/2 0.876 3.184 0.284 0.509 0.460b

sum 1.003 0.319 0.569 0.468b

9Li(3/2−) 8Li(3+) 3/2 4.51 3.127 0.850 1.512
9Li(1/2−) 8Li(2+) 3/2 0.109 3.997 0.324 0.426
9Be(3/2−) 8Li(2+) 1/2 8.07 2.849 0.056 0.126 0.162b

3/2 53.0 2.790 0.401 1.000 0.607b

sum 61.1 0.457 1.126 0.769b

9Be(3/2−) 8Li(1+) 1/2 19.8 2.826 0.107 0.236 0.226b

3/2 17.4 2.765 0.109 0.267 0.202b

sum 37.2 0.216 0.503 0.428b

9Be(3/2−) 8Be(0+) 3/2 0.175 0.27(9)d 3.776 0.416 0.627 0.581b

9Be(3/2−) 8Be(2+) 1/2 0.081 3.341 0.027 0.042 0.040b

3/2 1.26 3.246 0.463 0.817 0.583b

sum 1.34 2.0(11)d 0.490 0.859 0.623b

9B(3/2−) 8B(2+) 1/2 6.97 2.833 0.055 0.126 0.109b

3/2 45.5 2.774 0.391 1.000 0.993b

sum 52.5 0.446 1.126 1.104b

9C(3/2−) 8B(2+) 1/2 0.035 3.678 0.020 0.029
3/2 1.055 3.597 0.693 1.016

sum 1.080 1.11(26)d 0.713 1.045
9C(3/2−) 8C(0+) 3/2 17.7 2.822 0.396 0.935
10Be(0+) 9Li(3/2−) 3/2 179.6 2.732 0.821 1.93 1.137b

10Be(0+) 9Li(1/2−) 1/2 54.4 2.730 0.139 0.276 0.435b

10Be(0+) 9Be(3/2−) 3/2 9.12 3.042 1.515 2.672 2.084b;2.36i

10B(3+) 9Be(3/2−) 3/2 3.53 5.12(51)d;3.53(52)j 2.942 0.315 0.665
10B(3+) 9B(3/2−) 3/2 2.73 1.93(29)d;2.59(48)j 2.897 0.302 0.665
10B(3+) 9B(5/2−) 1/2 0.869 2.919 0.039 0.068

3/2 5.71 2.862 0.295 0.638

sum 6.58 2.15(29)d 0.334 0.706
10B(1+

1 ) 9Be(3/2−) 1/2 2.46 3.073 0.240 0.432
3/2 2.82 3.081 0.273 0.506

sum 5.28 6.6(2.5)d 0.513 0.938
10B(0+

1 ) 9Be(3/2−) 3/2 5.53 6.2(24) 3.113 0.802 1.34
10B(1+

2 ) 9Be(3/2−) 1/2 0.255 3.161 0.042 0.081
3/2 0.737 3.061 0.142 0.252
sum 0.992 1.28(35)d 0.184 0.333

10C(0+) 9B(3/2−) 3/2 10.2 3.159 1.62 2.67 2.084b

10C(0+) 9C(3/2−) 3/2 154 2.720 0.808 1.93 1.137b;1.52i

11B(3/2−
1 ) 10Be(0+) 3/2 8.56 2.748 0.232 0.465

11B(3/2−
1 ) 10B(3+) 3/2 13.7 31.6(18)d 2.822 0.635 1.120

11B(3/2−
1 ) 10B(1+) 1/2 1.93 2.825 0.069 0.106

3/2 2.59 2.791 0.103 0.187

sum 4.52 14.9(18)d 0.172 0.293
11C(3/2−

1 ) 10B(3+) 3/2 17.63 29(5)d 2.872 0.672 1.120
11C(3/2−) 10C(0+) 3/2 6.53 2.723 0.226 0.465
12B(1+) 11B(3/2−) 1/2 0.924 3.291 0.670 0.783

3/2 0.209 3.362 0.143 0.205
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TABLE I. (Continued.)

A A − 1 j C2
lj C2

exp 〈r2〉1/2 SSTA
lj SDE

lj Sab

sum 1.133 1.20(26)d 0.813 0.988
12C(0+) 11B(3/2−

1 ) 3/2 199 223(31)d 2.688 1.54 2.855
12C(0+) 11B(1/2−) 1/2 104 2.695 0.484 0.832
12C(0+) 11B(3/2−

2 ) 3/2 112 2.663 0.332 0.612
12C(0+) 11C(3/2−

1 ) 3/2 150. 2.663 1.485 2.855
12C(0+) 11C(1/2−) 1/2 77.9 2.674 0.476 0.832
12C(0+) 11C(3/2−

2 ) 3/2 82.9 2.648 0.327 0.612
12C(2+) 11B(3/2−) 1/2 22.0 15.8(35)d 2.788 0.400 0.598

3/2 0.264 2.538 0.008 0.013
12N(1+) 11C(3/2−) 1/2 1.376 3.673 0.755 0.783

3/2 0.314 3.745 0.164 0.205

sum 1.690 1.68(30)d 0.919 0.988
13B(3/2−) 12B(1+) 1/2 1.74 3.140 0.558 0.595

3/2 0.31 3.132 0.109 0.126

sum 2.05 0.667 0.721
13C(1/2−) 12B(1+) 1/2 2.42 2.733 0.013 0.014

3/2 106 2.609 0.679 1.197

sum 108 0.692 1.211
13C(1/2−) 12C(0+) 1/2 1.50 2.46(31)d 3.067 0.532 0.633
13C(1/2−) 12C(2+) 3/2 7.89 10.4(12)d 2.843 0.661 1.116
13N(1/2−) 12C(0+) 1/2 1.90 3.26(25)d;2.67(29)k 3.270 0.586 0.633
13N(1/2−) 12N(1+) 1/2 1.81 2.715 0.012 0.014

3/2 77.3 2.590 0.668 1.197

sum 78.6 0.693 1.211
13O(3/2−) 12N(1+) 1/2 2.60 3.382 0.635 0.595

3/2 0.47 3.363 0.120 0.126

sum 3.07 2.53(30)d;3.9(15)l 0.755 0.721
14C(0+) 13B(3/2−) 3/2 803 2.673 2.087 4.07
14C(0+) 13C(1/2−) 1/2 16.70 2.970 1.573 1.87
14N(1+

1 ) 13C(1/2−) 1/2 14.3 2.900 0.541 0.705
3/2 0.22 3.319 0.004 0.013

sum 14.5 17.9(30)d 0.545 0.718
14N(0+) 13C(1/2−) 1/2 11.9 11.7(37)d 3.056 0.831 0.933
14N(1+

2 ) 13C(1/2−) 1/2 1.35 3.263 0.152 0.130
3/2 0.65 3.122 0.094 0.144

sum 2.00 0.246 0.274
14N(2+) 13C(1/2−) 3/2 0.091 0.26(4)d 3.718 0.047 0.051
14N(1+

1 ) 13N(1/2−) 1/2 9.88 2.839 0.517 0.705
3/2 0.15 3.268 0.003 0.012

sum 10.0 15.4(19)d 0.520 0.717
14N(1+

1 ) 13N(3/2−) 1/2 2.68 2.768 0.060 0.129
3/2 0.59 2.618 0.019 0.027

sum 3.27 0.079 0.156
14O(0+) 13N(1/2−) 1/2 25.0 28.8(45)d 3.080 1.69 1.87 1.58m

14O(0+) 13N(3/2−) 3/2 60.2 2.915 1.55 2.33 1.90m

14O(0+) 13O(3/2−) 3/2 594 2.658 2.14 4.07 3.17m

15N(1/2−) 14C(0+) 1/2 43.2 2.853 0.754 0.996
15N(1/2−) 14N(1+) 1/2 26.8 2.896 1.123 1.36

3/2 1.8 2.769 0.108 0.12

sum 28.6 1.231 1.48
15N(3/2−) 14C(0+) 3/2 0.169 3.115 0.021 0.038
15N(3/2−) 14N(1+) 1/2 0.317 3.441 0.085 0.061
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TABLE I. (Continued.)

A A − 1 j C2
lj C2

exp 〈r2〉1/2 SSTA
lj SDE

lj Sab

3/2 0.0002 3.064 0.0001 0.0002

sum 0.317 0.085 0.061
15O(1/2−) 14N(1+) 1/2 41.2 2.967 1.18 1.36

3/2 2.7 2.832 0.11 0.12
sum 43.9 60(17)d 1.29 1.48

15O(1/2−) 14O(0+) 1/2 29.5 2.809 0.726 0.996
15O(3/2−) 14N(1+) 1/2 0.490 3.767 0.098 0.061

3/2 0.0002 3.330 0.0001 0.0002

sum 0.490 0.46(11)d 0.098 0.061
15O(3/2−) 14O(0+) 3/2 0.117 2.986 0.018 0.038
16O(0+) 15N(1/2−) 1/2 197 175(29) 2.919 1.38 2.13 1.74m;1.70n

16O(0+) 15N(3/2−) 3/2 1251 2.821 2.42 4.27 3.45m;3.24n

16O(0+) 15O(1/2−) 1/2 125 2.876 1.31 2.13 1.73m

16O(0+) 15O(3/2−) 3/2 780 2.797 2.34 4.27

aFrom Ref. [27].
bVMC calculations fron Ref. [28].
cGFMC calculations from Ref. [11].
dFrom compilation of [18]. Where several C2

exp are available an average is given that covers all possible experimental values.
eThese are the values obtained from the 7Li(d, t)6Li measured in [29] at Ed = 18 MeV with high precision including the area of small angles.
Higher values are also available in [29] but they were obtained from the analysis of less accurate data available elsewhere.
fVMC calculations from Ref. [11].
gFrom 6Li(3He,d)7Be reaction [30].
hVMC calculations from Ref. [31].
iNCSM calculations from Ref. [12].
jFrom 10B(d ,3He) and 10B(d ,t) reactions [32].
kFrom transfer reaction 12C(7Li,6He)13N [33].
lFrom 12N(d, n)13O reaction [34].
mSCGF calculations from Ref. [10].
nCCM calculations from Ref. [14].

deduced directly from the peripheral reactions cross sections.
Transfer reactions are most frequently used for these purposes.
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FIG. 1. (Color online) The ratio SSTA/SDE of the spectroscopic
factors obtained in STA and from direct evaluation of the shell model
wave functions as a function of 
S, which is Sp−Sn or Sn−Sp for
proton or neutron removal, respectively.

The compilation of experimental ANCs squared C2
exp for

0p-shell nuclei is available in Ref. [18] with a detailed
discussion of their uncertainties and further referencing. The
C2

exp values with the errors that cover all possible experimental
values, summarized in [18], are shown in Table I. A few recent
C2

exp values are added there: the previously unknown ANC for
7Be→6Li+p [30] and the new values for the 10B→9Be+p,
10B→9B+n [32], 13N→12C+p [33], and 13O→12N+p [34]
vertices. The new proton ANC for 13O and new neutron ANC
for 10B agree within the error bars with earlier determinations
in Refs. [29,35] while the new proton ANCs for 10B and
13N are smaller than the values deduced previously in Refs.
[36,37]. The ratio of C2

exp = ∑
j C2

exp(lj ) to the STA values
C2

STA = ∑
j C2

lj are shown in Fig. 2. In many cases the STA
reproduces the experimental values within the error bars,
however, these bars are often too large due to different ANC
values for the same vertex deduced from different reactions.
In those cases where the STA clearly underpredict the ANCs,
such as 13C, 13N, 11B, these ANCs are strongly influenced
by the interference of different |[f ]LST 〉 components and,
to a lesser extent, by non-central components of veff . Further
tuning of effective shell model Hamiltonians HPP determining
the nuclear spectra and the interaction veff of removed nucleon
with nucleons in B, may fix this problem.
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ANC’s squared for neutrons (filled circles) and protons (open circles),
calculated in the STA, for a range of the ground state of 0p-shell nuclei
as a function of 
S taken as Sp−Sn or Sn−Sp for proton or neutron
removal, respectively.

Ab initio approaches rarely give ANCs. To provide ANCs
these methods should be able to get converged Ilj (r) at large
r with correct decay constant. This is very difficult to achieve
because such calculations require large model spaces to which
the total binding energies are not sensitive. For A � 7, the ab
initio GFMC calculations for Ilj (r) are available up to r ∼ 6
fm where the asymptotic behavior is mostly achieved and the
nucleon separation energies are reproduced so that the ANCs
can be determined with a reasonable accuracy [11]. Another ab
initio method, VMC, does not reproduce separation energies
correctly and it does not predict any definite behavior of Ilj (r)
at large r [28]. The ANCs can be recovered in VMC only from

potential model calculations that fit Ilj (r) inside the nuclear
region [13] but such ANCs are not very accurate since small
changes in Ilj (r) within statistical VMC errors at small r can
give noticeable uncertainties at large r . The VMC can be used,
however, to generate ANCs in the source term calculations
as is done in Ref. [38]. Otherwise, to guarantee the correct
asymptotic behavior of Ilj (r), R-matrix ideas should be used.
At present, only one example of the R-matrix calculations of
ANCs that uses ab initio wave function of the core is known:
this is the ANC calculation for 8B obtained within the NCSM
combined with the R-matrix approach [39]. Other microscopic
cluster model R-matrix calculations, for example in [40], use
simplified models of clusters’ internal wave functions and
overpredict ANCs with the NN potentials well adapted for
such calculations [41].

The ANCs obtained within the shell model (SM) STA are
compared to the GFMC [11] and VMC-STA [38] calculations
in Table II as well as to the C2

exp values. The SM-STA C2 values
are always smaller than the results from other approaches. For
weakly bound nuclei such as 8Li, 8B, 9Li, and 9C the difference
between the SM-STA, VMC-STA, and NCSM values of C2

does not exceed 25% [except for 9Li(3/2−) →8Li(1+) + n].
All these C2 agree with C2

exp within the error bars. For all
other cases, the SM-STA C2 values are 2–3 times smaller than
those predicted by the VMC-STA or GFMC. The most obvious
reason for that could lie in the absence of the cluster degrees
of freedom in the SM-STA. However, the experimental C2

exp

values for 7Li and 7Be favour the SM-STA values. It is also
possible that the experimental cross sections used to deduce
C2

exp for these nuclei are strongly influenced by the cluster
degrees of freedom which are not explicitly taken into account
in the analysis of transfer reaction data.

TABLE II. The ANC’s squared C2 = ∑
j C2

lj (in fm−1), for a range of the 〈A|A − 1〉 overlaps calculated within the shell model (SM) STA
and within ab initio VMC-STA [38], GFMC [11], and NCSM [39] approaches in comparison with the experimental C2

exp values. See Table I
for references and discussion of C2

exp.

A A − 1 SM-STA VMC-STA GFMC NSCM C2
exp

7Li(3/2−) 6He(0+) 5.65 13.5 12.4 6.15
7Li(3/2−) 6Li(1+) 2.99 6.29 8.24 3.17(53)
7Li(3/2−) 6Li(3+) 4.65 12.3 4.24(48)
7Li(3/2−) 6Li(0+) 2.46 5.71-6.05 2.91(35)
7Li(1/2−) 6He(0+) 4.08 12.2
7Li(1/2−) 6Li(1+) 3.34 6.75 8.47
7Be(3/2−) 6Li(1+) 3.25 8.12 7.73 3.13(27)
7Be(3/2−) 6Li(3+) 5.20 12.2
7Be(3/2−) 6Li(0+) 2.81 6.66
7Be(1/2−) 6Li(1+) 3.66 7.02 3.80(35)
8Li(2+) 7Li(3/2−) 0.364 0.429 0.432(44)
8Li(1+) 7Li(3/2−) 0.066 0.087 0.083(15)
8B(2+) 7Be(3/2−) 0.441 0.538 0.509 0.455(77)
9Li(3/2−) 8He(0+) 22.2 36.0
9Li(3/2−) 8Li(2+) 1.184 1.39 1.33(33)
9Li(3/2−) 8Li(1+) 1.003 0.498
9Be(3/2−) 8Li(2+) 61.1 116.
9Be(3/2−) 8Li(1+) 37.2 81.6
9C(3/2−) 8B(2+) 1.080 1.36 1.11(26)
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FIG. 3. The 〈12C|11B(3/2−
1 )〉, 〈16O|15N(1/2−

1 )〉, and 〈16O|15N(3/2−
1 )〉 overlap functions calculated in the STA in comparison to those that

fit the (e, e′p) cross sections.

IV. SPECTROSCOPIC FACTORS: EXPERIMENTAL
STATUS AND COMPARISON TO ab initio APPROACHES

Although, strictly speaking, the spectroscopic factors are
not observables since they are not invariant amplitudes of any
description [21], in reality they can be calculated from the
overlap integrals that best fit experimental cross sections. The
(e, e′p) reactions are best suited for this purpose as their mo-
mentum distributions are related to Fourier transforms of Ilj (r)
distorted by the final state interactions. The overlaps Ilj (r) can
be always modelled by two-body potential well calculations
with the parameters fitted to reproduce the (e, e′p) cross
sections. For 0p-shell nuclei such phenomenological overlaps
are available for two nuclei: 12C and 16O [2]. Their norms can
be considered as experimental values Sexp of spectroscopic fac-
tors. For 16O, Sexp is equal to 1.27(13) and 2.25(22) for the final
15N(1/2−

1 ) and 15N(3/2−
1 ) states, respectively. For 12C, Sexp is

1.72(11), 0.26(2) and 0.20(2) for the final states 11B(3/2−
1 ),

11B(1/2−
1 ), and 11B(3/2−

2 ). The overlaps 〈16O|15N(1/2−
1 )〉,

〈16O|15N(3/2−
1 )〉, and 〈12C|11B(3/2−

1 )〉 obtained in the STA
are close to those obtained phenomenologically (see Fig. 3)
and their are SFs close to Sexp. The SFs for 〈12C|11B(1/2−

1 )〉
and 〈12C|11B(3/2−

2 )〉 are about 70% larger than the ones from
(e, e′p) but this is related to the interference between the shell
model configurations rather than uncertainties in veff

iA .
The situation with 7Li(e, e′p)6He is less clear. On the

one hand, momentum distribution of this reaction calculated
with the VMC overlap function with SVMC = 0.44 reproduce
the observed ones [42]. However, the inclusive 9Be(7Li,6He)
proton knockout cross section, calculated in the eikonal
reaction model using the same VMC overlap function [13],
is twice the experimental one. Renormalization of the VMC
overlap to fit the knockout data would give the spectroscopic
factor of 0.22, which is not far away from the STA prediction
of 0.28. The need of large renormalization of the calculated
knockout cross sections can be explained by the lack of
appropriate treatment of the weak binding in 6He. However,
the weak binding in 6He has not been taken into account in
the final state of the (e, e′p) reaction as well, which could
influence the interpretation of this reaction.

The proton knockout cross sections for other light nuclei
calculated in the eikonal model with VMC overlaps also need
to be renormalized by a factor R shown in Table III together
with the product RSVMC. The knockout cross sections are
mostly determined by the product of spectroscopic factor and

the rms radius of the overlap function [13]. Therefore, to
estimate a possible outcome of the eikonal calculations with
the STA overlap the ratio Rr = (〈r2〉STA/〈r2〉VMC)1/2 times
SSTA is compared to RSVMC in Table III. This comparison
suggests that the eikonal model with the STA overlap would
reproduce the experimental knockout cross sections for 7Li and
10C but would give smaller cross sections for proton knockout
from 9Li, 9Be and for neutron knockout from 10Be, while for
proton knockout from 10Be these cross sections will be larger
than the experimental ones.

Apart from nucleon knockout, the nucleon transfer reac-
tions are always quoted as a good source of experimental
spectroscopic factors. However, the transfer cross sections are
often sensitive only to the peripheral part of Ilj (r) which
makes them a good source of ANCs rather than SFs. In
the previous publication [18], the STA spectroscopic factors
were compared to the renormalization factors obtained from
(d, p) and (p, d) reactions analyzed in Ref. [3] within the
adiabatic Johnson-Tandy theory [43] using single-particle
wave functions from Hartree-Fock calculations. However,
recently it became clear that the correction for nonlocality
by a simple modification of the deuteron distortion waves in
the nuclear interior, made in [3], has been not justified [44].
Moreover, it has been shown recently that proper treatment
of non-locality of nucleon optical potentials may significantly
change the interpretation of the (d, p) and (p, d) data [44] both

TABLE III. Renormalization factor R that lowers the eikonal
model knockout cross sections down to measured ones [13], the
VMC spectroscopic factor renormalized by R in comparison with
the STA spectroscopic factor SSTA and the STA spectroscopic factor
renormalized by Rr = (〈r2〉STA/〈r2〉VMC)1/2.

A A − 1 R RSVMC SSTA RrSSTA

7Li 6He 0.5 0.22 0.28 0.25
6Li(1+) 0.42 0.44 0.41
6Li(0+) 0.13 0.14 0.13

9Li 8Li(2+) 0.71 0.78 0.60 0.57
8Li(1+) 0.33 0.32 0.31

9C 8B(2+) 0.87 0.96 0.71 0.73
10Be 9Li(3/2−) 0.52 0.54 0.82 0.79

9Li(1/2−) 0.22 0.14 0.13
9Be(3/2−) 0.97 1.88 1.52 1.49

10C 9C(3/2−) 0.74 0.74 0.81 0.77
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for absolute and relative spectroscopic factors [45]. Therefore,
no comparison to renormalization factors obtained in transfer
reactions and called spectroscopic factors is done in present
work. A better understanding of transfer reaction theory is
needed for these purposes.

V. CONCLUSIONS

In the present paper, nearly 30 new ANCs, spectroscopic
factors and rms radii of overlap functions for 0p-shell nuclei
are tabulated while the results from previous calculations [18]
are updated. These quantities have been calculated within
the STA in which the missing subspaces are taken into
account via phenomenological effective interactions of the
removed nucleon with the nucleons from residual nucleus.
These calculations confirm the reduction of spectroscopic
factors with respect to those calculated using the standard
approach that involves overlapping shell model wave functions
defined in a restricted model space. Significant neutron-proton
asymmetry in spectroscopic factor reduction for proton and
neutron removal is also predicted for N 
= Z nuclei.

The STA spectroscopic factors are smaller than those
calculated in ab initio approaches such as VMC, GFMC,
SCGFM, and CCM. The ANCs from STA are also smaller than
those available from VMC, GFMC, and NCSM calculations.
Comparison with experimental data suggests that STA gives
reasonable predictions of those quantities for many cases.
However, it should be kept in mind that experimental values

are often strongly influenced by uncertainties of the reaction
model and that sometimes different values are obtained for the
same quantities from different reactions. This urges further
development of reaction theory aimed to extract properties of
the overlap functions from nucleon removal reactions.
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APPENDIX

The expressions for the source term can be found in Secs. II
and III of Ref. [18] while the analytical expressions for
two-body matrix elements making up the source term are
given in the Appendix of Ref. [18]. In the present work,
a simplification of these expressions has been found that
significantly accelerates numerical calculations. The new ex-
pressions will be particularly important for future applications
of STA for heavy nuclei and for large orbital momenta of
removed nucleons.

According to [18], the two-body matrix elements in
momentum space, needed for the source term calculations,
are

U
α1α2α3
ljmj τ

(q) =
∑
mσ

(
lm

1

2
σ |jmj

)
il

∫
d q̂Y ∗

lm(q̂)〈φα1 (r1)e−γ qr 2χ 1
2 σ (A)χ 1

2 τ (A)|V̂ (r12)|φα2 (r1)φα3 (r2)〉, (A1)

where φα(r) is the single-particle oscillator wave function with the quantum numbers α = {n, l, j,mj , τ } representing the total
number of oscillator quanta, orbital momentum, angular momentum, its projection, and the projection of isospin of the nucleon.
Also, χ 1

2 σ (τ )(A) is the spin (isospin) function of the removed nucleon and

γ = 2A − 1

2A

√
A

A − 1
. (A2)

The two-body NN potential in Eq. (A1) has the contributions from the central (c), spin-orbit (so), and tensor (t) parts:

V̂ (r12) =
∑

S,T =0,1

V c
ST (r12)P̂S(1, 2)P̂T (1, 2) +

∑
T =0,1

((L · S)V so
T (r12) + Ŝ12 V t

T (r12))P̂T (1, 2), (A3)

where P̂S (P̂T ) is the projection operator into two-nucleon state with spin S (isospin T ), L and S are the operator of the orbital
momentum and spin of the NN pair, respectively, and Ŝ12 = 3(σ 1r12)(σ 2r12)/r2

12 − (σ 2σ 1), r12 = r1 − r2.
The new expressions for U

α1α2α3
ljmj τ

(q) are given below. For the central interaction in the ST channel

U
α1α2α3
ljmj τ

(q) =
∑

JMJ MT

(j2m2j3m3|JMJ )(j1m1jmj |JMJ )
(

1
2τ1

1
2τ |T MT

)(
1
2τ2

1
2τ3|T MT

)
l̂ĵ ĵ1ĵ2ĵ3

×
∑
LS

(−)l+L L̂2Ŝ2

⎧⎪⎨
⎪⎩

l1
1
2 j1

l 1
2 j

L S J

⎫⎪⎬
⎪⎭

⎧⎪⎨
⎪⎩

l2
1
2 j2

l3
1
2 j3

L S J

⎫⎪⎬
⎪⎭

∑
NN ′L′�′n′l′

〈n′l′N ′�′ : l|2 : 1|NL′n3l3 : l〉φn′l′

(
γ q√

3

)

× (−)n
′+(l′+�′+l)/2+L′+1 l̂′L̂′(l′0l|�′0)W (l2l3l1l; LL′)

[∑
ν

φν0(0)〈ν0NL′ : L′|1 : 1|n1l1n2l2 : L′〉
]

×π3/2
∫ ∞

0
dss2V

(c)
ST

(√
3
2 s

)
j�′

(√
2
3γ sq

)
φN ′�′(s), (A4)
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where î = √
2i + 1, (j1m1j2m2|JM) is the Clebsch-Gordan coefficient, the quantities in the figure brackets are the 9j

symbols, W are the Racah coefficients, 〈n1l1n2l
′
2 : l|μ2 : μ1|n′

1l
′
1n

′
2l

′
2〉 are the Talmi-Moshinsky coefficients for particles with

masses μ1 and μ2 [46], and j is the spherical Bessel function. Also, φν0(0) and φn′l′(γ q/
√

3) are the single-particle oscillator
functions in the coordinate and momentum space, respectively [18].

For the spin-orbit (i = so) and tensor (i = t) interactions the U
α1α2α3
ljmj τ

(q) in the channel with isospin T is

U
α1α2α3
ljmj τ

(q) =
∑

JMJ MT

(j2m2j3m3|JMJ )(j1m1jmj |JMJ )( 1
2τ1

1
2τ |T MT )( 1

2τ2
1
2τ3|T MT ) l̂ĵ ĵ1ĵ2ĵ3

×
∑
LL′′S

3δS,1(−)l+L (L̂L̂′′)2

⎧⎨
⎩

l1
1
2 j1

l 1
2 j

L S J

⎫⎬
⎭

⎧⎨
⎩

l2
1
2 j2

l3
1
2 j3

L′′ S J

⎫⎬
⎭ BLL′′J (i)

∑
n′

2l
′
2n

′
3l

′
3

A
n′

2l
′
2n

′
3l

′
3L

′′

n2l2n3l3L
(i) W (l′2l

′
3l1l : L′′L′)

×
∑

NL′N ′�′n′l′
〈n′l′N ′�′ : l|2 : 1|NL′n′

3l
′
3 : l〉φn′l′

(
γ q√

3

)
(−)n

′+(l′+�′+l)/2+L′+1 l̂′L̂′(l′0l|�′0)W (l2l3l1l; LL′)

×
[∑

ν

φν0(0)〈ν0NL′ : L′|1 : 1|n1l1n
′
2l

′
2 : L′〉

]
π3/2

∫ ∞

0
dss2V

(i)
ST

(√
3
2 s

)
j�′

(√
2
3γ sq

)
φN ′�′(s), (A5)

where BLL′′J (so) = W (1L1J ; L′′1) and

A
n′

2l
′
2n

′
3l

′
3L

′′

n2l2n3l3L
(so) = −

∑
νλN�

√
6λ(λ + 1)(2λ + 1)W (1Lλ�; L′′λ)〈νλN� : L|1 : 1|n2l2n3l3 : L〉〈νλN� : L′′|1 : 1|n′

2l
′
2n

′
3l

′
3 : L′′〉,

(A6)

while BLL′′J (t) = W (L′′2J1; L1) and

A
n′

2l
′
2n

′
3l

′
3L

′′

n2l2n3l3L
(t) = 2

√
30

∑
νλN�λ′′

λ̂(λ020|λ′′0)W (2Lλ′′�; L′′λ)〈νλN� : L|1 : 1|n2l2n3l3 : L〉〈νλ′′N� : L′′|1 : 1|n′
2l

′
2n

′
3l

′
3 : L′′〉

(A7)

for i = t. The source term Ulj (ξ ) in the coordinate space is obtained then as

Ulj (ξ ) = − (α + 1)−3/2

2π2
e

αξ2

2b2

∫ ∞

0
dqq2jl(qξ )eβq2b2

Ulj (q), (A8)

where ξ is the normalized Jacobi coordinate of the removed nucleon, α = (2A − 1)−1, β−1 = 8A(A − 1)α, and Ulj (q) is a linear
combination of U

α1α2α3
ljmj τ

(q) with the weights determined by the effective shell model interactions.
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