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Systematics of isovector and isoscalar giant quadrupole resonances in normal
and superfluid spherical nuclei
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The isoscalar (IS) and isovector (IV) quadrupole responses of nuclei are systematically investigated using
the time-dependent Skyrme energy density functional including pairing in the BCS approximation. Using two
different Skyrme functionals, Sly4 and SkM*, respectively 263 and 324 nuclei have been found to be spherical
along the nuclear charts. The time-dependent evolution of these nuclei has been systematically investigated,
giving access to their quadrupole responses. It is shown that the mean energy of the collective high-energy state
globally reproduces the experimental IS and IV collective energy but fails to reproduce their lifetimes. It is found
that the mean collective energy depends rather significantly on the functional used in the mean-field channel.
Pairing by competing with parity effects can slightly affect the collective response around magic numbers and
induces a reduction of the collective energy compared to the average trend. Low-lying states, that can only be
considered if pairing is included, are investigated. While the approach provides a fair estimate of the low-lying
state energy, it strongly underestimates the transition rate B(E2). Finally, the possibility to access the density
dependence of the symmetry energy through parallel measurements of both the IS and IV giant quadrupole
resonances is discussed.
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I. INTRODUCTION

In recent years, large efforts have been devoted within
the energy density functional (EDF) to bring time-dependent
theories to the level of state-of-the-art nuclear structure
theories. A current topic of interest is to include pairing
correlations in nuclear dynamics [1–6]. In the present work,
we systematically investigated the possibility to describe the
isoscalar (IS) and isovector (IV) giant quadrupole resonances
(GQRs) including pairing using the time-dependent Hartree-
Fock + BCS (TDHF + BCS) approach. There are several
reasons to have chosen the GQR as a test ground: (i) As far
as we know, the isoscalar and isovector GQRs have never
been systematically investigated using a time-dependent EDF
framework, and therefore our study should make it possible
to identify weakness and strength of this approach in this
context. (ii) A systematic analysis exists using the quasiparticle
random-phase approximataion (QRPA) approach allowing for
comparisons [7]. (iii) A large amount of experimental data
exists especially for the IS GQR [8–15] and therefore not
only qualitative but also quantitative studies can be made. (iv)
The experimental observation of the IV GQR has recently
made some progress [16–18]. (v) Thanks to such progress, the
GQR was recently proposed as a possible alternative tool to
get information on the density dependence of the symmetry
energy [19].

In the present work, we have systematically investigated
the evolution of nuclei that are found spherical in their
ground states using two different Skyrme functionals. The
static properties and the dynamical evolution have been
obtained consistently using the HF + BCS and TDHF + BCS
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approaches. The TDHF + BCS method, while less general
than the time-dependent Hartree-Fock-Bogoliubov (TDHFB)
framework and leading to specific difficulties [5], has the
advantage that each evolution can be simulated in a reasonable
numerical time, allowing us to perform the calculation over a
wide range of nuclei.

In the following, the microscopic approach is briefly
described. Then, the protocol for selecting nuclei is discussed
as well as some average properties related to the pairing
correlations, the root-mean-square radius, etc. Properties of
the response in the low-lying and high-lying sectors are
investigated. We finally illustrate the usefulness of large scale
GQR study with the possibility to infer from it information on
the symmetry energy.

II. THE TDHF + BCS APPROACH
TO GIANT RESONANCES

The TDHF + BCS theory is a simplified version of the
TDHFB approach where the off-diagonal part of the pairing
field is neglected. Properties, advantages, and drawback of this
theory have been discussed extensively in Refs. [4–6] and we
only give below a minimal summary of important aspects to
treat giant resonances.

For a given nucleus, the initial wave function is obtained
using the EV8 code [20] that solves the HF + BCS equations
in r-space with the Skyrme functional in the mean-field term
and with a contact interaction in the pairing channel. After this
step, the N -body wave packet takes the form of a quasiparticle
vacuum written in a BCS form as

|�0〉 =
∏
k>0

(
u0

k + v0
ka

†
ka

†
k̄

)|−〉, (1)
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where u0
k and v0

k are usual components of the quasiparticle
states while a

†
k and a

†
k̄

are the creation operators of time-
reversed single-particle states, denoted respectively by |ϕk〉
and |ϕk̄〉.

It can be shown [4] that the state (1) is a stationary solution
of the TDHF + BCS set of coupled equations given by

ih̄∂t |ϕk〉 = (h[ρ](t) − ηk(t))|ϕk〉,
ih̄ṅk(t) = κk(t)�∗

k(t) − κ∗
k (t)�k(t), (2)

ih̄κ̇k(t) = κk(t)(ηk(t) + ηk(t)) + �k(t)(2nk(t) − 1),

where ηk(t) = 〈ϕk(t)|h[ρ]|ϕk(t)〉 and where nk(t) = |vk(t)|2
and κk(t) = u∗

k(t)vk(t) are respectively the occupation num-
bers and anomalous density components.

To study giant resonances, we follow the method standardly
used in time-dependent approaches (see for instance [21]) and
apply a small initial boost to the wave packet |�0〉:

|�(t = 0)〉 = e−iλQ̂|�0〉, (3)

where λ is a number that is small enough to ensure the validity
of the linear approximation. Q̂ here is an operator that depends
on the type of modes one would like to study. In the present
work, we are interested in the giant quadrupole response in
spherical nuclei where the excitation operators are given by [7]

Q̂IS
20 = e

A∑
i=1

r2
i Y20(
i), (4)

Q̂IV
20 = eN

A

Z∑
i=1

r2
i Y20(
i) − eZ

A

N∑
i=1

r2
i Y20(
i), (5)

respectively in the isoscalar and isovector channels and where
A, N , and Z are respectively the total, neutron and proton
numbers.

The boost (3) induces a local boost to the single-particle
components while leaving the initial (uk, vk) components
unchanged, i.e. uk(t0) = u0

k and vk(t0) = v0
k . The response of

the nucleus to the initial perturbation is studied by solving the
coupled set of TDHF + BCS equations in time. The strength
function can then be obtained by performing the Fourier
transform of the evolution of the operator Q̂. More precisely,
we have [4,21]

SQ(ω) = lim
λ→0

− 1

πλh̄

∫ ∞

t0

dt [Q(t) − Q(t0)] sin(ωt), (6)

where

Q(t) ≡ 〈�(t)|Q̂|�(t)〉 =
∑

k

〈ϕk(t)|Q̂|ϕk(t)〉nk(t). (7)

Note that here only spherical nuclei are considered and
Q(t0) = 0.

In practice, the time evolution cannot be performed up to
infinite time and a damping factor is assumed, i.e., sin(ωt) →
e−0t/2h̄ sin(ωt) in formula (6). Then, decomposing the small
amplitude vibration on the eigenstates of the system, denoted
by |�ν〉, associated with energy h̄ων = Eν − E0, E0 being the

ground state energy, the strength function is

SQ(E)= 1

2π

∑
ν

|〈�0|Q̂|�ν〉|2

×
{

0

(E − h̄ων)2 + 2
0

/
4

− 0

(E + h̄ων)2 + 2
0

/
4

}
.

(8)

In the zero-damping limit, one recovers the standard form of
the strength function generally used in the RPA or QRPA [22].
Note that in the following, we will simply use the notation
SIS and SIV for the isoscalar and isovector strength functions
respectively.

A. Selection of nuclei

In the present study, we have systematically considered
initial nuclei that are found to be spherical in the EV8 code.
The mesh size has been taken as �x = �y = �z = 0.8 fm
and the total size of the mesh is 2Lx = 2Ly = 2Lz = 22.4 fm.
We have checked that the mesh is large enough to not
bias the nuclear response in the considered nuclei. Two
different functionals, namely the Sly4 [23] and the SkM*
[24], have been employed in the mean-field channel. These
two functionals have the advantage of being widely used
in nuclei, allowing for comparison of the present results
with other approaches such as the QRPA of Ref. [7]. Only
proton-proton and neutron-neutron pairing are considered. The
pairing effective interaction is given by

Vτ (r, σ ; r′, σ ′) = V ττ
0

(
1 − η

ρ([r + r′]/2)

ρ0

)
δr,r′ [1 − Pσσ ′] ,

where Pσσ ′ is the spin exchange operator and where ρ0 =
0.16 fm−3 and τ = n, p. Results will be presented below only
for the case of surface interaction with parameters given in
Table I of Ref. [25]. The selection of nuclei is done starting
from a list of 749 even-even nuclei for which the masses have
been measured and which have a mass A � 8. In the EV8
code, the single-particle states of the Nilsson Hamiltonian are
first obtained to initiate the imaginary-time convergence. For
each nuclei, to avoid the convergence towards local minima
that sometimes might happen with EV8, we performed four
types of Nilsson calculations to initiate the self-consistent
convergence: one assuming spherical shape, one oblate, one
prolate, and one triaxial deformation. Nuclei are assumed to
be spherical if the deformation parameter after the imaginary
time verifies β2 < 0.001, where the deformation parameter is
defined through

β2 =
√

5

16π

4π

3R2A

〈
Q̂IS

20

〉
, (9)

with R = 1.2A1/3. Altogether, 324 and 263 nuclei have been
found to be spherical with SkM* and with Sly4 respectively.
The retained nuclei are shown in Fig. 1.

We see that both functionals, even if the region of sphericity
is slightly larger for SkM*, are globally in agreement with each
other. In particular, in medium and heavy nuclei, spherical
nuclei are mainly found around N or Z equal to 50 or 82
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FIG. 1. (Color online) Spherical nuclei retained in the present
study using Sly4 (red open circles) and SkM* (grey filled squares).
The horizontal and verticals lines indicate protons and neutron magic
numbers.

magic numbers. It should be mentioned that, in light nuclei, the
spherical shape is mainly preferred due to pairing correlations.
Indeed, when pairing is set to zero, many fewer nuclei are
found to be spherical in their ground state.

As an additional information, the root-mean-square (rms)
radii

√
〈r2〉 of different nuclei are shown as a function of

the nuclear mass A in Fig. 2. We see that both functionals
predict a very similar radius. This is consistent with the fact
that their incompressibility moduli are more or less the same:
K∞ = 216.6 MeV (SkM*) and K∞ = 229.9 MeV (Sly4). To
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FIG. 2. (Color online) (a) Root-mean-square radius
√

〈r2〉 ob-
tained for the selected spherical nuclei using the Sly4 (red circles)
or SkM* (black crosses) functional. The simple approximation√

〈r2〉 =
√

3
5 (1.2A1/3) is also shown as a reference with a solid blue

line. (b) The same quantity divided by A1/3.
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FIG. 3. (Color online) Evolution of the difference between the
computed charge rms and the fitted one using formula (10). Results
with the Sly4 and SkM* functionals are respectively shown in panels
(a) and (b).

further illustrate how shell effects might affect the rms radius,
following Ref. [26] we have fitted the calculated proton rms
radius using the formula

F (N,Z) =
√

3

5
a0A

1/3

[
1 + aS

A
− aI

(
N − Z

A

)]
. (10)

For both functionals, the fit gives a0 = 1.22 fm. For Sly4 aS =
2.035 fm and aI = 0.186 fm, while for SkM* aS = 1.9206 fm
and aI = 0.189 fm. Figure 3 displays the difference between
the calculated charge rms radius and the fitted value for the
Sly4 (b) and SkM* (a) functionals. This figure illustrates the
impact of magicity and shell closure that tends to stabilize
more compact shapes.

Finally, to characterize the pairing surface interaction, taken
from Ref. [25] and used in the present study, the neutron
pairing gap obtained for the Ca, Ni, Sn and Pb isotopic chain
is displayed as a function of the neutron number in Fig. 4.
Several comments can be made. First, these gaps are slightly
higher than those reported in Ref. [7]. However, it should be
noted that the BCS gap that is a direct output from EV8 is
different from the three- (or five-) point gap formula generally
used to compare with experiments and that has been also used
to adjust the pairing strength in Ref. [25]. We also see in
this figure that the present surface pairing interaction leads to
nonzero pairing for 40Ca. Finally, we would like to mention that
only nuclei that are not too exotic can be studied in the present
work due to the well known gas problem appearing in the BCS
framework [27]. This is clearly seen in the x axis of Fig. 4 that
is much less extended than in Ref. [7]. Nevertheless, the area
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FIG. 4. (Color online) Illustration of the pairing gap in the (a) Ca,
(b) Ni, (c) Sn, and (d) Pb isotopes retained in the present work using
the Sly4 (red circles) or SkM* (black crosses) functional. Note that
the gap is shown even if the nucleus is not spherical.

of the nuclear chart explored in the present work corresponds
to nuclei that can be realistically accessed in current and future
nuclear reaction experiments.

B. Time-dependent evolution

The time evolution of each nucleus reported in Fig. 1
has been systematically performed using the TDHF3D code
[28] with its BCS extension as discussed in Ref. [6].
The initial condition is the spherical ground state obtained
with EV8 followed either by a quadrupole isoscalar or
isovector boost. The time-dependent evolution is performed
in r-space using the mesh-step parameter as in the static
case and with a mesh size Lx = Ly = 2Lz = 22.4 fm. The
numerical time step is given by �t = 1.5 × 10−24 s and
the evolutions are followed up to a maximal time T =
50 × 10−22 s.

As an illustration of the IS or IV quadrupole evolution,
we show in Fig. 5 two illustrations of nuclei: one doubly
magic (132Sn) and one with a neutron open shell (120Sn). The
corresponding IS and IV response functions are shown in
the right side of this figure. These evolutions illustrate the
type of behavior typically observed in medium and heavy
nuclei. From these figures, one could make the following
statements:

(i) Collective energy: Both the IS and IV responses present
a highly collective state at the expected energies E 	 15
and 25 MeV respectively.

(ii) Fragmentation and damping: The IS GQR displays
beating between the high-energy collective modes and
the ones at lower energy (�5 MeV). However the IS
motion is not damped for a long time. This stems from
the fact that the high-energy peak corresponds to a
single highly collective frequency. In contrast, in the
IV GQR, an effective damping is observed at short
time, stemming from the fragmentation of the strength
around the collective energy (	25 MeV) that is similar
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FIG. 5. (Color online) Left: Evolution of the quadrupole moments obtained using TDHF + BCS and the Sly4 functional of the isoscalar
(a) and isovector (c) quadrupole moments for a doubly closed shell nucleus 132Sn (red thick solid line) and for a neutron open shell nucleus
120Sn (thin solid line). Right: corresponding response functions using Eq. (6) with a damping factor 0 = 1 MeV.
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FIG. 6. (Color online) (a) Evolution of the isoscalar (red thick
line) and the isovector (blue thin line) quadrupole moments in 38S
obtained using TDHF + BCS with the SkM* functional. Note that
here the isovector quadrupole moment is multiplied by a factor of 10.
(b) Corresponding strength functions for the isoscalar (red thick line)
and the isovector (blue dashed line) excitations.

to the Landau fragmentation generally observed in the
monopole response of light nuclei.

(iii) Low-lying state: Finally, by comparing the two curves
in panel (b), we see that the open shell nuclei have an
extra low-lying 2+ state that is expected for superfluid
systems (see for instance [7]).

In Fig. 6, a typical evolution and response of a lighter
nucleus is shown. For lower-mass systems the fragmentation
is enhanced in the IV channel while a small but nonzero
fragmentation is seen also in the IS case. We will see
below that the fragmentation is seen for A � 100. The
different aspects—collective energies, damping, and low-lying
states—are discussed systematically below.

III. SYSTEMATIC STUDY OF SPHERICAL NUCLEI

The different aspects discussed in previous section have
been systematically investigated. The IS and IV GQR strength
distributions computed for all nuclei shown in Fig. 1 can be
obtained from the Supplemental Material included with this
publication [29].

A. Energy weighted sum rule

The energy weighted sum rule (EWSR) provides a stringent
test of the physical and numerical aspects. These sum rules
have been extensively discussed in the literature within the
energy density functional approaches [30,31] based on Skyrme
functional theories and we give below only the constraints that
the strength should fulfill.
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FIG. 7. (Color online) Percentage of the IS GQR EWSR ex-
hausted by the integral of the strength function SIS(E) and obtained
with TDHF + BCS code as a function of the mass of the nucleus.
The reference sum rule is computed using the right side of Eq. (11).
Results obtained with the Sly4 and SkM* functionals are respectively
shown using red circles and black crosses.

Starting from the specific excitation operator (4), the EWSR
for the IS GQR is given by [32]∫ ∞

0
ESIS(E)dE = e2h̄2

8πm
λ(2λ + 1)(A − 1)〈r2λ−2〉

= 16.501(A − 1)〈r2〉 e2fm4MeV. (11)

In the first expression λ = 2 since we are considering
the GQR. The factor (A − 1) instead of A appears due to the
center-of-mass correction [33]. The numerical estimates of the
sum rule (11) have been made using the value h̄ = 6.58211 ×
10−22 MeV s and m = 1.0446879 × 10−44 MeV s2fm−2, while
the mean radii 〈r2〉 are those computed directly in the static
mean field (Fig. 2). The ratios between the integrals of the
strength obtained with TDHF + BCS for different nuclei and
the right side of Eq. (11) are shown in Fig. 7. For all nuclei
considered here, an error lower than 0.5% is obtained on the
total EWSR.

A similar study can be made for the IV GQR. In that case,
the sum rule is given by [7,33,34]∫ ∞

0
ESIV (E)dE = e2h̄2

8πm

(1 − A)

A
λ(2λ + 1)

×
(

N2Z

A2
〈r2λ−2〉p + NZ2

A2
〈r2λ−2〉n

)
+CIV (λ), (12)

For λ = 2, 〈r2λ−2〉p/n identifies with the proton and neutron
mean radii that are again estimated directly with EV8. CIV is
the standard corrective term that stems from the momentum
part of the Skyrme functional. For the IV GQR, we have [7]

CIV (λ = 2) = e2

4

{
t1

(
1 + x1

2

)
+ t2

(
1 + x2

2

)}

×
∫

|∇[r2Y20(
)]|2ρn(r)ρp(r)dr, (13)

where ρp and ρn are the neutron and proton local densities.
The percentage of the EWSR exhausted by the IV strength
and obtained with TDHF + BCS are systematically shown in

044310-5



GUILLAUME SCAMPS AND DENIS LACROIX PHYSICAL REVIEW C 88, 044310 (2013)

99.5

99.55

99.6

99.65

99.7

99.75

99.8

99.85

%
E

W
S
R

0 50 100 150 200 250

A

FIG. 8. (Color online) The same as Fig. 7 for the IV GQR.

Fig. 8. Again, almost 100% of the strength is exhausted. It can
be noted that the residual error on the EWSR increases as the
mass increases. This error is mainly due to the mesh step. For
instance, decreasing the mesh step from 0.8 to 0.6 fm in 128Sn
for the SkM* case reduces the error from 0.28% to 0.08% for
the IS GQR and from 0.41% to 0.10% for the IV GQR.

B. GQR: Mean energy and width

For each nucleus, the mean collective energy and width of
the high-lying giant resonance has been extracted by fitting the
main collective peak with a Lorentzian distribution,

L(E) = a0C

2π

1

(E − EC)2 + (C/2)2
, (14)

where a0, EC , and C are the fitting parameters. While EC

is rather insensitive to the damping factor 0, C mixes
physical effects associated with the strength fragmentation
(associated with a physical width ) with the assumed
smoothing parameter 0. By changing the value of 0, it can be
shown that the physical width can be simply obtained through
the linear relation

 	 C − 0. (15)

The above strategy to obtain the mean energies and widths
is much more precise than the method based on weighted
moments of the strength, i.e.,

EC 	 m1

m0
, C 	

√
m2/m0 − (m1/m0)2, (16)

where mk stands for the moment of order k of the strength in
a restricted region of energy. We have found that this method
is too sensitive to the integration region as well as to the
smoothing parameter 0.

The collective energy, denoted as E2+, and the width
 obtained after the fit in combination with Eq. (15) are
systematically reported as a function of the mass of the nucleus
in Fig. 9. Some experimental data taken from [8] are also shown
as a reference.

Focusing first on the mean collective energy, we see that
both functionals provide the correct order of magnitude of the
energy over the nuclear chart with the proper A dependence.
The SkM* functional is systematically closer to experimental
observation. However, one should keep in mind that such a
direct comparison should be made with care due to the fact
that the technique used to get the collective energies and widths

(a)

(b)
10

12

14

16

18

20

22

E
2
+

[M
eV

]

0

1

2

3

4

5

6

7

8

9

10

Γ
[M

eV
]

0 50 100 150 200 250

A

FIG. 9. (Color online) Collective energy (a) and width (b) of the
IS GQR systematically obtained for spherical nuclei using the SkM*
(black crosses) and Sly4 (red circles) functionals. The blue triangles
correspond to experimental data taken from [8].

as well as the energy range considered experimentally might
differ from the ones we used.

Interestingly enough, the Sly4 functional gives collective
energies that are systematically higher compared to the SkM*
case by almost 1 MeV for A � 70. Such a sensitivity in IS GQR
has been already pointed out in Refs. [35,36]. It should be noted
that a 1 MeV difference, in view of desired accuracy for EDF,
is significant enough that the GQR might become a global
criteria for the validity of a given functional parametrization.

Panel (b) of Fig. 9 illustrates that the present mean-
field calculation completely misses the fragmentation of the
strength. The strength function is slightly fragmented for
light nuclei but for medium and heavy nuclei (A > 70) the
high-lying collective energy essentially corresponds to a single
collective energy without any spreading. This is clearly at
variance with the experimental observation where a rather
significant fragmentation is systematically observed. This
discrepancy is not surprising since a mean-field theory is
expected to reproduce one-body observables but cannot really
include two-body effects. In the case of giant resonances, the
fragmentation of the strength reflects the coupling to complex
internal degrees of freedom such as the coupling to two
particles and two holes induced by in-medium collisions [37]
or the coupling to low-lying surface modes [38,39]. See for
instance the extensive discussion in Ref. [40]. As we know
from QRPA calculation, the inclusion of pairing correlations
does not cure this problem.

To complete the study, the collective energy and width of the
IV GQR are also shown in Fig. 10. The collective energies of
both functionals are in global agreement with the experiments
except for light nuclei. Regarding the width, the situation is
slightly different compared to the IS case since the collective
response is always fragmented. The fragmentation obtained
with the mean-field theory accounts approximately for half of
the fragmentation observed experimentally.
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FIG. 10. (Color online) The same as Fig. 9 for the IV GQR. The
experimental data are taken from [16,41].

It is interesting to note that the repartition of the EWSR
between the low- and high-energy sectors in the IV case
is completely opposite compared to the IS GQR. The non-
negligible fraction of the EWSR observed at low energy for
light nuclei A � 50 vanishes for larger mass, leading to almost
100% of the strength at high energy in heavy nuclei.

C. Average behavior

The IS and IV GQR energies can be appropriately fitted
using a polynomial expansion in powers of A−1/3, i.e.,

E2+ (A) = a1A
−1/3 + a2A

−2/3 + a3A
−1 + · · · . (17)

Truncating at second order provides a rather good description
of the IS GQR but fails to reproduce the IV GQR. In all
cases, a polynomial of order 3 gives an excellent fit of the
average energy evolution along the nuclear chart. In Table I,
the set of ai parameters obtained for the IS and IV energies and
for the two considered forces is reported. Results of the fit are
shown in Fig. 11 where the quantity A1/3E2+ (A) is displayed
as a function of the mass A for the two Skyrme functionals.
For the sake of completeness we also give in Table I
the coefficients obtained by fitting the experimental points
displayed respectively in Figs. 9 and 10 using expression (17).

TABLE I. Parameters deduced for the fit of the IS and IV main
collective energies with a third-order polynomial in A−1/3, Eq. (17).

a1 (MeV) a2 (MeV) a3 (MeV)

IS SkM* 65.03 52.93 −211.67
IS Sly4 75.50 3.13 −143.69
IS expt. 72.61 −37.45 0.002

IV SkM* 177 −255.383 10.05
IV Sly4 169.36 −223.16 −13.06
IV expt. 165.19 −182.09 −37.24

A
1/

3 E
(M

eV
)

A

FIG. 11. (Color online) Evolution of the quantity A1/3E2+ (A)
as a function of mass. The IS (lowest energy) and IV (highest
energy) energies are reported for the SkM* and Sly4 functional using
respectively black crosses and red filled circles. Result of the fit
using a third-order polynomial with parameters reported in Table I
are shown with blue solid and green dot-dashed lines for the SkM*
and Sly4 functionals respectively.

D. Shell effect on the GQR response

Shell effects are expected to induce small oscillations
around the average dependence of the GQR energies as a
function of mass. Thanks to the previous analysis, the local
fluctuations of the mean energy can be deconvoluted from the
average by considering the quantity

�E(A) = E2+(A) − E2+ (A), (18)

where E2+(A) is the collective energy while E2+ (A) is
computed from formula (17). This quantity is systematically
reported as a function of the neutron number N in Fig. 12 for
the IS and IV GQRs. Similar curves (not shown) are obtained
when �E is plotted as a function of the proton number Z.

As expected, we do observe several maxima that exactly
match the locations of shell closure at magic numbers (N =
28, 50, and 82). This is due to the appearance of larger gaps
in single-particle effective energies inducing larger energies of
particle-hole excitations from which the collective states are
built up. Interestingly enough the deviation �E also presents
some minima that turn out to be exactly located at the positions
of the harmonic oscillator magic numbers without spin-orbit
effect (N = 20, 40, and 70). As we will see below, this effect
could be understood as a competition between the conserved
parity during the excitation and the pairing correlations.

IV. PAIRING EFFECT ON THE GQR RESPONSE

In Ref. [6] it was shown that one of the main effects of
pairing on dynamics is to induce partial occupation numbers
of single-particle orbitals. This effect can already be accounted
for at the mean-field level without pairing by considering a
statistical ensemble of independent particles instead of a Slater
determinant. In this case, considering an open shell nucleus,
the occupation numbers of the last occupied shell are no longer
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FIG. 12. (Color online) Local fluctuations �E of the IS GQR [panels (c) and (d)] and the IV GQR [panels (a) and (b)] as a function of
the neutron number N using Sly4 [panels (b) and (d)] and SkM* [panels (a) and (c)]. The up arrows indicate the magic numbers (including
spin-orbit effect) (N = 28, 50, 82) while the down arrows correspond to the original harmonic oscillator magic numbers without the spin-orbit
effect (N = 20, 40, 70).

zero or one but are equal to the number of nucleons in the shell
divided by the shell degeneracy; this is the so-called equal-
filling approximation. For the reason discussed in Ref. [6], this
approximation can be regarded as the no-pairing reference for
TDHF + BCS.

In Figs. 13 and 14, the IS GQR and IV GQR responses are
displayed using different approximations for the evolution.
Two TDHF + BCS are considered, one where the occupation
numbers and correlations are frozen frozen occupation approx-
imation (FOA) in time and one where the full TDHF + BCS
equations of motion are solved in time. The FOA has the
advantage that it respects the continuity equation, in contrast
to TDHF + BCS [5]. Note that since here we consider a
single system, this drawback of TDHF + BCS is not crucial.
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FIG. 13. (Color online) Comparison between the IS GQR re-
sponse obtained with Sly4 using TDHF + BCS (red solid line),
TDHF + BCS with FOA (black filled circles), and TDHF (blue thin
line) for the 120Sn nucleus.

The response functions with pairing are compared with the
TDHF + equal-filling approximation case.

The first remarkable aspect is that the two calculations with
pairing, i.e., the complete one and the FOA, are exactly on top
of each other. This confirms that, in the TDHF + BCS limit,
the main effect of pairing on small-amplitude vibrations stems
from the initial ground state correlations.

Let us now consider the difference between the
TDHF + BCS case and the no-pairing limit. We focus first on
the high-energy region (E � 10 MeV). To quantify further the
pairing effect on high-lying states, the main peak collective
energy of the IS GQR is systematically reported for the Sn
isotopes in panel (a) of Fig. 15 and for the three types of
evolutions.

Since at shell closure, N = 50 and N = 82, the HF-BCS
ground state identifies with the HF solution, the three theories
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FIG. 14. (Color online) The same as Fig. 13 for the IV GQR.
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FIG. 15. (Color online) (a) Evolution of the IS GQR energy for
the Sn isotopic chain as a function of the neutron number. (b) The
quantity

∑
i ni(t0)[1 − ni(t0)] is shown. This quantity gives a measure

of the fragmentation of single-particle occupation numbers around the
Fermi energy. Results for TDHF + BCS (red squares), FOA (black
stars), and TDHF with the equal-filling approximation (green circles)
using the Sly4 functional are shown. The TDHF + BCS results with
SkM* (brown crosses) are also shown for comparison. In panel (a),
the experimental values from [9] (blue open triangles) are also shown
for comparison.

are exactly on top of each other. As N goes from N = 50 to
N = 82, all theories predict a decrease of the GQR energy
consistent with the expected A−1/3 dependence. However,
while the theory with pairing presents a smooth U shape,
the TDHF approach is slightly lower and has a minimum
at N = 70, that corresponds to one of the magic numbers
of the harmonic oscillator (HO) without spin-orbit effect.
This anomaly observed in the TDHF case is located at the
HO shell closure corresponding to the (1g, 2d, 3s) shell,
and can be directly assigned to a parity effect. Indeed, the
collective excitations have definite parities, here π = +1.
When the number of neutrons increases, the parity of occupied
single-particle states changes from positive (below N = 70)
to negative (above N = 70) leading to a sudden change
in the particle-hole state on which the collective excitation
is built up. The U shape observed in the TDHF + BCS
case can be seen as a fossil signature of the parity effect.
Indeed, due to pairing correlations, occupation numbers are
more fragmented around the Fermi energy. In Fig. 15, the
quantity

∑
i ni(1 − ni) is shown. This quantity measure the

fragmentation of single-particle occupation numbers and falls
to zero when all occupation numbers are equal to zero or one.
This is the case in the BCS approximation at (spin-orbit) magic
number or in the TDHF case when a subshell is fully occupied.
Again, except around magic numbers, the fragmentation is
more pronounced in the BCS compared to the TDHF case. In
particular, around N = 70, single-particle states are partially
occupied in BCS. Accordingly, the anomaly observed in TDHF
is reduced but still yields the U shape. For the SkM* functional

the U shape is less pronounced because the fragmentation is
larger than with Sly4. As seen in Fig. 12, the U shape that
results from the competition between parity conservation and
paring is observed all along the mass table (down arrows) but
tends to be less pronounced as the mass increases.

In any case, we see that the difference between the
cases with or without pairing is less than the difference
observed using different functionals (Sly4 and SkM* here).
Our conclusion is that the main source of uncertainty in the
prediction of high-lying GQR collective states stems from the
functional used in the mean-field channel. We also see that all
approximations lie above the experimental values. This might
appear as a failure of the theory. However, one should keep
in mind that correlations beyond the present approach that
account for instance for ph-phonon coupling are expected to
shift, most likely down the collective frequencies [40].

1. Systematic of low-lying 2+ mode

Pairing is known to play a crucial role in the low-lying 2+
states (see for instance the discussion in Ref. [42]) at least due
to the induced fragmentation of the single-particle occupation
numbers near the Fermi energy. While the high-energy sectors
of the response are only slightly dependent on the treatment
of (i) pairing effects and (ii) dynamical reorganization of
single-particle occupation numbers, the situation is completely
different in the low-energy part. Figure 13 illustrates that
calculations without pairing (TDHF with equal filling) present
a single peak at low energy around E 	 6 MeV; the full
TDHF + BCS and the FOA dynamics display a more frag-
mented strength at low energy. In particular, new peaks are
present at very low energy.

In order to have the first 2+ energy and the corresponding
transition probability, we used a different excitation operator
that acts only on protons,

Q̂ = e

Z∑
i=1

r2
i Y20(
i). (19)

The energy of the lowest peak obtained with TDHF + BCS
has been systematically obtained by fitting the strength using
the formula (A2) for energies E � 7 MeV (see the Appendix).
It is worth mentioning that we observed the same difficulty
as in Ref. [45] related to the convergence of low-lying states
with the model parameters. Even if the nucleus have very
low β2 values, there is a slight dependence of the response
on the nucleus orientation. This dependence is reduced if the
mesh parameter decreases and is not seen in the FOA limit.
To reduce this effect, we have selected only nuclei which have
β2 < 10−8. This leads to an ensemble of 112 nuclei.

The results are reported as a function of mass in panel
(a) of Fig. 16; for comparison, the results of QRPA and the
experimental values of the first 2+ are also shown. In order to
quantify the agreement between the TDHF + BCS and QRPA
theories, the standard deviation

σ =
√√√√ 1

N

N∑
i

(
Ecalc

i − E
exp
i

)2
(20)
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FIG. 16. (Color online) Systematic comparison between the
lowest 2+ energy (a) and transition probability (b) obtained with
TDHF + BCS using the Sly4 functional (red filled circles) and the
experimental first 2+ excited state (blue open triangles) from [43].
The QRPA results from [7,44] are also shown for comparison (black
crosses).

was computed. For the TDHF + BCS theory σ = 0.77 MeV,
while for QRPA from [44] σ = 1.00 MeV for the same set of
nuclei. Note that the effective interactions used in the pairing
channel are different in the two models. The small deviation
shows that TDHF + BCS, while being less general than the
full TDHFB approach can be rather accurate.

The situation is much less satisfactory for the B(E2,↑)
values. Once the lowest peak has been fitted using Eq. (14)
and assuming that the physical width is zero for this peak,
i.e., C 	 0, then the fitted parameter a0 identifies with the
transition probability |〈�0|Q̂|�1〉|2. The B(E2,↑) value is
computed through [22]

B(E2,↑) = (2λ + 1)|〈�1|Q̂|�0〉|2, (21)

with λ = 2 for a quadrupole excitation. The transition prob-
abilities obtained in this way are systematically reported in
panel (b) of Fig. 16. It was already noted in Ref. [44] that
the QRPA leads to a significant underestimation ofB(E2,↑)
compared to experiments. The situation is even worse in
the present TDHF + BCS calculation where the computed
B(E2,↑) is always lower compared to the QRPA case,
sometimes by an order of magnitude. We have investigated
how a change of the pairing strength, pairing interaction
type (constant pairing, volume, etc.), or particle number
conservation through projection on a good particle might affect
the response. While the high-energy sector is rather insensitive
to any of these effects, the low-energy part is generally found
to vary. However, at maximum a factor of 2 of increase or
decrease is obtained that could not cure the underestimation
problem. Our conclusion is that the TDHF + BCS approach is
predictive for the energies of the low-lying state but not for
B(E2,↑). It seems that the QRPA, and thus TDHFB, improve
the comparison but still miss part of the collectivity.

V. EXTRACTION OF THE DENSITY DEPENDENCE OF
THE SYMMETRY ENERGY FROM THE IS AND IV GQR

The possibility to measure more precisely the IV GQR
in nuclei [16,17] was recently proposed as a possible way
to access to the symmetry energy at density lower than the
saturation density [19]. In Ref. [19], a precise analysis was
made on the specific 208Pb nucleus. The aim of our work is
certainly not to give a detailed discussion of the symmetry
energy. However, we illustrate below how a systematic study
made on a large scale can bring additional information.

In the present work, we follow closely Ref. [19]. In that
work, it was shown that an approximation of the symmetry
energy S is given by the formula

S(A) 	 ε∞
F

3

{
A2/3

8(ε∞
F )2

[ (
EIV

2+
)2 − 2

(
EIS

2+
)2 ] + 1

}
, (22)

where ε∞
F is the infinite nuclear matter Fermi energy at

saturation, that is assumed here to be equal to 37 MeV. EIS
2+

and EIV
2+ are respectively the isoscalar and isovector collective

energies.
The quantity S(A) is displayed in Fig. 17 using the IS

and IV GQR main peak energies reported in panel (a) of
Figs. 9 and 10. Following Ref. [46], the mass dependence
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FIG. 17. (Color online) (a) Symmetry energy as a function of the
mass A extracted using Eq. (22) for the Sly4 (red filled circles) and
the SkM* (black crosses) cases. The blue solid line corresponds to the
curve obtained using the experimental data (see text for detail), the
light blue area corresponds to the uncertainty when accounting for
the error bars on the IV GQR energy solely, while the light green area
is the uncertainty when we assume error bars reduced to 500 keV. (b)
The same as in panel (a) except that the symmetry energy is displayed
as a function of the density. The symmetry energy in infinite nuclear
matter (Eq. (4) of Ref. [47]) is also shown for the Sly4 (dashed line)
and SkM* (dot-dashed line) cases.
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can be transformed into an effective density dependence
using

ρ = ρ0 − ρ0/(1 + cA1/3), (23)

where c is set to impose ρ = 0.1 fm−3 for 208Pb. Here ρ0

stands for the saturation density that corresponds to ρ0 =
0.16 fm−3 for both functionals [23,24], leading to c = 0.28.
In panel (b) of Fig. 17, the quantity S obtained with Eq. (22)
is shown as a function of the density ρ deduced from the
formula (23).

Although the IV GQR data are rather poor, similar curves
can be obtained using the experimental points reported in
Figs. 9 and Fig. 10. To smooth out the uncertainty on
experimental collective energies and be able to get information
on a wider range of nuclei, we have used the polynomial fit of
the experimental points, Eq. (17), instead of the experimental
points themselves. Using parameters reported in Table I, a
mean tendency of the IS and IV GQRs can be computed for
all masses that can be used in formula (22). The results is
shown by the solid line in Fig. 17. The error bars, especially
on the IV GQR are rather large (1–2 MeV). To see the effect
of the IV GQR, we also show in Fig. 17 with the light
blue area the uncertainty due to such error bars. The lower
and upper boundaries of the area are obtained by using the
IV collective energy plus or minus the energy error bars
(where the experimental error bars have been fitted by a
simple linear function). Finally, we also show in the figure
the density dependence of the symmetry energy obtained
with the Skyrme functional in infinite nuclear matter, called
hereafter S∞, whose expression can be found for instance in
Refs. [47,48].

With all these curves at hand some interesting conclusions
can be drawn. First, comparing the results obtained with the
two Skyrme functionals, we see that for low masses, A � 70,
both functionals agree with each other. However, as the mass
increases, a significant difference can be observed in the
symmetry energy extracted with (22). This difference can
obviously be traced back to the difference observed in the
collective peak energies. It should be noted that the symmetry
energy is calculated as a difference of energies of collective
peaks. Such differences might still lead to the same value
for S(ρ). However, we see that the IS peak in SkM* is
systematically lower compared to Sly4 while for the IV peak
it is the opposite. Therefore, the differences in energies add up
and cooperate to further show up in the finite system symmetry
energy.

The symmetry energies extracted from the GQR are sys-
tematically lower than the ones obtained analytically in infinite
nuclear matter. In particular, analytical expressions lead to
higher symmetry energies in Sly4 (dashed line) compared to
SkM* (dot-dashed line) while the opposite is seen from the
GQR based symmetry energy. It could also be noted that a
rather significant difference is observed between S∞(ρ) and
the GQR based symmetry energy. Besides the absolute value,
the slope is also different between the infinite system and finite
system cases. These differences clearly point out subtle finite
size effects when Eq. (22) is used, deserving more studies that
are out of the scope of the present work.

Applying formula (22) with experimental collective ener-
gies already gives gross properties of the symmetry energy
as a function of mass. The main source of uncertainty is
coming from the very few measurements made for the IV
GQR and from their large error bars. Nevertheless we see that
the experimentally deduced symmetry energy is globally in
agreement with the SkM* prediction for density above 0.085
that corresponds to A � 70, while it is not with the Sly4
case. To illustrate the impact of improving the measurement
precision, we have artificially reduced the error bars down to
500 keV (light green filled area).

VI. CONCLUSION

The IS and IV responses in spherical nuclei have been
obtained over a large set of nuclei using the TDHF + BCS
approach based on different Skyrme energy density func-
tionals. The present study is first a proof of principle that
such an approach is fast and simple enough to make possible
qualitative and quantitative systematics over the nuclear chart.
It is shown that the time-dependent EDF method globally
reproduces the average evolution of the main collective energy
but, due to the missing two-body effects, cannot reproduce
its spreading width. A careful analysis has shown that the
mean collective energy does depend rather significantly on
the Skyrme functional. The dependence is large enough to
eventually use the GQR as a criteria of selection of the
functional itself. In the present work, it is shown that the SkM*
reproduces much better the experimental IS GQR than the Sly4
functional.

Besides the global effects, the local fluctuations due to shell
structure effects, the parity conservation, as well pairing are
discussed. It is shown that all these effects might contributes
locally to the fluctuations around the average properties.
While around magic numbers the shell stabilization induces
an increase of the GQR energy, in between magic numbers the
GQR presents a U shape that is the result of the competition
between pairing and parity effects.

The possibility to describe low-lying 2+ state with our
time-dependent approach is discussed. It is shown that the
TDHF + BCS method is able to globally describe the energy
of the first 2+ state but strongly underestimates the transition
operator.

Finally, the possible extraction of the density dependence
of the symmetry energy from IS and IV GQRs is discussed. We
show that a large-scale calculation like the one presented here
can provide interesting information on the symmetry energy
but requires a better understanding of finite-size effects and
would benefit from high-precision measurement of the IV
GQR.

All response functions used in the present work can be
downloaded with the Supplemental Material [29].

APPENDIX: STRENGTH FUNCTION OBTAINED
IN REAL TIME CALCULATIONS

In order to determine the peak with the lowest energy,
we have developed a fitting procedure that take into account
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the finite time of the evolution. Starting from the evolution of Q(t),

Q(t) 	 Q(0) + iλ
∑

ν

|〈�ν |Q̂|�0〉|2
(
e−i Eν t

h̄ − ei Eν t
h̄

)
, (A1)

the Fourier transform, obtained with an integration between the time t0 and the final time T , with a damping factor C ,
becomes

SQ(ω) = − 1

πλh̄
Im

∫ T

0
e− C

2h̄ t [Q(t) − Q(0)] sin(ωt)dt

= 1

π

N∑
ν

|〈�ν |Q̂|�0〉|2
{

−C

2

[
e− CT

2h̄ cos
( (E−Eν )T

h̄

) − 1
] + (E − Eν)e− CT

2h̄ sin
( (E−Eν )T

h̄

)
(C

2 )2 + (E − Eν)2

−−C

2

[
e− CT

2h̄ cos
( (E+Eν )T

2h̄

) − 1
] + (E + Eν)e− CT

2h̄ sin
( (E+Eν )T

h̄

)
(

C

2

)2 + (E + Eν)2

}
. (A2)

In the present article, fits are performed using the above formula that accounts for both the smoothing parameter and the finite
time interval for the evolution. In practice, for the low-lying state, due to the possible appearance of several peaks, the fit is made
assuming up to N = 7 peaks in the energy region E � 7 MeV.

[1] Y. Hashimoto, Eur. Phys. J. A 48, 1 (2012).
[2] B. Avez, C. Simenel, and Ph. Chomaz, Phys. Rev. C 78, 044318

(2008).
[3] I. Stetcu, A. Bulgac, P. Magierski, and K. J. Roche, Phys. Rev.

C 84, 051309(R) (2011).
[4] S. Ebata, T. Nakatsukasa, T. Inakura, K. Yoshida, Y. Hashimoto,

and K. Yabana, Phys. Rev. C 82, 034306 (2010).
[5] G. Scamps, D. Lacroix, G. F. Bertsch, and K. Washiyama, Phys.

Rev. C 85, 034328 (2012).
[6] G. Scamps and D. Lacroix, Phys. Rev. C 87, 014605 (2013).
[7] J. Terasaki and J. Engel, Phys. Rev. C 74, 044301 (2006).
[8] F. E. Bertrand, Nucl. Phys. A 354, 129c (1981).
[9] T. Li et al., Phys. Rev. C 81, 034309 (2010).

[10] Y.-W. Lui, D. H. Youngblood, S. Shlomo, X. Chen, Y. Tokimoto,
Krishichayan, M. Anders, and J. Button, Phys. Rev. C 83, 044327
(2011).

[11] M. Buenerd, J. Phys. (Paris) Colloq. 45, C4-115 (1984).
[12] D. H. Youngblood, P. Bogucki, J. D. Bronson, U. Garg, Y.-W.

Lui, and C. M. Rozsa, Phys. Rev. C 23, 1997 (1981).
[13] W. T. A. Borghols et al., Nucl. Phys. A 504, 231 (1989).
[14] M. M. Sharma, W. T. A. Borghols, S. Brandenburg, S. Crona,

A. van der Woude, and M. N. Harakeh, Phys. Rev. C 38, 2562
(1988).

[15] S. Brandenburg, Ph.D. thesis, University of Groningen, 1985
(unpublished).

[16] D. A. Sims et al., Phys. Rev. C 55, 1288 (1997).
[17] T. Ichihara, M. Ishihara, H. Ohnuma, T. Niizeki, Y. Satou,

H. Okamura, S. Kubono, M. H. Tanaka, and Y. Fuchi, Phys.
Rev. Lett. 89, 142501 (2002).

[18] S. S. Henshaw, M. W. Ahmed, G. Feldman, A. M. Nathan, and
H. R. Weller, Phys. Rev. Lett. 107, 222501 (2011).

[19] X. Roca-Maza, M. Brenna, B. K. Agrawal, P. F. Bortignon,
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