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Particle-number-conserving theory for nuclear pairing
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A new microscopic theory for nuclear pairing is proposed through the generalized density matrix formalism.
Instead of the variation principle, we start from the Heisenberg equations of motion for density matrix operators
K12 ≡ a2a1. The theory generalizes the well-known particle-particle random-phase approximation. Its analytical
equations are as simple as that of the BCS theory and can be solved within a similar computer time if the model
space is not too large. The current theory conserves the exact particle number and is valid at arbitrary pairing
strength (including those below the BCS critical strength). It is also of interest to other mesoscopic systems such
as ultrasmall metallic grains.

DOI: 10.1103/PhysRevC.88.044303 PACS number(s): 21.60.Ev, 21.10.Re, 21.30.Fe, 27.40.+z

I. INTRODUCTION

The BCS theory was first proposed as a microscopic
theory for superconductivity [1]. Later it was adopted in
nuclear physics for treating pairing correlations [2,3]. After
fifty years, it is still one of the “standard” treatments [4],
mainly because of its simplicity and the convenience in
adding higher-order correlations [for example, by quasiparticle
random-phase approximation (QRPA)]. However, there are
two main disadvantages of the theory applied to finite nuclei,
as compared to macroscopic quantum systems. First, by
introducing quasiparticles, it destroys particle-number conser-
vation. This is often a problem because the effective number
of particles involved in nuclear pairing is never very large.
Second, for the nuclear system with finite level spacing, the
BCS theory requires a minimum pairing strength. Below that
strength it gives only trivial (vanishing) solutions, while in
reality pairing always has an effect.

A common improvement is to use the “pair condensate”
[Eq. (1), with definite particle number] as the variational
ground state [5] instead of the BCS “quasiparticle vacuum”.
Usually the criteria to determine the variational parame-
ters is minimizing the energy in the variation principle
[5–10].

In this work we propose a new criteria for determining
the wave function (1). Instead of the variation principle,
we start from the Heisenberg equations of motion (EOM)
for density matrix operators K12 ≡ a2a1. The current theory
generalizes the well-known particle-particle random-phase ap-
proximation (pp-RPA) describing pairing vibrations at magic
nuclei [11–14].

We note that the pairing Hamiltonian could be solved
exactly by direct numerical diagonalization in spaces with
fixed seniority [15,16] or by the Monte Carlo algorithm
[17–19]. And there exist exact algebraic solutions for a
special class [20,21] of the pairing Hamiltonian following
Richardson’s method [22]. The advantage of the current
EOM method should be its simplicity and the convenience
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for treating higher-order correlations along the same line, as
explained in the text.

This work is an application of the generalized density
matrix (GDM) formalism that was originally introduced in
Refs. [23–26] and recently reconsidered in Refs. [27–29].
Until now its treatment of nuclear pairing correlations is
limited to the conventional BCS and has the above discussed
disadvantages. Here we explore the possibility of using
the pair condensate (1) as the ground state, instead of the
BCS quasiparticle vacuum. The manuscript is organized as
following. In Sec. II we set up the GDM formalism in a
general way, but solve in this work only the lowest-order
(mean-field) equations. We show that the theory is correct
in the limits of strong and weak pairing. Then in Sec. III the
theory is applied to the calcium isotopes with comparisons
to the exact shell-model results and those of BCS and the
variation principle. Finally Sec. IV summarizes the work and
discusses further directions.

II. FORMALISM

In the presence of pairing correlations, we assume that the
ground state of the 2N -particle system is an N -pair condensate

|φN 〉 = 1√
χN

(P †)N |0〉, (1)

where χN is a normalization factor that will be specified later
[see Eq. (23)], and P † is the pair creation operator

P † = 1

2

∑
1

v1a
†
1a

†
1̃
. (2)

In Eq. (2) the summation runs over the entire single-particle
space (we label the single-particle levels by the Arabic
numerals 1, 2, . . .). |1̃〉 is the time-reversed level of the
single-particle level |1〉. The pair structures v1 are parameters
to be determined by the theory.

With the antisymmetrized fermionic Hamiltonian

H =
∑

12

ε12 a
†
1a2 + 1

4

∑
1234

V1234 a
†
1a

†
2a3a4, (3)
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we calculate the Heisenberg equations of motion for the
density matrix operators R12 ≡ a

†
2a1 and K12 = a2a1,

[R12,H ] = [f {R}, R]12 − (K�†{K})12 + (�{K}K†)12,

(4)

[K12,H ] = �{K}12 + (Kf T {R})12 + (f {R}K)12

− (�{K}RT )12 − (R�{K})12, (5)

where the self-consistent fields are defined as

W {R}12 =
∑

34

V1432R34, f {R} = ε + W {R}, (6)

�{K}12 = 1

2

∑
34

V1234K43. (7)

The quantities W {R}, f {R}, and �{K} are square matrices
with dimensions equal to that of the single-particle space;
their matrix elements are operators given by Eqs. (6) and (7).
Terms on the right-hand side of Eqs. (4) and (5) are read as ma-
trix multiplications; for example, [f {R}, R]12 = (f {R}R)12 −
(Rf {R})12 = ∑

3 f {R}13R32 − ∑
3 R13f {R}32.

On the right-hand side of Eqs. (4) and (5) we have used the
factorization

a
†
4a

†
3a2a1 � a

†
4a1 · a

†
3a2 − a

†
4a2 · a

†
3a1 + a

†
4a

†
3 · a2a1, (8)

a
†
4a3a2a1 � a

†
4a1 · a3a2 − a

†
4a2 · a3a1 + a

†
4a3 · a2a1, (9)

generalizing Eq. (11) in Ref. [28]. In the presence of the pair
condensate, terms like a

†
4a

†
3 · a2a1 are not small. As before,

“�” is used when an equation holds in the collective subspace
but not in the full many-body space. For details we refer
the reader to Ref. [28], where the approximations (8) and (9)
have been explained at length.

The method assumes that the Hamiltonian and the density
matrix operators can be expanded as Taylor series of the
bosonic mode operators (collective coordinate α and mo-
mentum π ) within the collective subspace (see Ref. [28] for
details),

H �
∑
ml

�(m,2l) 1

2

{αm, π2l}
m!(2l)!

, (10)

and

R12 = a
†
2a1 �

∑
mn

r
(mn)
12

1

2

{αm, πn}
m!n!

, (11)

K12 = a2a1 �
∑
mn

k
(mn)
12

1

2

{αm, πn}
m!n!

. (12)

In Eq. (12) K12 destroys two particles, hence it connects the
collective subspace with 2N particles to that with 2N − 2
particles. The first term k(00) ≡ κ is the usual “pair trans-
fer amplitude” between the ground states of neighboring
even-even nuclei. Higher-order terms k(mn) represent the
transfer amplitudes between the collectively excited states
(with phonons). Strictly speaking, the generalized density
matrices (rN,12, kN,12), the mode operators (αN , πN ), and the
bosonic Hamiltonian parameters �

(m,2l)
N should have the label

of particle number 2N , and the GDM equations should be
solved simultaneously for all the nuclei between two magic

numbers, in a way similar to that in Ref. [30]. However, in
this work we will drop the label N , assuming neighboring
even-even nuclei have similar collective modes (αN ≈ αN−1,
πN ≈ πN−1) and density matrices (rN ≈ rN−1, kN ≈ kN−1).
More careful treatment with explicit label N will be discussed
in the future.

Substituting the expansions (10)–(12) into the equations of
motion (4) and (5), and calculating commutators involving
bosonic operators α and π , we arrive at the GDM set of
equations. In this work we consider only the lowest-order
(mean-field) equations:

0 = [f, ρ] − κδ† + δκ†, (13)(
�

(00)
N − �

(00)
N−1

)
κ = f κ + δ − δρT − ρδ + κf T , (14)

where ρ ≡ r (00), κ ≡ k(00), f = ε + W {ρ}, and δ = �{κ}
are leading terms in the expansions of respective quantities
(6, 7, 11, 12). [W {ρ} is defined by replacing R with ρ in Eq. (6);
similarly for �{κ} by replacing K with κ in Eq. (7).] �

(00)
N , the

leading term in the bosonic Hamiltonian (10), is the binding
energy of the N -pair condensate (1). Usually the difference
�

(00)
N − �

(00)
N−1 is not small and should be kept. Equation (14)

generalizes the well-known pp-RPA [12]; the latter results if
we put f = ε, and ρ to be the Slater determinant (ρ2 = ρ) for
the single-particle occupation numbers of the magic nucleus.

On the ground state (1), the density matrices ρ and κ are
“diagonal”:

ρ12 = 〈φN |a†
2a1|φN 〉 = δ12n1, (15)

κ12 = 〈φN−1|a2a1|φN 〉 = δ1̃2s1, (16)

where s1 and n1 are functions of the pair structure v (2), given
later by the recursive formula (24). In a realistic shell-model
calculation, usually each single-particle level has distinct spin
and parity, thus both the mean fields f and δ are “diagonal”:

f12 = δ12e1, (17)

δ12 = δ12̃g1. (18)

Under Eqs. (15)–(18), Eq. (13) is satisfied automatically, and
Eq. (14) becomes

�
(00)
N − �

(00)
N−1 = 2e1 + g1

2n1 − 1

s1
. (19)

Equation (19) is the main equation of the theory. It implies that
the right-hand side is independent of the single-particle label
1, which gives � − 1 constraints for a single-particle space of
dimension 2� (� time-reversal pairs). These constraints fix
the � − 1 parameters in Eq. (2) (a common factor in v1 does
not matter), which completes the theory.

The theory extends the concept of pairing vibration at magic
nuclei [12] to open-shell nuclei: What is the “best” local pair
structure (2), such that the ground state of the neighboring
even-even nucleus can be reached by simply removing one
pair from the condensate (1), without adjusting or changing
the pair structure? In reality this would be the case if the
experimental pair-emission cross section to the ground state is
dominant over those to other 0+ states.
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At last we supply the formula for the recursive calculation
of ρ (15) and κ (16) in terms of v (2). Introducing

P
†
1 = a

†
1a

†
1̃

(20)

and

t1
N = 〈0|P N−1P1(P †)N |0〉, (21)

it is easy to deduce the recursive formula

t1
N = Nv1χN−1 − N (N − 1)(v1)2t1

N−1, (22)

χN = 1

2

∑
1

v1t
1
N, (23)

with initial value t1
N=1 = v1. Here t1

N and χN (1) are polyno-
mials of v. Finally the expressions for n1 (15) and s1 (16) are

n1 = Nv1t
1
N

χN

, s1 = t1
N√

χNχN−1
. (24)

The functional forms of n and s in terms of v (2) are
“kinematics” of the system (like the “kinematic” Clebsch-
Gordan coefficients for rotational symmetry), which can be
calculated (and stored or tabulated) once for all in a given
model space that is not too large. The main computing-time
cost of the method should be that required to solve Eq. (19),
which is as simple as the BCS equation. In fact, Eq. (19)
behaves better than the BCS one, because it involves essentially
a ratio of two polynomials but no square roots.

Of course, in too large a model space the storage of the
“kinematics” in a computer would be impossible. Here we do
a rough estimation for the computer space needed in practical
calculations. With the spherical mean field, a typical large
calculation may involve 15 single-particle levels (3 major
shells) and 25 pairs of particles (Fermi surface in the middle
of the model space). Hence there are C15−1

25−1+15−1 ≈ 1010 terms
in the polynomial t1

N (22), and we need to store the 1010

coefficients as the “kinematics” of the system. This needs
roughly 10 gigabytes of computer space, which is within
the capacity of a hard disk, even the memory, of modern
computers. However, for bigger model spaces, or if one decides
to break the rotational symmetry in the mean field and use
Nilsson single-particle levels (more nondegenerate levels), the
kinematics may be too big to be stored in a computer. In this
case the kinematics needs to be calculated on the fly and may
become the dominating computing-time cost.

Below we take the pairing Hamiltonian:

ε12 = δ12ε1, V1234 = −δ21̃δ34̃G13 (25)

in Eq. (3). Consequently the mean fields (17) and (18) become

e1 = ε1 − G11n1, g1 = 1

2

∑
2

G12s2. (26)

The theory is correct in the limits of strong and weak
pairing. In the degenerate model (limit of strong pair-
ing), Eqs. (22) and (23) imply tN = Nv2(� − N + 1)tN−1

and χN = �vtN , which in turn give n = N/� and s =√
N (� − N + 1)/� according to Eq. (24). They agree with

the known results. The right-hand side of Eq. (19) becomes

2ε + (G�s)[(2N/�− 1)/s] = 2ε + G(2N − �), which is
the correct binding energy difference �

(00)
N − �

(00)
N−1.

In the limit of weak pairing, keeping only leading-order
terms in G, we have on the Fermi surface nF ≈ NF /�F ,
sF ≈ √

NF (�F − NF + 1)/�F (NF is the number of pairs
on the Fermi surface at zero G, and 2�F is the degeneracy
at the Fermi surface); s1 ≈ 0, n1 ≈ 1 or 0 for other single-
particle levels below or above the Fermi surface; and the
mean fields e1 ≈ ε1, g1 ≈ G1F �F sF . Consequently Eq. (19)
becomes 2εF ≈ 2ε1 + G1F �F (2n1 − 1)sF /s1, which implies
that s1 ≈ G1F (1 − 2n1)

√
NF (�F − NF + 1)/[2(ε1 − εF )] for

1 �= F . This is the correct first-order perturbation theory result.
In this work the numerical calculations (in Sec. III) are done

by MATLAB. We solve Eq. (19) by minimizing the objective
quantity

∑
1�i��

[(
2ei + gi

2ni − 1

si

)
−

(
2ei+1 + gi+1

2ni+1 − 1

si+1

)]2

with the MATLAB built-in function “fminunc”, resulting in a
minimum in the order of magnitude 10−14. The variables
in the minimization are pair structures v1 (2), on which the
objective quantity depends through Eqs. (22)–(24), and (26).
Other theories (the BCS equation and the variational principle)
are numerically solved by the same MATLAB function fminunc.

III. CALCIUM ISOTOPES

We apply the theory to calcium isotopes, using the well
established FPD6 interaction [31] (keeping only the pairing
two-body matrix elements), where 40Ca is taken as an inertia
core, and the valence neutrons are distributed in four single-
neutron levels 0f7/2, 1p3/2, 0f5/2, and 1p1/2.

We first consider the nucleus 48Ca, where the BCS results
in only a trivial zero solution due to the “complete filling”
of the 0f7/2 orbit. In the pairing Hamiltonian (25), the
single-particle energies ε are fixed by experimental data. From
the spectrum of 49Ca we read εp1/2 − εp3/2 = 2.023 MeV, and
εf5/2 − εp3/2 = 3.585 MeV. The neutron absorption energy of
48Ca gives εp3/2 = −5.146 MeV. εf7/2 is estimated within
the single-j degenerate pairing model as εf7/2 = −9.945 +
0.541 = −9.404 MeV, where −9.945 MeV is the neutron
emission energy of 48Ca and 0.541 MeV is the FPD6 pairing
strength for the 0f7/2 orbit. For the two-body part, an artificial
factor η is multiplied onto the FPD6 pairing matrix elements
(G12 = ηGFPD6

12 ). To see how the theory behaves at different
pairing strengths, we do a set of calculations at different values
of η (from 0.2 to 2.0), the realistic case corresponds to η = 1.

The results are given in Fig. 1. We see that the GDM
calculation reproduces quite well the exact results (by the
shell-model code NUSHELLX [32]) of occupation numbers
nJ and pair emission amplitudes sJ at all pairing strengths,
including those below the critical value (ηc = 1.345) of BCS.
It even gets one detail right: the inversion (around η = 1.6)
of relative positions of the two very close curves for f5/2

and p1/2.
Next we test the theory in different nuclei. The chain of

calcium isotopes is calculated with mass number 42 � A �
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FIG. 1. (Color online) Occupation numbers nJ (15) and pair-
emission amplitudes sJ (16) in 48Ca as a function of pairing strength
η. The upper panel plots �nJ , the derivations from the naive Fermi
occupation (�nJ = 1 − nf 7/2, np3/2, nf 5/2, np1/2). The solid lines
and dashed-dotted lines show the exact results (by NUSHELLX) and
BCS results, respectively. The symbols show the GDM results, where
black circles, blue up-triangles, green squares, and red down-triangles
are for single-particle levels f7/2, p3/2, f5/2, and p1/2, respectively.
The same color convention is used in plotting the solid lines (exact)
and dashed-dotted lines (BCS). The plotted BCS sJ is defined as
s1 = BCS〈φN |a1̃a1|φN 〉BCS = √

n1(1 − n1).

58. For simplicity in this example we fix the single-particle
energies ε by the FPD6 ones: εf7/2 = −8.388, εp3/2 = −6.495,
εf5/2 = −1.897, and εp1/2 = −4.478 MeV. For the two-body
part we take the FPD6 pairing matrix elements (G12 = GFPD6

12 ).
The results are shown in Fig. 2. The GDM method reproduces
the exact results quite well, even the sudden changes around
A = 54.

We also compare the GDM method with the variation
principle in Fig. 2. The most convenient way to calculate the
expectation value of the pairing Hamiltonian (25) on the pair
condensate (1) is probably given by the recursive formulas
[including Eq. (22)] in the appendix of Ref. [9]. Then the
variational parameters v1 (2) are determined by minimizing
the average energy. For the occupation numbers nJ (15), we
see that the variational results are better in most cases. For
the pair-transfer amplitudes sJ = 〈φN−1|aJM̃aJM |φN 〉 (16),
we present two sets of variational results. In “var1” the
pair structure v1 in |φN−1〉 and |φN 〉 are the same, given by
minimizing 〈φN |H |φN 〉; while in “var2” v1 in |φN−1〉 and
|φN 〉 are different, given by minimizing 〈φN−1|H |φN−1〉 and
〈φN |H |φN 〉, respectively. We see that in general the GDM sJ

42 44 46 48 50 52 54 56 58
0

0.2

0.4

0.6

0.8

1

A

n J

Ca isotopes

42 44 46 48 50 52 54 56 58
0

0.2

0.4

0.6

0.8

1

A

s J

 

 

shell
f 7/2
p 3/2
f 5/2
p 1/2
var1
var2

(b)

(a)

FIG. 2. (Color online) Occupation numbers nJ (15) and pair-
emission amplitudes sJ (16) in calcium isotopes (A is the mass num-
ber). The solid lines show the shell-model results (by NUSHELLX).
The dotted lines and dashed lines show two sets of variational results,
as explained in the text. The symbols show the GDM results, where
black circles, blue up-triangles, green squares, and red down-triangles
are for single-particle levels f7/2, p3/2, f5/2, and p1/2, respectively. The
same color convention is used in plotting the solid lines (shell), dotted
lines (var1), and dashed lines (var2). Note that different single-particle
energies are used in Figs. 1 and 2 (see text).

and the var2 sJ have similar accuracy, both agree well with
the exact results; but the less-careful var1 sJ sometimes have
considerable errors. Specifically, if we insist on the situation
of pairing vibration (removing one pair without adjusting
the pair structure v1), we should use the GDM theory. (We
have also done a third variational calculation, by minimizing
〈φN−1|H |φN−1〉 + 〈φN |H |φN 〉, insisting that |φN−1〉 and |φN 〉
have the same v1; the result improves var1 sJ but is not as
good as that of the GDM method.) The necessary recursive
formulas for the variational calculation are given in Appendix.

It is well known that the variation principle gives the best
and lowest energy, hence it is natural to ask how far away
the GDM solution is from this energy minimum. In Fig. 3
we show the ground state energies by different calculations
in calcium isotopes. The curve “corr” shows the pairing
correlation energy Ecorr, defined by Ecorr = ∑

1 ε1n
F
1 − Eshell,

where Eshell is the exact ground state energy of the shell
model calculation, and nF

1 = 1 or 0 is the occupation number
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FIG. 3. (Color online) Ground state energies in calcium isotopes
(A is the mass number). The black solid line shows the pairing
correlation energy. The blue squares and the red dashed line show
the ground state energies calculated by the GDM method and the
variation principle, respectively, measured from the exact ground
state energy. For details please see text.

of the naive Fermi distribution. The curve “var” shows the
ground state energy by the variational calculation measured
from the exact one, Evar = 〈φvar

N |H |φvar
N 〉 − Eshell, where |φvar

N 〉
is the pair condensate (1) with its pair structure v1 (2)
determined by the variation principle. Similarly, the curve
“GDM” shows the ground state energy by the GDM method,
EGDM = 〈φGDM

N |H |φGDM
N 〉 − Eshell, where v1 in |φGDM

N 〉 is
determined by the GDM equation (19). From Fig. (3) we see
that both the variation principle and the GDM method give
good ground state energies: the errors are small relative to the
pairing correlation energies. In particular, the energy of |φGDM

N 〉
is very close to the variational minimum 〈φvar

N |H |φvar
N 〉. Thus

the latter is relatively flat in certain directions.

IV. SUMMARY

In summary, we explored the possibility of using the pair
condensate (1) instead of the BCS quasiparticle vacuum as
the starting point of the GDM formalism. As the lowest-order
result, a theory for nuclear pairing is proposed that conserves
the exact particle number and is valid at arbitrary pairing
strength (including those below the critical point of BCS).
It is a generalization of the well-known pp-RPA. Correlations
beyond the mean field could be studied solving higher-order
equations in the GDM formalism.

Instead of the variation principle, the current pairing theory
starts from the Heisenberg equations of motion. It would
be interesting to see how the theory behaves in cases when
the average energy had a flat minimum and the variational
calculation was likely to fail.

We note that the GDM theory (19) reproduces the pair-
transfer amplitudes with excellent accuracy directly, while the
variational principle needs two calculations for the parent and
daughter nuclei, respectively, to achieve the same accuracy
(see the “var2” curve in Fig. 2).

Odd-mass nuclei could be calculated consistently. The ef-
fective Hamiltonian, 〈2N + 1|H |2N + 1〉 = 〈2N |aHa†|2N〉,
was calculated by substituting Eq. (3) into the above expression

and then using factorizations similar to Eq. (8), where the
density matrices a†a and aa are known from the neighboring
even-even nuclei. Spectroscopic factors, 〈2N − 1|a|2N〉 =
〈2N |a†a|2N〉, could also be calculated in a similar way. These
will be studied in the future.

Another important direction is to consider the current GDM
pairing theory in the case when the mean fields are not diagonal
in the single-particle basis. This would correspond to the
generalization from BCS to Hartree-Fock-Bogoliubov (HFB)
theory, and was necessary for ab initio mean-field calculations
like the modern density-functional-theory–HFB methods. In
particular, it might be helpful for treating the ambiguities
related to particle-number projection in the latter (see, for
example, Ref. [33]).
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APPENDIX: RECURSIVE FORMULAS

Here we provide the necessary recursive formulas for
the variational calculations in Sec. III. These formulas exist
because operators P

†
1 (20), P1, and n̂1 = a

†
1a1 form a closed

algebra (commute among themselves). We introduce

a12
N ≡ 〈0|P NP

†
1 P2(P †)N |0〉, (A1)

b12
N ≡ 〈0|P N−2P1P2(P †)N |0〉, (A2)

where P † and P
†
1 have been defined in Eqs. (2) and (20), a12

N

and b12
N are real symmetric matrices, and b11

N = 0. It is easy to
derive the recursive formulas

a12
N = v2Nt1

N − (v2)2N (N − 1)b12
N , (A3)

b
1�=2
N = v2Nt1

N−1 − (v2)2N (N − 1)a12
N−2, (A4)

where t1
N has been calculated in Eq. (22). Then the expectation

value of the pairing Hamiltonian (25) on the pair condensate
(1) is

〈φN |H |φN 〉 =
∑

1

ε1n1 + 1

4

∑
12

G12
a12

N

χN

, (A5)

where χN and n1 have been calculated in Eqs. (23) and (24).
In Eq. (A5) the summation runs over the entire single-particle
space. Equations (A1)–(A5) have been given in the appendix
of Ref. [9] in a slightly different form.

The var2 curve of Fig. 2 plots the quantity

s̄1 ≡ 〈φ̄N−1|P1|φN 〉, (A6)

where |φ̄N−1〉 and |φN 〉 have different pair structures, v̄1 and
v1. To calculate s̄1 we introduce

T 1
N ≡ 〈0|P̄ N−1P1(P †)N |0〉, (A7)

T̄ 1
N ≡ 〈0|P N−1P1(P̄ †)N |0〉, (A8)

XN ≡ 〈0|P̄ N (P †)N |0〉. (A9)
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It is easy to derive the recursive formulas

T 1
N = v1NXN−1 − (v1)2N (N − 1)T̄ 1

N−1, (A10)

T̄ 1
N = v̄1NXN−1 − (v̄1)2N (N − 1)T 1

N−1, (A11)

XN = 1

2

∑
1

v̄1T
1
N = 1

2

∑
1

v1T̄
1
N, (A12)

with initial values T 1
N=1 = v1 and T̄ 1

N=1 = v̄1. Consequently
s̄1 is

s̄1 = T 1
N√

χ̄N−1χN

. (A13)
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