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Simple correlations between electric quadrupole moments of atomic nuclei
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Measurements of nonyrast electric quadrupole moments (i.e., diagonal E2 matrix elements) of atomic nuclei are
becoming widely available from multiple-step Coulomb excitation. It is shown that, where quadrupole-moment
data exist, 〈2+

1 ||E2||2+
1 〉 + 〈2+

2 ||E2||2+
2 〉 ≈ 0 is observed across a wide range of masses, deformations, and first 2+

energies. Nearly all of these quadrupole-moment data, particularly 〈2+
2 ||E2||2+

2 〉, are from the past two decades
with half of the data from the past decade. In addition, 〈4+

1 ||E2||4+
1 〉 + 〈4+

2 ||E2||4+
2 〉 + 〈4+

3 ||E2||4+
3 〉 ≈ 0 is

observed within two standard deviations for three of the four existing measurements. Despite many and varying
complexities in the structure details of the individual nuclei, the correlations in the quadrupole moments appear
simple.
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Atomic nuclei are unique among finite many-body quantum
systems (e.g., molecules, atomic clusters, ultracold mono-
tonic gas condensates) in that electromagnetic moments can
be measured through Coulomb excitation [1]. In particu-
lar, nuclei exhibit nonzero diagonal E2 matrix elements,
〈Iπ ||E2||Iπ 〉. It is shown that the electric quadrupole moments
of atomic nuclei exhibit surprisingly simple correlations. In
particular, 〈2+

1 ||E2||2+
1 〉 + 〈2+

2 ||E2||2+
2 〉 and 〈4+

1 ||E2||4+
1 〉 +

〈4+
2 ||E2||4+

2 〉 + 〈4+
3 ||E2||4+

3 〉 are found to be approximately
zero across a wide range of masses, deformations, and first 2+
energies.

Table I shows all the available experimental 〈2+||E2||2+〉
matrix elements for nuclei that have the first two Iπ = 2+
diagonal E2 matrix elements measured [2–21]. Ninety percent
of these data are from the past two decades and nearly half of
these data are from the past decade. The electric quadrupole-
moment data show two distinct classes: (1) nuclei for which
〈2+

1 ||E2||2+
1 〉 and 〈2+

2 ||E2||2+
2 〉 have the opposite sign (i.e.,

24 of the 28 nuclei) and (2) nuclei for which the signs are the
same (i.e., 4 of the 28 nuclei). The nuclei for which the first
and second 2+ quadrupole moments have opposite sign show
a relatively simple pattern in that they are, on average, equal
in magnitude. The nuclei for which the quadrupole moments
have the same sign (e.g., 148,150Nd) are known to have 2+

2 states
associated with intrinsic Kπ = 0+ excitations [14,15]. This is
a relatively rare exception for 2+

2 states and they fall outside of
the correlations presented in this study. While the situation for
68Zn is similar to that of 148,150Nd, 76Kr (and less obviously
74,76Kr) is complicated by shape coexistence of both prolate
and oblate structures [9]. The 2+

2 states in the krypton isotopes
currently appear rather ambiguous with respect to Kπ = 0+
candidate assignments. Therefore, these nuclei are omitted in
future discussion but are provided in Table I for completeness
and scope.

Figure 1 shows the first and second 2+ quadrupole-moment
data plotted against (a) the atomic number Z, (b) the first 2+
energy [22], (c) the ratio of the first 4+ and 2+ energies [22],
and (d) the ground to first 2+ E2 transition strength [2–21]. The
2+

2 quadrupole moments mirror the 2+
1 quadrupole moments

with mass, energy, and transition strength.

Figure 1(a) shows that the 2+
2 quadrupole moments equally

indicate the proton shell closures; there appears to be an
exception for the 2+

2 state of 114Cd at Z = 48 (more on this
later). Figure 1(b) indicates that the 2+

1 and 2+
2 quadrupole

moments remain correlated with first 2+ energies, and Fig. 1(c)
indicates that the correlation is maintained as one moves
from the symmetric-rotor E(4+

1 )/E(2+
1 ) = 3.33 limit towards

the harmonic-vibrator E(4+
1 )/E(2+

1 ) = 2 limit [23]. However,
the harmonic-vibrator limit is never reached for the nuclei
presented here. Instead, they appear to approach a grouping of
E(4+

1 )/E(2+
1 ) ratios between 2.4 and 2.6, often associated with

γ -soft and/or triaxial rotors. Furthermore, the two quadrupole
moments are shown to be inversely proportional to the first
2+ energy, which is similar to the experimental Grodzins
correlation [24], B(E2; 0+

1 → 2+
1 )(e2b2) ≈ 16 Z2/AE(2+

1 ),
where E(2+

1 ) is in units of keV and B(E2; 0+
1 → 2+

1 ) =
〈0+

1 ||E2||2+
1 〉2. The inverse correlation between the first 2+

energy and the 〈0+
1 ||E2||2+

1 〉, 〈2+
1 ||E2||2+

1 〉, and 〈2+
2 ||E2||2+

2 〉
matrix elements are most likely related. This is supported
by the near linear relationship between the transition and
diagonal matrix elements shown in Fig. 1(d). The symmetric
rotor predicts a simple constant relationship for these matrix
elements (i.e., parameters free) and is shown by the solid lines.
Conversely, the harmonic vibrator predicts the quadrupole
moments to be zero (but not an anharmonic vibrator, which
is not parameter free). A simple phenomenological fit of
|〈2+

1,2||E2||2+
1,2〉|(eb) = 235/E(2+

1 ) is determined from the
data in Fig. 1(b) with a quality of R2 = 0.93 or equivalently,
|Q(2+

1,2)|(eb) = 178/E(2+
1 ), where E(2+

1 ) is in units of keV. A
slightly better fit, which is more consistent with the Grodzins
correlation (except for the nonzero offset), can be achieved
with two parameters, |〈2+

1,2||E2||2+
1,2〉|(eb) = 33/

√
E(2+

1 ) −
0.97 and R2 = 0.94 for E(2+

1 ) < 1090 keV (zero otherwise).
Figure 2 further illustrates the simple 〈2+

1 ||E2||2+
1 〉 +

〈2+
2 ||E2||2+

2 〉 ≈ 0 correlation, as indicated by the uniform
scatter of the data about the diagonal line, and it is shown to be
maintained across a wide range of masses and deformations. A
fit to the data gives 〈2+

2 ||E2||2+
2 〉 = −〈2+

1 ||E2||2+
1 〉 + 0.103

with a quality of R2 = 0.93.
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TABLE I. Experimental 〈2+||E2||2+〉 (eb) matrix elements and their summation, �.

68Zna,b [2] 70Gea [3] 72Ge [4] 74Ge [5] 76Ge [6] 76Se [7] 78Se [8] 80Se [7] 82Se [7]

2+
1 0.12(+4

−4) 0.05(+4
−4) −0.16(+10

−7 ) −0.25(+3
−3) −0.18(+5

−5) −0.45(+7
−7) −0.26(+9

−9) −0.26(+4
−3) −0.30(+4

−3)

2+
2 0.12(+8

−8) −0.09(+5
−5) 0.30(+10

−0 ) 0.34(+8
−8) 0.37(+8

−8) 0.24(+6
−8) 0.22(+12

−12) 0.53(+3
−3) 0.45(+4

−5)

� 0.24(+9
−9) −0.04(+7

−7) 0.14(+14
−7 ) 0.09(+8

−8) 0.18(+10
−10) −0.21(+9

−11) −0.04(+15
−15) 0.27(+5

−4) 0.15(+6
−6)

74Krb [9] 76Krb [9] 78Krb [10] 106Pd [11] 108Pd [11] 110Pd [12] 114Cd [13] 148Ndb [14] 150Ndb [15]

2+
1 −0.70(+33

−30) −0.9(+3
−3) −0.80(+4

−4) −0.72(+6
−7) −0.81(+4

−9) −0.87(+17
−15) −0.36(+1

−3) −1.85(+4
−5) −2.265(+40

−80)

2+
2 0.33(+28

−23) −1.0(+5
−5) 0.58(+4

−8) 0.52(+6
−5) 0.73(+9

−7) 0.70(+9
−32) 0.92(+4

−5) −1.15(+8
−12) −0.766(+40

−81)

� −0.37(+43
−38) −1.90(+58

−58) −0.22(+6
−9) −0.20(+8

−9) −0.08(+10
−11) −0.17(+19

−35) 0.56(+4
−6) −3.00(+9

−13) −3.03(+6
−11)

166Er [16] 168Er [17] 182W [18] 184W [18] 186Os [19] 188Os [19] 190Os [19] 192Os [19] 194Pta [20] 196Pta [21]

2+
1 −2.33(+19

−12) −3.25(+10
−25) −2.00(+4

−8) −1.97(+6
−4) −1.75(+22

−13) −1.73(+19
−5 ) −1.25(+22

−13) −1.21(+6
−17) 0.61(+6

−6) 0.82(+10
−10)

2+
2 2.97(+17

−15) 2.85(+9
−9) 1.94(+10

−4 ) 2.36(+11
−5 ) 2.12(+6

−22) 2.10(+9
−6) 1.53(+6

−31) 0.985(+45
−85) −0.66(+14

−14) −0.52(+20
−20)

� 0.64(+25
−19) −0.40(+13

−27) −0.06(+11
−9 ) 0.39(+13

−6 ) 0.37(+23
−26) 0.37(+21

−8 ) 0.28(+23
−34) −0.23(+8

−19) −0.05(+15
−15) 0.30(+22

−22)

aNucleus is oblate in shape.
b2+

2 associated with Kπ = 0+.

The simplest model that is consistent with the experimen-
tal observation of 〈2+

1 ||E2||2+
1 〉 + 〈2+

2 ||E2||2+
2 〉 ≈ 0 follows

from the quadrupole moments of rotor models (see Bohr and
Mottelson [23] and Rowe and Wood [25]). In the simplest
form, the diagonal reduced E2 matrix elements are given by

〈IK||E2||IK〉 = Q0

√
5

16π

√
2I + 1〈IK; 20|IK〉 (eb) (1)
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FIG. 1. The 〈2+
1 ||E2||2+

1 〉 and 〈2+
2 ||E2||2+

2 〉 matrix elements from
Table I are plotted together as functions of (a) the atomic number
Z, (b) the first 2+ energy, (c) the ratio of the first 4+ and 2+

energies, and (d) the ground to first 2+ E2 transition strength, where
〈0+

1 ||E2||2+
1 〉 = √

B(E2; 0+ → 2+). The solid circles are for 2+
1 and

the open circles are for 2+
2 .

and the corresponding static quadrupole moments are given
by

Q(IK) =
√

16π

5

〈II ; 20|II 〉√
2I + 1

〈IK||E2||IK〉 (eb)

= Q0
3K2 − I (I + 1)

(I + 1)(2I + 3)
(eb), (2)

where I is the total angular momentum, K is the projection of
the total angular momentum onto the body-frame symmetry
axis, and the parameter Q0 is the intrinsic electric quadrupole
deformation.

Within the rotor model, if the first two 2+ states are
described by Kπ = 0+ and 2+, then

〈2+
1 ||E2||2+

1 〉 + 〈2+
2 ||E2||2+

2 〉

= Q0

√
5

16π

√
2(2) + 1 {〈20; 20|20〉 + 〈22; 20|22〉} = 0,

(3)

where 〈20; 20|20〉 = −〈22; 20|22〉. In the limit of the rigid
triaxial rotor (i.e., rigid axially asymmetric rotor), these
are the only two Iπ = 2+ states in the model space. The
theoretical relationship 〈2+

1 ||E2||2+
1 〉 + 〈2+

2 ||E2||2+
2 〉 = 0 is

widely known for rotor models (but not the scope and
widespread occurrence of the data). For example, the rigid
triaxial rotor model [26,27] and the axially symmetric β-rigid
γ -vibrator rotor model [28,29] both give this relationship,
which highlights, in part, the difficulty in differentiating
between the two different structures. The possibility of
shape coexistence [30] further complicates this distinction. In
addition, the SU(3) model, which provides a more microscopic
perspective, gives similar results [31]. This is to be expected
because the SU(3) model contracts to the triaxial rigid rotor
model in a large-dimensional limit (i.e., large λ and μ).

While the 2+ quadrupole-moment data seem to be con-
sistent with the prediction of the rotor model, this does not
necessarily mean or imply that these nuclei are rotors. The
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FIG. 2. The 〈2+
1 ||E2||2+

1 〉 and 〈2+
2 ||E2||2+

2 〉 matrix elements from
Table I are plotted against each other. Data points on the solid 45◦

line give 〈2+
1 ||E2||2+

1 〉 + 〈2+
2 ||E2||2+

2 〉 = 0.

rotor model provides a simple, parameter-free starting point
in which one might begin to understand the simple patterns
observed in the data. Indeed, rotor models do not explain all the
patterns of the low-lying states of these nuclei, which is why,
in part, the widespread occurrence of the quadrupole-moment
correlations are surprising.

To broaden the scope of the theoretical discussion, cal-
culations within the interacting boson model [32] (IBM)
were carried out with the IBM1 fortran code from Van
Isacker [33] using the simple Hamiltonian of Ref. [34] with
consistent-Q formalism between the Hamiltonian and the
E2 operator. The IBM contains both spherical-vibrator and
deformed-rotor limits. IBM1 calculations in general require
various combinations of parameters to fit experimental data.
However, a few generalities can be stated about its ability to
reproduce the 2+ quadrupole-moment correlations that pertain
to all of its limits without going into optimal parameter sets
and calculations. In short, 〈2+

1 ||E2||2+
1 〉 + 〈2+

2 ||E2||2+
2 〉 ≈ 0

can be explained within the framework of the IBM1. However,
the idealization of a zero sum can only be reached exactly
within the IBM1 when large boson numbers are used. For finite
boson number, the IBM1 predicts that 〈2+

1 ||E2||2+
1 〉 is always

greater in magnitude than 〈2+
2 ||E2||2+

2 〉. This feature of the
IBM1 implies that the 2+ quadrupole-moment data should fall
to one side of the diagonal line in Fig. 2, as opposed to being
scattered uniformly about it. In particular, the data should fall
on or below the diagonal line for prolate nuclei and on or above
the diagonal line for oblate nuclei. However, shape coexistence
between two IBM1 subspaces could alter this prediction.

A detailed survey of the individual nuclei that make up
the 2+ quadrupole-moment data reveals various complexities
and seemingly contradictory interpretations. Despite these
complexities, the correlations in the 2+ quadrupole moments
appear simple. A detailed discussion of the various nuclei that
make up the 2+ quadrupole-moment data are in order, which
are discussed from smallest to largest quadrupole moments
(cf. Fig. 2).

The nuclei with the smallest quadrupole moments in
Fig. 2 are from the Ge and Se isotopes. Evidence for rigid
triaxiality in the Ge region has recently been presented for
76Ge through the use of energy and γ -ray branching-ratio
patterns [35]. This study has been highlighted as the best
manifestation of rigid triaxiality. For instance, the experimen-
tal ratio of E(4+

1 )/E(2+
1 ) = 2.51 [22] is close to the 2.67

ratio [26] expected for a triaxial rotor at γ = 30◦. Observa-
tion of the static quadrupole-moment sum, 〈2+

1 ||E2||2+
1 〉 +

〈2+
2 ||E2||2+

2 〉 = 0.18(10) eb (cf. Table I and Fig. 2), reveals
consistency with zero to within two standard deviations; this is
also true for the other Ge isotopes. The rather small quadruple
moments for a rigid deformed triaxial rotor can be justified
as a destructive interference effect between the inertia and
electric quadrupole tensors [36]. The neighboring Se isotopes
are also interesting for further investigations of triaxiality.
However, this entire region is potentially complex, which has
been highlighted by a recent multiple-step Coulomb-excitation
study of the nearby Kr isotopes [9], providing evidence for
shape-coexisting triaxiality.

The Cd and Pd region, which shows similar quadrupole-
moment magnitudes as the Pt isotopes, has traditionally
been considered vibrational-like based on energy patterns (cf.
Ref. [37] and references therein) and are typically considered
textbook examples of vibrations. In particular, 118Cd played a
key role in the establishment of the U(5) limit of the IBM [37],
which has quadrupole moments of zero in the strict limit.
However, there has recently been significant evidence against
a vibrational interpretation of this region [38–44], which has
E2 transition patterns that mimic quasirotational behavior. The
relatively low-lying deformed intruder states in the Cd isotopes
further complicate the interpretation of the structure owing
to potential mixing. The 2+ quadrupole moments for the Pd
isotopes, which are relatively large with uncertainties that are
better than 20% for all but one quadrupole moment in 110Pd,
show (cf. Table I and Figs. 1 and 2) remarkable consistency
with a zero sum. For 114Cd, 〈2+

1 ||E2||2+
1 〉 + 〈2+

2 ||E2||2+
2 〉 is

not near zero but it is interesting to note that the first and
second 2+ states have nonzero quadrupole moments (better
than 11% precision) that are opposite in sign. Fahlander
et al. [13], who measured the second 2+ quadrupole moment,
suggested that the 2+

2 state appears to be a quasi-γ bandhead,
as opposed to a two-phonon vibration member. A persistence
of deformed, rotational-like E2 character in these nuclei (and
others) is also supported from shape-invariant studies by
Kumar and Cline [45] (see also Ref. [46]) using transition
E2 matrix elements. For a more global view of nuclei
containing rotational-like E2 character with vibrational-like
energy patterns, see Refs. [47,48].

Additional 〈2+
2 ||E2||2+

2 〉 matrix-element measurements for
the other Cd isotopes may provide valuable insight into
the underlying structure of these seemingly complex nuclei,
particularly for the neutron-rich and proton-rich isotopes
where the 2+ intruder levels are much higher in excitation
energy (i.e., less potential mixing with the 2+

1 and 2+
2 states).

In general, measurements for nuclei just above and below
Z = 50 (and about other closed shells), where collectivity
and deformation begin to emerge, would be of particular
interest.
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TABLE II. Experimental 〈4+||E2||4+〉 (eb) matrix elements and
their summation, �.

186Os [19] 188Os [19] 190Os [19] 192Os [19]

4+
1 − 2.02(+39

−18) − 2.00(+9
−20) − 1.28(+27

−19) − 0.73(+26
−6 )

4+
2 − 1.12(+25

−23) − 1.22(+16
−10) − 1.29(+20

−25) − 0.83(+9
−8)

4+
3 2.35(+92

−69) 2.68(+22
−19) 1.02(+18

−4 ) 1.28(+15
−41)

� − 0.79(+103
−75 ) − 0.54(+29

−29) − 1.55(+38
−32) − 0.28(+31

−42)

The Pt and Os region is commonly considered characteristic
of γ -soft and/or triaxial rotors [19,20,36,49–57], with nuclei at
or near a prolate-oblate shape transition and E(4+

1 )/E(2+
1 ) ra-

tios ranging from 2.47 to 3.16. In particular, 196Pt played a key
role in the introduction of the O(6) limit of the IBM via a study
of energy and γ -decay branching patterns of this nucleus [54].
The strict O(6) limit of the IBM gives 〈0+

1 ||E2||2+
2 〉 = 0

and 〈2+
1,2||E2||2+

1,2〉 = 0 as a consequence of the O(6) boson
dynamical symmetry (i.e., a selection rule). The rigid triaxial
rotor of Davydov and Filippov [26] gives a similar result for a
triaxiality of γ = 30◦. However, 196Pt has nonzero quadrupole
moments where 〈2+

1 ||E2||2+
1 〉 + 〈2+

2 ||E2||2+
2 〉 is consistent

with zero. Recently, it was shown [36] that the E2 properties
of the 2+

1 and 2+
2 states are consistent with a destructive

interference effect in a recently formulated version of the rigid
triaxial rotor model [27], which relaxes the irrotational flow
condition of the Davydov and Filippov model [26], providing
the possibility of 〈0+

1 ||E2||2+
2 〉 = 0 and 〈2+

1,2||E2||2+
1,2〉 �= 0.

The W and Er isotopes represent traditional rotational-
like nuclei, as is evident from their relatively large electric
quadrupole moments and energy ratios of E(4+

1 )/E(2+
1 ) ∼

3.3 [16–18]. The Er isotopes represent the closest idealization
of the rotor, as was recently shown in a high-precision test in
Ref. [58] using branching ratios from excited Kπ = 2+ states.

In light of the observed correlations in the 2+ quadrupole
moments, it is worth pursuing an attempt to search for
correlations in 4+ quadrupole moments. Table II shows all
the available experimental 〈4+||E2||4+〉 matrix elements for
nuclei that have the first three Iπ = 4+ diagonal E2 matrix
elements measured; there are no known Iπ = 3+ states with a
nonzero static quadrupole moment. The data here are limited
and only one study with four measurements on the stable Os
isotopes was found [19]. The first observation is that the first
two 4+ quadrupole moments have the same sign and that the
4+

3 quadrupole moment has the opposite sign. Three of the four
quadrupole-moment sums are consistent with zero to within
2σ , out of which two are consistent with zero to within 1σ .
The quadrupole-moment sum for 190Os is not consistent with
zero. Because the data are limited and do not span a wide range
of masses and deformations, plots similar to those in Fig. 1 are
not possible. The correlations of the 4+ quadrupole-moment
data are shown in Fig. 3.

The simplest model that is consistent with the ex-
perimental observation of 〈4+

1 ||E2||4+
1 〉 + 〈4+

2 ||E2||4+
2 〉 +

〈4+
3 ||E2||4+

3 〉 ≈ 0 follows from the quadrupole moments of
rotor models; cf. Eqs. (1) and (2). Within the rotor model, if
the first three 4+ states are described by Kπ = 0+, 2+, and 4+,

then

〈4+
1 ||E2||4+

1 〉 + 〈4+
2 ||E2||4+

2 〉 + 〈4+
3 ||E2||4+

3 〉

= Q0

√
5

16π

√
2(4) + 1{〈40; 20|40〉 + 〈42; 20|42〉

+ 〈44; 20|44〉} = 0, (4)

where 〈40; 20|40〉 + 〈42; 20|42〉 = −〈44; 20|44〉. In the limit
of the rigid triaxial rotor, these are the only three Iπ = 4+
states in the model space. The rigid triaxial rotor model and
the axially symmetric β-rigid γ -vibrator rotor model equally
describe these 4+ quadrupole-moment sums [25,57], which
highlights, in part, the difficulty in differentiating between
the different structures. This zero-sum relationship for spin 4+
was not previously recognized. It turns out that the quadrupole-
moment sums for spin 2+ and 4+ are part of a more general
rule that applies to all spins. For example, for sums over Kπ =
0+, 2+, 4+, . . . ,

√
5

16π
Q0

√
2I + 1 ×

I∑
K=0

〈IK; 20|IK〉 = 0, (5)

where K is even (i.e., from reflection symmetry), 〈IK; 20|IK〉
is positive for I = K , and 〈IK; 20|IK〉 can be negative or
positive for I > K .

The IBM1 (see earlier discussion and explanation of the
calculations) can also explain the observed 〈4+

1 ||E2||4+
1 〉 +

〈4+
2 ||E2||4+

2 〉 + 〈4+
3 ||E2||4+

3 〉 ≈ 0 correlations. The idealiza-
tion of a zero sum can only be reached exactly within the IBM1
when large boson numbers are used. For finite boson number,
the IBM1 predicts that 〈4+

1 ||E2||4+
1 〉 + 〈4+

2 ||E2||4+
2 〉 is always

greater in magnitude than 〈4+
3 ||E2||4+

3 〉, which is consistent
with the observed data (i.e., the data systematically fall below
the diagonal line in Fig. 3).

190Os is a clear outlier from 〈4+
1 ||E2||4+

1 〉 +
〈4+

2 ||E2||4+
2 〉 + 〈4+

3 ||E2||4+
3 〉 = 0 and from the other

Os isotopes in Fig. 3. A potential explanation comes from
reports of large two-proton two-quasiparticle (hexadecapole)
components in the 4+

3 wave function [59–61] with the
implication that there must exist another |Iπ = 4+,Kπ = 4+〉
state. Bagnell et al. [59] report a state at ∼2600 keV in
190,192Os that may contain the remaining two-quasiparticle
component. More recently, a (3He,d) transfer study by Phillips
et al. [62] has found evidence for large Kπ = 4+ hexadecapole
(two-proton two-quasiparticle) components in the 4+

3 states
of 186,188Os. A second |Iπ = 4+,Kπ = 4+〉 prolate state
would provide a positive quadrupole moment (i.e., it would
contain the missing strength). Of 186,188,190,192Os, 190Os
has been determined [62,63] to have the largest two-proton
two-quasiparticle (hexadecapole) component in the 4+

3 wave
function. This complex character of low-lying Kπ = 4+
bands may be widely occurring [64].

Additional 4+
3 quadrupole-moment measurements in other

mass regions (e.g., A ∼ 110 Ru and Mo isotopes) would
be of high interest to see if correlations are maintained
across a wide range of masses and deformations, such as
those observed for the 2+ quadrupole moments. In addi-
tion, 〈4+

1 ||E2||4+
1 〉 + 〈4+

2 ||E2||4+
2 〉 + 〈4+

3 ||E2||4+
3 〉 sums may

provide a valuable tool in determining the degree to which

041307-4



RAPID COMMUNICATIONS

SIMPLE CORRELATIONS BETWEEN ELECTRIC . . . PHYSICAL REVIEW C 88, 041307(R) (2013)

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2

prolate

oblate

41||E2||41
+ + (eb)

4 3
|| E

2|
|4

3
+

+
(e

b
)

42||E2||42
+ ++

192Os
190Os

186Os

188Os

FIG. 3. The 〈4+
1 ||E2||4+

1 〉 + 〈4+
2 ||E2||4+

2 〉 and 〈4+
3 ||E2||4+

3 〉 ma-
trix elements from Table II are plotted against each other. Data
points on the solid 45◦ line give 〈4+

1 ||E2||4+
1 〉 + 〈4+

2 ||E2||4+
2 〉 +

〈4+
3 ||E2||4+

3 〉 = 0.

hexadecapole structures reside in low-lying 4+ states. While
4+

3 quadrupole moments are terribly difficult to measure,
advancements in detector technology and efficiency, and
sophisticated Coulomb-excitation codes (e.g., GOSIA [65])
make such measurements now feasible and should be
sought.

In conclusion, it is shown that, where multiple-step
Coulomb-excitation data exist, the sum of static quadrupole
moments of atomic nuclei, particularly 〈2+

1 ||E2||2+
1 〉 +

〈2+
2 ||E2||2+

2 〉, are remarkably consistent with zero across
a wide range of masses, deformations, and first 2+ en-
ergies, which include nuclei that have been traditionally
considered vibrational-like from energy patterns. In addi-
tion, 〈4+

1 ||E2||4+
1 〉 + 〈4+

2 ||E2||4+
2 〉 + 〈4+

3 ||E2||4+
3 〉 ≈ 0 is ob-

served within two standard deviations for three of the four
existing measurements. The rotor model is the simplest model
that is consistent with the experimental correlations observed
in the static quadrupole moments. However, many of the
nuclei are particularly complex and often exhibit contradictory
signatures (e.g., energy patterns versus E2 matrix-element
patterns). Despite these complexities, the correlations in the
quadrupole moments appear simple. In a future study, it
would be instructive to fully explore quadrupole-moment
sum relationships in various models, including more realistic
microscopic shell models. In light of these results, additional
measurements of nonyrast electric quadrupole-moment data
from multiple-step Coulomb excitation, particularly for 2+
states in the Cd isotopes and 4+ states in the Ru and Mo
isotopes, could provide a better understanding of collectivity
in the low-lying states of atomic nuclei and stimulate further
theoretical investigation.
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