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Reaction mechanism in odd-even staggering of reaction cross sections
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It was recently suggested that the odd-even staggering of reaction cross sections is evidence of the pairing
anti-halo effect on projectile radii. We define the dimensionless staggering parameters �rds and �R for projectile
radii and reaction cross sections, respectively, and analyze the relation between �rds and �R for the scattering
of 14,15,16C from a 12C target at 83 MeV/nucleon by taking account of projectile-breakup and nuclear-medium
effects with the microscopic version of the continuum discretized coupled-channels method. The value of �R

deviates from that of �rds by the projectile-breakup effect, the nuclear-medium effect, and an effect resulting
from the fact that the scattering is not exactly black-sphere scattering (BSS). The projectile-breakup and nuclear
medium effects nearly cancel for �R at low incident energies. The remaining non-BSS effect becomes small as
the incident energy decreases, indicating that nucleus-nucleus scattering at lower incident energies can be a good
probe for evaluating �rds from measured reaction cross sections.
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Introduction. The interaction cross section σI and the
reaction cross section σR are important tools for determining
the radii of unstable nuclei. Actually, the halo structure as
an exotic property has been reported for unstable nuclei
such as 11Li through analyses of measured σI values [1,2].
Very recently, σI was measured for Ne isotopes [3] and it is
suggested by the analyses [4,5] that 31Ne is a halo nucleus with
large deformation.

The difference between σI and σR is considered to be small
for scattering of unstable nuclei at intermediate energies [6].
The reaction cross section is related to the radius of the
projectile; for example, see Ref. [6] for a detailed analyses.
Meanwhile, it is well known that the pairing correlation
is important, particularly in even-N nuclei. The correlation
becomes essential in weakly bound nuclei, since they are not
bound without it. The effects of the pairing correlation on
nuclear radii of unstable nuclei were investigated by using the
Hartree-Fock Bogoliubov (HFB) method [7]. In the mean-field
picture, the correlation makes the quasiparticle energy larger
and hence reduces the root-mean-square (rms) radius of the
HFB density. Obviously, this effect is conspicuous for unstable
nuclei with separation energy smaller than the gap energy.
Thus, the pairing correlation suppresses the growth of the halo
structure for even-even unstable nuclei. This is now called the
pairing anti-halo effect.

The pairing anti-halo effect is an interesting phenomenon,
but clear evidence has yet to be shown for the effect. Very
recently, however, Hagino and Sagawa suggested that the
observed odd-even staggerings of σR are possible evidence
of the effect [8–10]. They introduced the staggering parameter
[10]

γ3 = −σR(AP) − 2σR(AP + 1) + σR(AP + 2)

2
, (1)

*sasabe@email.phys.kyushu-u.ac.jp

where the mass number AP of the projectile is assumed to be
even. In Ref. [8], the staggering was analyzed with the HFB
method for 30,31,32Ne + 12C scattering at 240 MeV/nucleon [3]
and with the three-body model for 14,15,16C + 12C scattering
at 83 MeV/nucleon [11]. The analyses are successful in
reproducing the observed staggerings [3,11], although the
reaction calculations are based on the Glauber model.

In this Brief Report, we reanalyze 14,15,16C scattering in or-
der to focus our attention on the reaction mechanism, since 15C
has a simpler structure than 31Ne in the sense that the energy
of the first excited state in 14C as a core nucleus is much larger
than that in 30Ne. For 14,15,16C, γ3 is 163 ± 52 mb, which is
about 10% of σR(15C) = 1319 ± 40 mb [11]. Thus the pairing
anti-halo effect may be comparable with the projectile-breakup
and nuclear-medium effects, which are not taken into account
in the previous analysis. Therefore, we investigate these effects
on the staggering, using the continuum-discretized coupled-
channels method (CDCC) [12–14]. CDCC for two-body
(three-body) projectiles is often called three-body (four-body)
CDCC; in the naming the target degree of freedom is taken
into account. Here we apply four-body CDCC to 16C.

Theoretical framework. Following Ref. [8], we assume
the n+ 14C two-body model for 15C and the n+ n+ 14C
three-body model for 16C. The three-body model of 16C is a
simple model for treating the pairing correlation between two
extra neutrons. In the present calculation, breakup processes
of 15C and 16C on 12C are described by the n+ 14C + 12C
three-body model and the n+ n+ 14C + 12C four-body model,
respectively. The Schrödinger equation is defined as

(H − E)� = 0 (2)

for the total wave function �, where E is the energy of the
total system. The total Hamiltonian H is defined by

H = KR + U + h, (3)

where h denotes the internal Hamiltonian of 15C or 16C and R is
the center-of-mass coordinate of the projectile relative to a 12C
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target. The kinetic energy operator associated with R is rep-
resented by KR , and U is the sum of interactions between the
constituents in the projectile (P) and the target (T) defined as

U = Un(Rn) + U14C(R14C) + e2ZPZT

R
(4)

for 15C and

U = Un1

(
Rn1

) + Un2

(
Rn2

) + U14C(R14C) + e2ZPZT

R
(5)

for 16C, where Ux (x = n, n1, n2,14C) is the nuclear part of
the optical potential between x and 12C as a function of the
relative coordinate Rx .

The optical potential Ux is constructed microscopically by
folding the Melbourne g-matrix nucleon-nucleon interaction
[15] with densities of x and 12C. For 12C, the proton
density is obtained phenomenologically from the electron
scattering [16], and the neutron density is assumed to be
the same as the proton one, since the proton rms radius
deviates from the neutron one only by less than 1% in the
HFB calculation. For 14C, the matter density is determined
by the HFB calculation with the Gogny-D1S interaction
[17], where the center-of-mass correction is made in the
standard manner [6]. As shown latter, the total reaction cross
section calculated with the folding potential U14C yields good
agreement with the experimental data for 14C + 12C scattering
at 83 MeV/nucleon. The Melbourne g-matrix folding method
is successful in reproducing nucleon-nucleus and nucleus-
nucleus elastic scattering systematically [6,14]. The folding
potentials thus obtained include the nuclear-medium effect.
CDCC with these microscopic potentials is the microscopic
version of CDCC.

In the present system, Coulomb breakup is quite small,
since the projectile and the target are light nuclei, and hence
the Coulomb barrier energy between P and T is much smaller
than the incident energy considered here. We then neglect
Coulomb breakup, as shown in Eq. (5), where ZP and ZT are
the atomic numbers of nuclei P and T, respectively.

For 15C, we take the n-14C interaction of Ref. [8], which
well reproduces properties of the ground and first-excited
states of 15C. For 16C, we use the Bonn-A interaction [18]
between two neutrons, the same interaction as in Ref. [8]
between n and 14C, and introduce a total-spin-dependent
three-body interaction to reproduce energies of the ground
0+ state and the first 2+ excited state of 16C. Eigenstates of h
are obtained with the numerical techniques of Ref. [19]; that
is, the orthogonality condition is imposed. Now we introduce
the dimensionless staggering parameter �rds for the projectile
and target rms radii r̄(AP) and r̄(AT):

�rds = R̄2(AP + 1) − [R̄2(AP) + R̄2(AP + 2)]/2

[R̄2(AP + 2) − R̄2(AP)]/2
(6)

with

R̄(AP) = r̄(AP) + r̄(AT). (7)

Note that �rds � 1 when r̄(AP + 1) � r̄(AP + 2). The matter
radii of 14,15,16C are summarized in Table I. The present
two-body and three-body models yield �rds = 1.3 for 14,15,16C.

TABLE I. Matter radii of 14,15,16C.

r̄(14C) (fm) r̄(15C) (fm) r̄(16C) (fm)

Calc. 2.51a 2.87a 2.83a

2.53b 2.90b 2.81b

Exp. 2.50c – –

aPresent calculation.
bReference [8].
cCharge radius [20].

In the CDCC method, eigenstates of h consist of a
finite number of discrete states with negative energies and
discretized continuum states with positive energies. The
Schrödinger equation (2) is solved in a model spaceP spanned
by the discrete and discretized continuum states:

P(H − E)P�CDCC = 0. (8)

Following Ref. [21], we obtain the discrete and discretized
continuum states by diagonalizing h in a space spanned by
the Gaussian basis functions. The elastic and discrete breakup
S-matrix elements are obtained by solving the CDCC equation
(8) under the standard asymptotic boundary condition [12,23].
In actual calculations, we neglect the projectile spin, since the
effect is small on σR [6,24]. Breakup states are taken up to the
g wave for 15C. Meanwhile, only 0+ and 2+ breakup states are
considered for 16C, because the effect of 1− breakup states on
σR is found to be less than 1%. In all the present calculations,
we have confirmed convergence of the CDCC solution for σR.

Now we define the dimensionless staggering parameter also
for σR:

�R = γ3

[σR(AP + 2) − σR(AP)]/2
, (9)

where �R = 0 when σR(AP + 1) = [σR(AP + 2) + σR(AP)]/2
and �R � 1 when σR(AP + 1) � σR(AP + 2). When the
absolute value of the elastic S-matrix element, |Sel(L)|, is 0
for orbital angular momenta L corresponding to the nuclear
interior and 1 for those to the nuclear exterior, the following
relationship is satisfied: σR(AP) ∝ R̄2(AP) [24]. In black-
sphere scattering (BSS), Eq. (9) is reduced to �R = �rds.
Once this condition is satisfied, �R does not depend on
the incident energy Ein. The staggering parameter can be
evaluated from the measured σR for 14−16C + 12C scattering
at 83 MeV/nucleon. The resulting value �

exp
R = 2.0 ± 0.8

is consistent with �rds = 1.3. Three types of models are
considered to investigate the nuclear-medium and projectile-
breakup effects on σR.

Model I is the T -matrix folding model that has no nuclear-
medium and projectile-breakup effects. The Ux are constructed
from the Melbourne g-matrix nucleon-nucleon interaction at
zero density. The single-channel calculation is done in (8).

Model II is the g-matrix folding model that has the nuclear-
medium effect but not the projectile-breakup effect. This is the
same as Model I, but the density dependence of the Melbourne
g matrix is properly taken.

Model III is the model that has both the nuclear-medium and
the projectile-breakup effects. CDCC calculations are done for
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FIG. 1. (Color online) Reaction cross sections σR for
14,15,16C + 12C scattering at 83 MeV/nucleon. Triangle, circle, and
square symbols stand for results of Models I, II, and III, respectively.
The experimental data are taken from Ref. [11].

15,16C scattering, but the g-matrix folding model is taken for
14C scattering, since 14C is a tightly bound system.

Results. Figure 1 shows σR for 14,15,16C + 12C scattering at
83 MeV/nucleon. Triangle, circle, and square symbols stand
for the results of Models I, II, and III, respectively. Model III
well reproduces the experimental data [11], whereas Model I
largely overestimates them; here the data are plotted with 2σ
error (95.4% certainty). The net effect of nuclear-medium and
projectile-breakup effects is thus important for σR. Model III
yields �R = 0.77, which deviates from �rds = 1.3. When the
breakup effect is switched off from Model III, σR is reduced
from squares to circles. This reduction is most significant for
15C, so that �R is reduced from 0.77 to 0.55. Furthermore, when
the medium effect is switched off from Model II, the σR values
are enhanced by about 10% from circles to triangles for all
the cases of 14,15,16C. More precisely, the enhancement is 13%
for 14,16C but 15% for 15C, and, consequently, �R increases
from 0.55 to 0.82 by neglecting the medium effect. Thus the
breakup and medium effects nearly cancel each other for �R.
The resultant value �R = 0.82 is still considerably deviated
from �rds = 1.3. This means that the present scattering is not
BSS exactly. This remaining effect, i.e., the difference between
�rds and �R of Model I, is referred to as the “non-BSS effect”
in this Brief Report and is explicitly investigated below.

In the g-matrix folding model, the imaginary part of the
folding potential, is often renormalized to reproduce the
experimental data; see, for example, Ref. [22]. Our results
of Models II and III are consistent with the measured σR

without introducing such a renormalization, since we use
the Melbourne g-matrix interaction. A 20% increase of the
imaginary part of the folding potential enhances σR by about
6% for all of 14,15,16C. Thus �R is not sensitive to the magnitude
of the imaginary part.

Figure 2 shows the absorption probability P (L) ≡ 1 −
|Sel(L)|2 and the partial reaction cross section σR(L) ≡ (2L +
1)P (L)π/K2 as a function of L, where h̄K is an initial
momentum of the elastic scattering. Here Model I is taken. For
all the 14,15,16C scattering, P (L) behaves as not a step function
but a logistic function. Thus the scattering are not the BSS
exactly. Furthermore, L dependencies of the P (L) are different
among the three projectiles at 60 � L � 150 corresponding to
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FIG. 2. (Color online) L dependence of (a) the absorption
probability P (L) and (b) the partial reaction cross section for
14,15,16C + 12C scattering at 83 MeV/nucleon. Model I is taken.

the peripheral region of a 12C target. As a consequence of
the difference, σR is not proportional to R̄2 properly. In fact,
15C has a larger rms radius than 16C, but 15C scattering has a
smaller σR(L) than 16C one at 70 � L � 120 because of the
fact that the volume integral of the imaginary part of the folding
potential 〈ϕ0|U |ϕ0〉 is smaller for 15C projectile than for 16C
projectile; here ϕ0 is the projectile ground-state wave function.

Figure 3 shows the Ein dependence of �R. Triangle, circle,
and square symbols correspond to the results of Models I, II,
and III, respectively, whereas the solid straight line denotes
�rds. The deviation of triangles from the solid straight line
shows the non-BSS effect, the deviation of circles from
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FIG. 3. (Color online) Ein dependence of �R. Triangle, circle,
and square symbols stand for the results of Models I, II, and III,
respectively. The solid straight line denotes �rds.
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triangles shows the nuclear-medium effect, and the deviation of
squares from circles comes from the projectile-breakup effect.
As Ein increases, the breakup effect decreases rapidly, but the
non-BSS effect increases. The nuclear-medium effect also de-
creases but very slowly. Thus the non-BSS and medium effects
are important for �R at higher Ein around 250 MeV/nucleon,
where the breakup has a less than 1% effect on σR. At lower
Ein from 50 to 80 MeV/nucleon, meanwhile, the medium and
breakup effects nearly cancel each other, so that only the non-
BSS effect remains for �R. Since the non-BSS effect is smaller
at lower Ein, we can conclude that lower-incident energy
scattering can be a good probe for evaluating �rds from σR.

As mentioned above, the non-BSS effect becomes large as
Ein increases. In the high-Ein region where the eikonal ap-
proximation is valid, σR is proportional to the volume integral
of the imaginary part 〈ϕ0|W |ϕ0〉 of 〈ϕ0|U |ϕ0〉 [14,25], since

σR =
∫

d2b[1 − |〈ϕ0|S|ϕ0〉|2]

= −2

h̄v0

∫
d3 R〈ϕ0|W |ϕ0〉 (10)

with

S = exp

[
− i

h̄v0

∫ ∞

−∞
dZU

]
, (11)

where v0 is the incident velocity of P and R = (b, Z). It
follows from Eq. (10) that �R = 0.

Summary. The present microscopic version of three-
and four-body CDCC calculations reproduces σR for
14,15,16C + 12C scattering at 83 MeV/nucleon. The projectile-
breakup effect is significant for 15C scattering and appreciable
for 16C scattering, whereas the nuclear-medium effect is
sizable for 14,15,16C scattering. In general, the σR-staggering
�R is deviated from the radius-staggering �rds by the non-BSS,
nuclear-medium, and projectile-breakup effects. At lower
Ein from 50 to 80 MeV/nucleon, the breakup and medium
effects nearly cancel and the remaining non-BSS effect is
rather small for �R. Therefore, the lower-Ein scattering can
be a good probe for evaluating �rds from σR. At high Ein,
meanwhile, the non-BSS effect is significant, whereas the
nuclear-medium and projectile-breakup effects are small or
negligible. The non-BSS effect largely reduces �R from
�rds. Thus the radius-staggering �rds is masked by the non-
BSS effect at high Ein. The present fully consistent micro-
scopic calculations underestimate the experimental staggering
�

exp
R = 2.0 ± 0.8, though the calculated �R clearly correlates

with �rds. In order to draw a definite conclusion on the
pairing anti-halo effect, the reaction cross sections at low
Ein should be further investigated both experimentally and
theoretically.
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