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New calculations for phase space factors involved in double-β decay
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We present new results for the phase space factors involved in double-β decay for β−β− transitions to ground
states and excited 0+

1 states for isotopes of experimental interest. The Coulomb distortion of the electron wave
functions is treated by solving numerically the Dirac equation with inclusion of the finite nuclear size and electron
screening effects and using a Coulomb potential derived from a realistic proton density distribution in the daughter
nucleus. Our results are compared with other results from literature, obtained in different approximations, and
possible causes that can result in differences are discussed.
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Introduction. Within the standard model (SM) double-β
decay (DBD) can occur through several decay modes, but
the only measured one at present is that with the emission
of two electrons and two antineutrinos (2νβ−β−) and which
conserves the lepton number. However, theories beyond the
SM allow this process to occur without emission of neutrinos
as well, and this possibility makes DBD a nuclear process
of major interest for testing the lepton number conservation
(LNC) and for understanding neutrino properties. There are
recent excellent reviews, containing also a comprehensive
list of references [1–5], where the reader can find com-
plete information on this subject. The DBD lifetimes can
be factorized, in a good approximation, as follows:(

T 2ν
1/2

)−1 = G2ν(E0, Z)|M2ν |2, (1)(
T 0ν

1/2

)−1 = G0ν(E0, Z)|M0ν |2 (〈ηl〉)2 , (2)

where 〈ηl〉 is a beyond SM parameter containing information
about the properties of the virtual particles involved in the
decay within a specific mechanism, M (2ν,0ν) are the nuclear
matrix elements (NMEs), and G(2ν,0ν) are phase space factors
(PSFs) for the corresponding decay modes (see, e.g., Ref. [5]).
As seen, they are key quantities for estimating the lifetimes
and/or for deriving the 〈ηl〉 parameter, so it is very important
to calculate them precisely. So far much effort has been put
into the accurate calculation of the NMEs. Several methods
have been developed for that, the most used being quasi
random phase approximation (QRPA)-based method [6–12],
the shell-model-based method [13–17], interaction boson
approximation (IBA)-2 [18], the energy- density-functional
Method [19], and projected Hartree Fock Bogoliubov (PHFB)
[20]. The NMEs have been calculated for all the transitions,
decay modes, and isotopes of interest, and the uncertainties
in their estimation have been largely discussed over time
in the literature. The PSFs have been calculated for a
long time [21–27] but they have been less discussed, being
considered to be computed with enough precision. Recently,
they were recalculated within an improved approach by using
exact electron Dirac wave functions, taking into account the
finite nuclear size and the electron screening effects [28].
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The authors found differences between their results and
those calculated previously with approximative electron wave
functions, especially for heavier nuclei. However, besides
the NMEs, it is very important to have values of the PSFs
precisely calculated as well, both to improve the DBD lifetime
predictions and to extract nuclear model parameters. One
example is the extraction of the gpp parameter in the QRPA
calculations of the NMEs involved in DBD. In this work we
report new results for the PSFs involved in 2ν- and 0ν-β−β−
decay modes for transitions to the ground states (g.s.) and
excited 0+

1 states. We developed routines for computing the
relativistic (Dirac) electron wave functions, taking into account
the nuclear finite size and screening effects. In addition to the
previous calculations, we use a Coulomb potential derived
from a realistic proton density distribution in the daughter
nucleus. We compare our results with other results from the
literature, obtained in different approximations, and discuss the
causes that result in differences between different calculations.

Formalism. The PSFs have been calculated first in Refs. [21,
22] by using a nonrelativistic approach. The distortion of the
wave function by the Coulomb field of the daughter nucleus
was considered through Fermi (Coulomb) factors obtained by
taking the square of the ratio of the Schrödinger scattering
solution for a point charge Z to a plane wave, evaluated at
the origin. The use of such a simple expression for the Fermi
factors allows us to get analytical formula for the PSFs. In a
better approximation, the Fermi factor is defined as the square
of the ratio of the values of the Dirac s wave function of the
electron at the nuclear surface RA = 1.2A1/3 fm [27]:

F0(Z, ε) = 4(2pRA)2(γ1−1) |�(γ1 + iy)|2 exp(πy)

[�(2γ1 + 1)]2 , (3)

where y = ±αZε/p, ε and p = |p| are the energy and electron
momentum, and γ1 = [1 − (αZ)2]1/2 with α = 1/137. In
a more rigorous treatment the electron relativistic wave
functions are expressed as a superposition of s and p Coulomb-
distorted spherical waves. Their radial parts are obtained as
solutions of the Dirac equations with a central field [26,28]:

dgκ (ε, r)

dr
= −κ

r
gκ (ε, r) + ε − V + mec

2

ch̄
fκ (ε, r), (4)

dfκ (ε, r)

dr
= −ε − V − mec

2

ch̄
gκ (ε, r) + κ

r
fκ (ε, r), (5)
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which depends on the relativistic quantum number
κ = (l − j )(2j + 1). The quantities gκ (ε, r) and fκ (ε, r) are
the small and large components of the solutions that have the
following asymptotic behavior:(

gk(ε, r)
fk(ε, r)

)

∼ h̄e−iδk

pr

⎛
⎝

√
ε+mec2

2ε
sin(kr − l π

2 − η ln(2kr) + δk)√
ε−mec2

2ε
cos(kr − l π

2 − η ln(2kr) + δk)

⎞
⎠ .

(6)

Here, c is the velocity of the light, me/ε is the electron
mass/energy, k = p/h̄ is the electron wave number, η =
Ze2/h̄v is the Sommerfeld parameter, δκ is the phase shift,
and V is the Coulomb potential between the electron and
the daughter nucleus. The nuclear size corrections are usually
taken into account by considering an unscreened potential V
obtained for a uniform charge distribution in a sphere of radius
RA [23,28]:

V (r) =
{−Zαh̄c

r
, r � RA,

−Z(αh̄c)
( 3−(r/RA)2

2R

)
, r < RA,

(7)

A further improvement in the calculation is to take into
account the screening effect. This can be done by multiplying
the above expression of V (r) with a function φ(r), which
is the solution of the Thomas-Fermi equation: d2φ/dx2 =
φ3/2/

√
x, with x = r/b, b ≈ 0.8853a0Z

−1/3, and a0 = Bohr
radius. It is calculated within the Majorana method [29]. This
last approach was used in Ref. [28] to calculate the PSFs.

In this work, we go further in accuracy and take into account
the influence of the nuclear structure by deriving the potential
V (r) from a realistic proton density distribution in the daughter
nucleus. This is done by solving the Schrödinger equation for
a Woods-Saxon (WS) potential. In this case,

V (r) = αh̄c

∫
ρe(�r ′)

|�r − �r ′|d
�r ′, (8)

where the charge density is

ρe(�r) =
∑

i

(2ji + 1)v2
i |�i(�r)|2, (9)

with �i being the proton (WS) wave function of the spherical
single-particle state i and vi being its occupation amplitude.
The factor (2ji + 1) reflects the spin degeneracy. The screening
effect is taken into account in the same manner as in Ref. [28].

To compute the PSFs, the electron phase factors f
(0)
jk must be

obtained from the solutions of the Dirac equation by neglecting
the neutrino mass:

f
(0)
11 = |f −1−1|2 + |f11|2 + |f −1

1 |2 + |f −1
1 |2, (10)

with

f −1−1 = g−1(ε1)g−1(ε2), f11 = f1(ε1)f1(ε2); (11)

f −1
1 = g−1(ε1)f1(ε2), f −1

1 = f1(ε1)g1(ε2). (12)

The values of the f and g functions are approximated with
the solutions on the surface (method I from Ref. [28]):

g−1(ε) = g−1(ε, R); f1(ε) = f1(ε, R) (13)

For the two-neutrino DBD, the PSFs are

G2ν = 2Ã2

3 ln 2g4
A(mec2)2

∫ T0−mec
2

mec2

∫ T0−ε1

mec2

∫ T0−ε1−ε2

0

×dε1dε2dω1f
(0)
11 w2ν(〈KN 〉2 + 〈LN 〉2 + 〈KN 〉〈LN 〉),

(14)

where T0 = Qββ + 2mec is the total energy released in the
decay and 〈KN 〉 and 〈LN 〉 are expressions (known in the
theory of DBD) that depend on the electron and neutrino (ω1,2)
energies and on the g.s. energies of the initial nucleus and of
the excited states of the intermediate nucleus [22–28]. Ã =
1.12A1/2 (in MeV) gives the energy of the giant Gamow-Teller
resonance in the intermediate nucleus, and

w2ν = g4
A(G cos θC)4

64π7h̄
w2

1w
2
2(p1c)(p2c)ε1ε2. (15)

The PSFs are finally renormalized to the electron rest energy
and are reported in yr−1.

For the 0νββ decay, the PSFs are

G0ν = 2

4g4
AR2 ln 2

∫ T0−mec
2

mec2
f

(0)
11 w0νdε1, (16)

where

w0ν = g4
A(G cos θC)4

16π5
(mec

2)2(h̄c2)(p1c)(p2c)ε1ε2, (17)

where G = 1.16637 × 10−5 GeV−2 is the Fermi constant and
cos θC = 0.9737 [26]. In Eq. (16) it is convenient to redefine
the PSFs by a renormalization that eliminates the constant gA

and correlates (by dividing by 4R2
A) the dimension of G0ν

with the NMEs, which are dimensionless. Thus, our PSFs are
reported in yr−1.

Results. The single-particle densities inside the daughter
nucleus, needed to derive the potential V (r), are obtained by
solving the Schrödinger equation for a spherical WS poten-
tial, including spin-orbit and Coulomb terms. The universal
parametrization was employed as in Ref. [30]. The occupation
amplitudes are obtained within the BCS approach [31].
Further, the Dirac equation is solved for the electron moving
in the potential V (r), created by the proton distribution, by
using the power series method from Ref. [32]. We built up a
numerical code that uses an algorithm similar to that used in
Ref. [33]. The asymptotic normalization to unity is done as
in Ref. [34]. The solutions of the electron wave functions are
computed numerically by approximating them with infinite
polynomials whose coefficients at different distances r are
connected analytically by the particular forms of the Dirac
equations and by the values of the Coulomb potential.
Therefore, the numerical values of the wave functions can
be calculated step by step, by increasing the distance r . At
very large distances, the behavior of the wave functions must
resemble that of the Coulomb function. This last condition
provides a way to renormalize the amplitude to unity and
to determine the phase shift. To solve the integrals (14) and
(16), we compute the values of the electron wave functions
and these values are interpolated. Because the wave function
values at the nuclear surface vary rapidly for energies close
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TABLE I. Values of the PSFs for transitions to the g.s. (first line) and to the excited 0+
1 state (second line). The relative differences in

percentage ε (%) between other previous calculations (indicated by references) and our results are displayed in the last rows of each section.
Qββ and Q1

ββ are the kinetic energies available in the corresponding decays.

Nucleus
48Ca 76Ge 82Se 96Zr 100Mo 110Pd 116Cd 128Te 130Te 136Xe 150Nd 238U

G2ν (10−21 yr−1)
Qββ (MeV) 4.272 2.039 2.995 3.350 3.034 2.018 2.814 0.866 2.527 2.458 3.371 1.145
Q1

ββ (MeV) 1.275 0.917 1.507 2.202 1.904 0.548 1.057 0.733 0.879 2.630 0.204

[24,25] 16200 53.8 1830 3860 0.35 1970 2030 48700
[27] 16200 52.6 1740 7280 3600 2990 0.344 1940 1980 48500

0.376 0.0769 4.80 190 101 0.89 18.6 0.485 4850
[28] 15600 48.2 1600 6820 3310 138 2760 0.269 1530 1430 36400 14.6

0.363 0.0698 175 60.6 0.00484 0.873 0.0757 0.362 4330 0.000464

Present 15500 43.9 1480 5940 2910 120 2580 0.253 1460 1370 34200 115
work 0.37 0.0595 3.71 131 45.8 0.00332 0.695 0.0771 0.356 3990 0.00326

ε [24,25] 4.3 18.4 −2.2 4.1 27.7 25.9 32.5 29.8

ε [27] 4.3 16.5 −7.5 −4.4 −2.8 13.7 26.5 24.7 30.8 29.5
1.6 22.6 22.7 31.1 54.7 21.9 99.6 26.6 17.7

ε [28] 0.6 8.9 7.5 12.9 12.1 13.0 6.5 5.9 4.6 4.2 6.0 >100
−1.9 14.8 25.1 24.4 31.4 20.4 −1.8 1.7 7.9 >100

G0ν (10−15yr−1)
[24,25] 26.1 2.62 11.4 18.7 0.748 19.4 19.4 85.9

[27] 26.0 2.55 11.1 23.1 45.6 18.9 0.671 16.7 17.7 78.4
[28] 24.8 2.36 10.2 20.6 15.9 4.82 16.7 0.588 14.2 14.9 63.0 33.6

0.299 0.178 4.57 3.16 0.0884 0.716 0.309 0.613 27.3 0.753

Present 24.9 2.34 10.1 20.3 15.7 4.79 16.6 0.555 14.1 14.6 62.0 31.1
work 0.305 0.187 0.917 3.30 3.07 0.108 0.719 0.357 0.659 27.0 1.18

ε [24,25] 4.6 10.7 11.4 16.0 25.8 27.3 24.7 27.8

ε [27] 4.2 8.2 9.0 12.1 65.6 12.2 17.3 18.4 17.5 20.9

ε [28] −0.4 0.9 1.0 1.5 1.3 0.6 0.6 5.6 0.7 2.0 1.6 7.4
−2.0 −5.1 27.8 2.9 −22.2 −0.4 −15.5 −7.5 1.1 −57

to mec
2, we took additional mesh points in the vicinity of

this region to improve the numerical accuracy. Our results are
presented in Table I for 12 nuclei of experimental interest.
In the first (upper) part of the table the PSF values, G2ν ,
for the 2νββ decay mode, for the transitions to the g.s
(first row in the grouping) and to excited 0+

1 states (second
row in the grouping) are displayed. For comparison, similar
results are also displayed, indicating the references where
they are taken from. The maximum available kinetic energies
Qββ and Q1

ββ for the transitions to the g.s. and excited 0+
1

states, respectively, are given as well. In the last rows the
relative differences in percentage between other results and
ours {[ε = G2ν(Ref.) − G2ν(ours)]/G2ν(Ref.)} are shown for
comparison. The PSF values, G0ν , for the 0νββ decay mode
and the relative differences are presented in a similar way in
the second (lower) part of the table. The relative differences
between our G2ν values and other results for the transitions to
the g.s. are within 18.4% for the light nuclei. For the heavier
nuclei, with A > 128, where the influence of the potential V (r)
is stronger, the relative differences are larger (between 25% and
32.5%), as compared with Refs. [24,27], while the agreement
with Ref. [28] is excellent with one exception: 238U. For the

transitions to the excited 0+
1 state the agreement with previous

results is within 31.4%, with a few exceptions (100Mo and
130Te from Ref. [27] and 238U from Ref. [28]), which should
be revised. For G0ν the agreement between our results and the
previous ones is better than in the 2ν case and follows the same
features discussed above. We notice the excellent agreement
with the results from Ref. [28] for the transitions to the g.s.,
but also notice a few cases that should be revised (100Mo
and 238U for transitions to the 0+

1 state). The differences in
PSF values could mainly come from two sources: the quality
of the approach and the accuracy of the numerical methods
that are used. On the one hand it is clear that an improved
treatment of the electron wave functions (relativistic treatment
with inclusion of the finite nuclear size and electron screening
effects and using a realistic Coulomb potential) is preferable
to a less rigorous one, as it is also highlighted in Ref. [28].
Related to this, because the influence of the structure of
the daughter nucleus was never investigated, we performed
the calculations with expressions of V (r) either given by a
uniform charge distribution or derived from a realistic proton
density distribution. The differences we got between the two
calculations are within 5% for both G0ν and G2ν . On the other
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hand, as we already mentioned, the f and g functions obtain
their maximum values in the vicinity of mec

2 and, hence, a
more rigorous treatment of the numerical integration in that
region is necessary. An inadequate numerical treatment can
change significantly the results.

Conclusions. In summary, we performed an independent
calculation of the PSFs involved in β−β− decays modes, for
transitions to the g.s. and excited 0+

1 states for 12 nuclei
of experimental interest. The Coulomb distortion of the
electron wave function is obtained by solving numerically the
Dirac equation including the finite nuclear size and electron
screening effects. In addition to other previous approaches,
we used a Coulomb potential derived from a realistic proton
density distribution in the daughter nucleus. The relative

differences between other results and ours are within ≈32%,
with a few exceptions that have to be revised. The differences
between the PSF values can come, in part, from the rigor
of the approach used in their calculation and, in part, from
the accuracy of the numerical method used for integration.
Because the PSFs are important ingredients both for the
estimation of the DBD lifetimes and for the extraction of
some key nuclear model parameters, a deeper investigation
of these issues and a rigorous calculation of them is still
needed.
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