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In this Brief Report we investigate excited yrast states under random interactions in the framework of the
fermion dynamical symmetry model, for the ensemble with spin-0 ground states. Interesting correlations are seen
between R6 and R4 (where RI ≡ EI+

1
/E2+

1
) by using the Mallmann plot, for cases with both SP(6) symmetry

and SO(8) symmetry.
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In 1997, Johnson, Bertsch, and Dean, discovered that the
spin-0 ground-state dominance in even-even nuclei can be
obtained by using the two-body random ensemble [1]. Since
then, many efforts have been devoted to understanding this
puzzle and to studying various regularities of many-body
systems under random interactions. See Refs. [2–4] for
comprehensive reviews.

Among the many regularities under random Hamiltonians,
collective motion is of particular interest. In Ref. [5] Bijker
and Frank found that for spin-0 ground states of sd bosons,
collective vibrational and rotational motions are dominant
as the number of sd bosons is large enough (say, >10).
However, in fermion systems the dominance of rotation
depends on specific choices of two-body interactions and
symmetries of the systems. For example, rotational motion
gradually arises when the quadrupole-quadrupole interaction
is enhanced in Hamiltonian [6]. Also, in Ref. [7] it was
found that the collective features in the two-body random
ensemble arise from the quadrupole-quadrupole component
in the Hamiltonian. In Ref. [8], statistics of R4 = E4+

1
/E2+

1

showed that a system with SP(6) symmetry in the fermion
dynamical symmetry model [fermion dynamical symmetry
model (FDSM) [9,10]; explained below] presents both vi-
brational and rotational motions, while a system with SO(8)
symmetry presents R4 without any obvious peaks, suggesting
that collective motion in the FDSM with random interactions
is related to the symmetries of both the Hamiltonian and the
truncation scheme. In Ref. [11] Johnson et al. studied the
features of seniority, vibrations, and rotations in the Mallmann
plot [12], namely, a plot of (RI ,R4) (where RI is defined
by the ratio of the first I+ state energy to the first 2+ state
energy, RI ≡ EI+

1
/E2+

1
), for both fermion and boson systems.

In Ref. [13] Lei et al. presented the Mallmann plot for sd-
boson systems under random interactions and demonstrated
remarkable correlations between RI and R4, corresponding to
the seniority, harmonic vibration and rotation.
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This work is a generalization of Refs. [8,11,13], for
systems dictated by the symmetries of the FDSM, under
random interactions. Here let us introduce the FDSM and its
Hamiltonian briefly. The FDSM [9] is one of the SD-pair
approximations of the nuclear shell model. It was a further
development of the Ginocchio toy model [10], in which both
the SD nucleon pairs and the Hamiltonian are constructed in
the so-called k-i basis [9,10], following either the SO(8) or the
SP(6) symmetry. The FDSM Hamiltonian is

H = G0S
†S + G2D

† · D +
2 or 3∑

r=1

BrP
r · P r,

where S† and D† are S and D pairs, P r is the multipole
operator, and r ranges from 1 to 2 for SP(6) symmetry and
from 1 to 3 for SO(8) symmetry. G0, G2, and Br are taken
to be random values following the Gaussian distribution with
average 0 and width 1.

We investigate cases with SO(8) symmetry and pair
number N = 3–5 and with SP(6) symmetry and N = 3–7.
We diagonalize 5000 sets of the random Hamiltonians and
calculate their yrast states. For these systems, most spin-0
ground-state probabilities, denoted P (0), are around 50%, with
exceptions as follows. P (0) values for SO(8) symmetry with
N = 5 and P (0) for the SP(6) system with N = 7 are relatively
lower (37% and 44%, respectively); P (0) values for SP(6)
symmetry with N = 3 and 6 are relatively higher (72% and
67%, respectively).

We now focus on cases with spin-0 ground states and
present the distributions of R4 and the correlation of (R6, R4)
for these random samples in Fig. 1. We note without further
details that the correlation of (RI ,R4) (I = 8, 10, . . .) is very
close to that of (R6, R4).

The statistics for the SO(8) symmetry of the FDSM are
presented in Figs. 1(a)–1(c) and 1(a′)–1(c′). One sees no
obvious statistical peak at R4 = 2 or 3.33 in Figs. 1(a)–1(c)
or pronounced statistics at (R6, R4) = (3, 2) or (7, 3.33) in
Figs. 1(a′)–1(c′). On the other hand, one sees clear peaks
in Figs. 1(d)–1(h) and 1(d′)–1(h′) for the SP(6) systems,
i.e., similar to patterns observed in sd bosons by Bijker and
Frank [5]. These results are consistent with those in Ref. [8].
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FIG. 1. (Color online) Distribution of R4 and (R6, R4) for FDSM systems under the two-body random ensemble Hamiltonian. No vibrational
or rotational peaks, ( I

2 , 2) or ( I (I+1)
6 , 3.33), are found in SO(8), but they are in in SP(6) systems. Four linear correlations, denoted α, β, γ , and

δ, between RI and R4 are noted. See the text for details.

Interestingly, for random samples close to rotational motion
in the SP(6) systems, we see that B2 < G2 � G0 (B1 > B2),
i.e., the requirement of the SU(3) symmetry holds. In this
Brief Report relations between the interaction parameters in
brackets mean statistical ones.

Now we look at the patterns exhibited in the Mallmann plot,
the correlation between R6 and R4, shown in Fig. 1. There are,
in total, four types of elegant correlations, denoted α, β, γ , and
δ, respectively. We note that the first three correlations have all
been pointed out for sd bosons in Ref. [13]. The correlation
δ is discerned in this Brief Report. Below we discuss these
correlations in detail.

The correlation α is a universal correlation in all FDSM
systems. The analytical expression of the correlation α is RI =
I (I−2)

8 R4 − I (I−4)
4 . Thus we have R6 = 3R4 − 3, and the values

of R4 range from 1 to 3.33. The correlation α is described
by a straight line passing through two (R6, R4) = (3, 2) and

(7, 3.33), corresponding to the vibrational and rotational
motions, respectively. For SO(8) symmetry, the two-body
interaction parameters in the α correlation follow G2 > B2,
G0 > B2, B3 > B2 (B1 > B2); and for SP(6) symmetry, they
well follow G2 � B2 > G0, the requirement of the SU(2)
subgroup limit in the SP(6) FDSM.

In Ref. [13], the correlation α is presented in terms of the
anharmonic vibrator model [14–16], in which

EI+
1

= I

2
E2+

1
+ I (I − 2)

8
ε4,

where ε4 is a parameter with a constant value. Numerical
experiments in Ref. [13] did show the constancy of ε4. Here,
however, this is not the case. In Fig. 2 we present the correlation
between E4+

1
and E2+

1
. One sees that E4+

1
and E2+

1
do not follow

a linear correlation with given slope (2.0) and a constant ε4
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FIG. 2. Correlations between E4+
1

and E2+
1

for random samples
corresponding to the correlation α. The unit for both E4+

1
and E2+

1
is

arbitrary. Here we include all samples with |R6 − 3R4 + 3| < 0.01 in
Fig. 1. No linear correlation is found, which means that the correlation
α cannot be represented by the anharmonic vibrator model.

very closely. Therefore the origin of the correlation α warrants
further studies in the future.

The correlation β is given by RI = I (I+1)
20 R4, and thus R6 =

2.1R4. It is described by a straight line through (RI ,R4) =
(0,0), and ( I (I+1)

6 , 10/3). For systems with SO(8) symmetry,
the random parameters of the correlation β follow B2 > B3,
G2 > B3, B1 > B3; and for systems with SP(6) symmetry, one
has G0 > B2 > G2. The correlation γ is given by R6 = 9

5R4 +
1; for SO(8) symmetry, G0 > G2, B2 > G2, B3 > G2, and for
SP(6) symmetry, G0 > G2 > B2 (B2 < B1). In Ref. [13], the
correlations β and γ for sd-boson systems are found to be
represented by the U(5) limit, i.e., d-boson condensation. In
the FDSM there are three subgroups, SO(5), SO(7), and SU(2),
which are interpreted by anharmonic spherical vibrators.
Unfortunately, none of these three dynamical symmetries have
a clear correspondence with the β and γ correlation here.

The correlation δ is given by RI = (I−2)(I+3)
14 R4 −

(I−4)(I+5)
14 , and we have R6 = 18

7 R4 − 11
7 . It is described

by a straight line passing through (RI ,R4) = (1, 1) and
( I (I+1)

6 , 3.33), the values of the seniority and rotational modes,

respectively. For SO(8) symmetry, they follow B2 > B3, G2 >
B3 (B1 > B3); and for SP(6) symmetry, G0 > G2, G0 > B2

(B1 > B2).
To summarize, in this Brief Report we generalize the studies

in Refs. [8,11,13] and study excited states in the yrast states
of many-body systems under random two-body interactions,
within the framework of the FDSM. The Mallmann plot is
found to be very useful in discerning regular patterns among
the random ensembles.

As in Ref. [8], collective motions of vibration and rotation
do not arise in systems with SO(8) symmetry but arise
dominantly in SP(6) systems. In addition, linear correlations
between R6 and R4 are pointed out. They are called α, β, γ ,
and δ, respectively. These correlations are very similar to those
in sd-boson systems [13], but with the following features.

(i) The correlation α is universal and not represented by
the anharmonic vibrator model. Correlations between
(RI ,R4) are very different for different pair numbers
N ; α and β correlations are dominant when the pair
number equals 3 and 6, and α and γ correlations are
dominant when N = 4.

(ii) Correlations β and γ do not follow the vibrational
limit; the probability of seniority mode among the entire
ensemble, namely, (RI ,R4) = (1, 1), is almost 0.

(iii) The linear correlations, β, γ , and δ, hold well in the
region of R4 much larger than 3.33. This is given by
the low 2+

1 state energies.

The random parameters for the rotational peak and the
α correlation in SP(6) systems are found, as expected, to
follow the requirements of the SU(3) limit and the SU(2) limit,
respectively. They correspond to the rotational and vibrational
motions. The origin of other correlations remains unknown
and thus future studies are warranted.
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