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Effect of strong magnetic fields on the nuclear “pasta” phase structure
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The effect of strong magnetic fields on the properties of the pasta structure is calculated within a Thomas-Fermi
approach using relativistic mean-field models to modulate stellar matter. It is shown how quantities such as the
size of the clusters and Wigner-Seitz cells, the surface tension, and the transition between configurations are
affected. It is expected that these effects may give rise to large stresses in the pasta phase if the local magnetic

field suffers fluctuations.
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I. INTRODUCTION

In the bottom of the inner crust of proto-neutron and
neutron stars, where the transition to the homogeneous core
matter occurs, the existence of a special matter known as
the pasta phase is expected. This phase is a frustrated
system that arises from the competition between the strong
and the electromagnetic interactions [1-6]. The basic shapes
of these structures were named according to their geom-
etry, i.e., droplets (bubbles), rods (tubes), and slabs for
three, two, and one dimensions, respectively [1]; and the
ground-state configuration is the one that minimizes the
free energy. The pasta phase has been studied within the
Thomas-Fermi approximation at zero and finite temperatures
within different parametrizations of the relativistic nonlinear
Walecka model [7] and of the density-dependent hadronic
model [8-10].

It is known that magnetars, neutron stars with very strong
magnetic fields of the order of 10'*~10'> G at the surface, are
sources of very energetic electromagnetic radiation, mainly, y
and x rays [11-13]. Presently, more than 20 of these objects
have been detected, most of them as soft y repeaters (SGRs)
and anomalous x-ray pulsars (AXPs) [14]. It is not clear
how strong is the magnetic field in the interior, but several
studies seem to indicate that fields stronger than 10'® G
are not allowed. According to the scalar virial theorem [15]
the interior magnetic field strength could be as large as
B ~ (1-3) x 10'® G. Similar values were obtained in [16]
from general relativistic magneto-hydrostatic calculations, and
in [17] where the vanishing of the pressure parallel to the
field restricted homogeneously distributed fields to intensities
below 10" G.

In the present study we investigate the effect of the magnetic
field on the pasta structure. In [18] a simple expression,
dependent on two parameters and the magnetic field intensity
at the surface, was proposed to modulate the magnetic field
with density. Taking this expression as reference and fields that
are not stronger than ~(1-3) x 10'® G in the interior we may
expect that fields on the order of 10'7 G could exist in the inner
crust of the star. We consider fields in the range 10'°-10'® G.

The present study is organized in the following way: in
Sec. II the formalism is presented, in Sec. III results are
discussed, and the main conclusions are drawn in Sec. IV.
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II. FORMALISM

We describe the nuclear matter at the inner crust within
a relativistic mean-field (RMF) approach, in which the nu-
cleons interact via the exchange of mesons. The exchanged
mesons are the isoscalar-scalar and vector mesons (o and
w, respectively) and the isovector meson (p). We consider
a system of protons and neutrons with mass M interacting
with and through an isoscalar-scalar field ¢ with mass m;, an
isoscalar-vector field V#* with mass m,, an isovector-vector
field b* with mass m,. We also include a system of electrons
with mass m, to obtain a charge neutral system. Protons and
electrons interact through the electromagnetic field A*. The
Lagrangian density reads

L= Li+LetLo+Lo+Ly+Ly, (1)
i=p,n

where the nucleon Lagrangian reads

Li = Wilyui D" — M* 1y, )
with
iD"=i8“—guVH_g7p?-b”—el+r3A“, A3)
M* =M — g9, @)
and the electron Lagrangian is given by
Lo = Yelyuid" + eA") — m.1ye, &)
and the meson Lagrangian densities are
Ly = 5(3,90"¢p —mi¢> — 1kd® — Hr0"), (6)
Lo=3(-3QuQ" +miV, v + Leghv, vy, (D)
L, = 5(=3Bu - B* +m>b, - b*), 8)
L, =—1F,F", 9)
where the tensors are given by
Qu =0,V, —9d,V,, 10)
B,, =9,b, —d,b, —g,(b, xb,), (11)
F,, =0,A, —0d,A,. (12)

The parameters of the model are the nucleon mass M, three
coupling constants g, g,, and g,, of the mesons to the
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TABLE I. Nuclear matter properties of NL3 and TM1.

NL3 [19] T™1 [21]
po(fm2) 0.148 0.145
M*/M 0.60 0.634
o (Y, = 0.3) (MeV/fm?) 0.481 0.492
o (Y, = 0.5) (MeV/fm?) 1.123 1.077

nucleons, the electron mass m,, the masses of the mesons m;,
m,, m,, the electromagnetic coupling constant e = /4w /137,
and the self-interacting coupling constants k, A, and &.

We use the sets of constants proposed for parametrizations
NL3 [19] and TM1 [20,21]. The nuclear matter proper-
ties provided by these sets of parameters are displayed in
Table I. Both parametrizations have been fitted to the ground-
state properties of stable and unstable nuclei. TM1 includes
a quartic term involving the » meson which allows for
a softer equation of state at larger densities. Both models
have a symmetry energy slope at saturation that is presently
considered too high. Nevertheless we have considered these
two models as reference since they have been widely used and
we expect that the general features obtained with these models
will be valid for other models.

We will not consider the effect of the anomalous magnetic
moment because its effect is only important for magnetic fields
stronger than the ones considered in the present study [22,23].

III. THE THOMAS-FERMI APPROXIMATION

From the Euler-Lagrange formalism, we obtain from Eq. (1)
the coupled equations of motion for the scalar, isoscalar-vector,
isovector-vector, electromagnetic, and nucleon fields. For a
static system, only the zero components of the vector fields
and currents will be present and due to charge conservation
only the third component of the p-field remains. Therefore,
the equations of motion in the RMF approximation become

1 1
&Vﬂw@mn=&mm——mﬂn—dwux<w)

(v%wwwm—&wm——@mw) (14)
(= V2 +m2)bo(e) = L p3(r), (15)

—V2Ay(r) = elpy(r) — pe(r)], (16)

where pp is the baryonic density, p3 is the isospin density, p,,
pn, and p, are the proton, neutron, and electron densities, and
ps 1s the scalar density. These quantities are given by

p8(r) = pp(r) + p,(r) = (Y1),
p3(r) = p,(r) — pu(r) = (YT r390),

. (17)
ps(r) = p5,(r) + p5,(r) = (Y ),
Pe(t) = (Fl4h),

where () stands for the expectation values of the field operators.
The nucleon field operators ¥ and 1 are expanded in
a single-particle basis which for infinity nuclear matter in
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the mean-field approximation are plane wave states since the
system is translationally invariant. In this work, as usual, the
negative energy states will be neglected (no-sea approxima-
tion). We assume that matter consists of neutrons, protons,
and electrons in a strong external homogeneous magnetic field
B in the z direction. The gauge is fixed defining the 4-vector:

*=(0,0, Bx, 0), (18)

where we have B = B Z and V - A = 0. At zero temperature
all particle densities are calculated by occupying all single-
particle levels in the positive energy Fermi sea until the Fermi
level. These single-particle levels are solutions of a Dirac
equation where the motion is free along the B field direction
and quantized in the plane perpendicular to the field, yielding
the Landau quantization [24]. The energy dispersion relations
for charged particles are modified by the presence of the strong
magnetic field [23] which breaks the rotational symmetry, and
for the proton and electron they are given by

= /P +m2 + g, Vo + 38,bo + eAo, (19)
€ = \/p2+m2 —eA, (20)

where
Mm% = M*> +2v,eB, il =m.* +2v.eB, @n
( LU la ; 0.1,2
v, = n _———_— l:p,e, Vi =0U,1,4,...,
2 2 qul
(22)

where o, = %1 is the spin component along the magnetic
field direction; n =0, 1,2,...; ¢; with i = p, e stands for
the electric charge of the proton and electron, respectively;
and v;, i = p, e is called the Landau level. Note that the spin
degeneracy is 1 for the v = 0 Landau level and 2 for v > 0.
Therefore, the modified density of states for a spin-1/2 charged
particle becomes

Z 2/(27{)2 Pz = ng r )2dpz,

o,=%1 n=0

(2ﬂ )2
(23)

where g, = 1 for v =0 and 2 for v > 0. For zero temperature
and charged particles, the number and energy densities read

eB Vmax ; )
Pi =532 &Pry E=De (24)
v=0
Vmax i i
Pr,te
€ = (271)2 ng |:PF ,Ep + i} In (%)} , (25
F,v

where pi ,i = p, n, is the Fermi momentum associated with

the level with quantum number v, and &' is the corresponding
Fermi energy (or effective chemical potential). The Fermi
momenta for the proton and electron are given by

i, =[(er)’

Pr, = [(82)2 —m? — 2veeB]5, 27)

— (M*) —2v,eB]", (26)
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and the condition p}’v > 0 sets an upper limit vy, in the
summations:

)2 *\2
£ — (M
Vmax = (—F) ( ) s proton,
2eB
(28)
e\2 2
£ —m
Vmax = —( F) |, electron,
2eB

where [x] means the largest integer smaller or equal to x. For
the neutron, one obtains the standard expressions [25]

3
_ (Pk)
n — 37{2 £
1 3 »2 o4 Pr + €}
enzg[Zp’}s'fp — M prep — M 1In % .

(29)

In the Thomas-Fermi approximation in close analogy to the
density functional formalism, we assume that the meson fields
vary sufficiently slowly so that the baryons are considered to
be moving in locally constant fields. Therefore, locally the
densities are calculated by plane waves instead of the true
position-dependent single-particle states. Hence, we obtain the
density of nucleons described by a Fermi gas with position-
dependent Fermi momentum. Energy and particle densities
become position dependent and the Thomas-Fermi equations
at T = 0 are obtained from the extremization of the functional

Q=Ew- 3w [ dro. (30)
i=p,n,e

as a function of the Fermi momenta (or equivalently a
function of the densities) in complete analogy with the density
functional method. The Lagrange multipliers u;, i = p,n,e
are introduced in order to fix the number of particles due to
species conservation. The Thomas-Fermi energy is given by

ETF:/ e(¥) d’r, (31
where

. Lo . .
€)=Y @)+ 5elop = P Ao + &ulpp + o) Vo)

i=p,n,e
1 R I
+580(0p = PbO() + S[(V9)* 4+ mig?]
K A 1. -
+357¢" + ¢ — 5[V +mivg]
1 1, - 1 -
= 68V = [(Vbo)* + mibg] = SI(V Ao — B2,
(32)

From the condition of extremum, one obtains the Thomas-
Fermi equations

1y = PEEY + 17, + 8. Vo®) + Lg,bo®) + e AP,
(33)

te =/ P4 ()2 + 2 — eAo(F), (34)
[ =/ PRFE) + M*FY + g, Vo(F) — 8,b0(F). 35)
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To describe the properties of the inhomogeneous (pasta) phase
we use the Wigner-Seitz approximation where the matter
consisting of neutrons, protons, and electrons is considered
to be inside of a neutral Wigner-Seitz cell and the interaction
between cells is neglected.

Other important quantities in the study of the npe nonuni-

form matter are the rms radius (r;) = 4/ riz, where

ri2 = /rzp,-(r) rddr/ | pi(r) ridr , (36)

withi =n, p,e, and d =0, 1, 2 for slabs, rods, or droplets,
respectively; the neutron-skin thickness given by

O = (r) — (rp); (37)
and the surface energy defined as [10,26]

[ déo\>  [(dVo\® [dby\>
= ‘”[(5) (@) —(;)]- o

IV. RESULTS AND DISCUSSIONS

In the following we discuss the effect of the magnetic field
on several properties of the pasta clusters. We will consider
electrically neutral matter with a fixed fraction of protons. For
most of the examples we consider the fraction ¥, =0.3 a
reference value in supernova matter or proton-neutron matter,
but we will also show results for ¥, = 0.1 a typical value of
B-equilibrium neutron star matter. The magnetic field is along
the rod axis in the rod geometry, and for the slab geometry in
a direction perpendicular to the slab thickness.

It has been shown previously that Landau quantization
softens the equation of state (EOS) due to the large degeneracy
of the Landau levels [23,27]. Therefore, we expect that the
free energy per particle will decrease in the presence of an
external strong magnetic field. This is illustrated in Figs. 1 and
2, where the free energy per particle is given as a function of
the density for different values of B. The homogeneous matter
free energy per particle is plotted as function of the density for

35
30 |
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20 | .
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FIA-M(MeV)

LT HM, 2.0x10'7G
5 b/ e HM, 1.0x10'8G
o 7 HM, 3.0x108G -~
PP, 2x10"'G —

0 0025 0.05
-3
p(fm™)

0.075 0.1

FIG. 1. (Color online) Energy per particle homogeneous npe
neutral matter (HM) with Y, = 0.3 vs density for different values
of the magnetic field intensity. The calculation was performed with
the NL3 parametrization. For comparison the energy per particle
obtained for the pasta phase (PP) calculation with B = 2 x 10'7 G is
also included.
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FIG. 2. (Color online) Free energy per particle (left) and surface
energy (right) for the NL3 parametrization and Y, = 0.3 at the
droplet-rod transition (a,b) and the bubble-homogeneous transition
(c,d). The calculations were performed for different values of the
magnetic field intensity (B). The B units are 10'7 G. Here the free
energy is the energy itself as the system is assumed at temperature
T =0.

different values of the magnetic field (Fig. 1). For reference.
we include in this same figure the results obtained within a
pasta phase calculation for B =2 x 10'7 G, indicating that
the free energy is lower and therefore that this configuration
is favored. We conclude that the free energy per particle
decreases when the magnetic field intensity increases and that
in this range of densities nonhomogeneous matter is favored.
For the pasta calculation (Fig. 2), two density ranges have
been chosen: densities close to the drop-rod transition and the
bubble-core transition. For B = 5 x 10'° G, the effect, on the
order of 0.01%, is negligible. However, for B =2 x 10'7 G
the free energy is 2% lower than for magnetic field free
configurations. At the configuration transition the free energy
is continuous; however, the surface energy defined by Eq. (38)
suffers a jump. At the crust-core transition it goes to zero
while at the drop-rod transition it suffers a small decrease.
This discontinuity is possibly due not to the presence of a
magnetic field but to the limitation of the calculation that
only considers configurations with well-defined symmetries
while intermediate geometries and shapes are expected to
exist [28,29]. However, the magnetic field may change the
transition density. This does not show a systematic trend,
reflecting the filling of Landau levels and suffering a larger
effect for larger magnetic fields.

In Fig. 3 the transition densities between the geometries
droplet-rod (left) and tube-bubble (right) are plotted as a
function of the field intensity. The transition density between
different geometries suffers fluctuations that can be as high as
5% when the field changes between 10'7 and 10'® G. However,
taking fields not larger than 2 x 10!7 the effect on the transition
between geometries is a reduction of the transition density not
larger than 1.5%.

An increase of the binding energy between the nucleons
gives rise to a larger surface energy, which may affect the
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FIG. 3. Transition density for NL3 and ¥, = 0.3: (a) droplet-rod;
(b) tube-bubble.

pasta structure, namely, the radius of the clusters, the crust-core
transition, and the transition between different configurations.
Moreover, Landau quantization may also give origin to large
fluctuations. In Fig. 4 the surface energy is plotted for
parametrizations NL3 and TM1 and a proton fraction Y, = 0.3
for a slab configuration at p = 0.06 fm~3 as a function of the
magnetic field intensity. The main trend is an increase of the
surface energy with the magnetic field. For a field on the order
of 10'® G, which probably is already too strong in the inner
crust, the surface energy is 20% larger when compared with
the no field case. A 2 x 10'7 G field gives rise to an effect
10 times smaller, on the order of ~ 2%. These conclusions are
confirmed by the top right panel of Fig. 2 where the surface
energy is plotted as a function of the density at the drop-rod
transition.

In Fig. 5 results for the bubble configuration, including the
Coulomb interaction self-consistently, are plotted including
the surface energy, and the radius of the Wigner-Seitz cell.
These results were obtained for NL3 with the proton fraction
Y, =0.3 at p =0.095 fm=3. As already discussed, there is
a clear increase of the surface energy with the magnetic field
intensity which can be as large as 50% for B =3 x 10'® G.
Small fluctuations of the surface energy reflect themselves on
the Wigner-Seitz cell radius and total nucleon number inside
the cluster. These effects are more dramatic above B = 10'8 G,
but at B ~ 2 x 10'7G effects of 5-10% are already expected.

In Fig. 6 the surface energy is plotted for densities below the
the drop-rod transition, and two proton fractions ¥, = 0.3 and

Yp=0.3

1.1 —
! NL3 x Vi

09l ™1 ©

o(MeV/fm?)

B(10'8G)

FIG. 4. (Color online) Surface energy defined by the Eq. (38) as
a function of the magnetic field for Y, = 0.3, obtained with NL3 and
TM1 parametrizations and the slab configuration with the Coulomb
interaction switched off for p = 0.06 fm=3.
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FIG. 5. Calculations for the bubble geometry, NL3 parametriza-
tion, ¥, = 0.3, and pp = 0.095 fm~>: (a) surface energy; (b) Wigner-
Seitz radius.

0.1. For the larger proton fraction we get a behavior similar to
the one previously discussed, namely, an increase of the surface
energy with the increase of the field strength. The surface
energy is larger for the smaller densities because clusters are
smaller and the neutron dripped gas is smaller. Decreasing the
proton fraction to Y, = 0.1 this last feature is still present (see
Fig. 7); however, the surface energy suffers a small decrease
for fields below 10'8G and only increases for stronger fields.
In Fig. 8 are shown the density profiles of the configurations
used to calculate the surface energy for both proton fractions:
for Y, = 0.3 the thickness of the droplet surface decreases
with B, while for ¥, = 0.1 there is an increase of the surface
thickness from 10'7 to 5 x 10'7G followed by a decrease for
still larger fields. The number of Landau levels filled with the
proton and electron distributions for each field are given in
Fig. 9. A smaller number of levels is involved for the smaller
proton fraction, and, therefore, Y, = 0.1 is more sensitive to
strong magnetic fields. The calculation of the surface energy
reflects the size of the cluster, its proton fraction, and the
interaction between particles. For Y, = 0.3 the size of the
cluster is practically not affected as seen in Fig. 8, and therefore
o will essentially give information about the binding between
particles. On the other hand, Fig. 8 shows that if Y, = 0.1 the
neutron distribution is quite affected by the interaction change
the protons feel in the presence of the magnetic field. On the

1.1

e I 181 e B
= 0519 (@) | E 12 - b
3 0 il o ootam® -
© 08 2 12 _3
=S o 10| 0.016fm
° o6 8l 0.019im3 =
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N 18
£ = 16 \ (d)
S £ 14 5
% B qp 0013m°—
=3 o 10/ 0.016fm>-
© 8/ 0.019fm™
0.1 1 23 0.1 1 23
18 18
B(10°G) B(10'°G)

FIG. 6. (Color online) Surface energy (left) and Wigner-Seitz ra-
dius (right), for the droplet geometry, NL3 parametrization, baryonic
density p = 0.019 fm=3, and proton fraction: (a,b) ¥, = 0.3; (c,d)
Y, =0.1.
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FIG. 7. (Color online) Results in the pasta cluster for ¥, = 0.1:
(a) dripped neutron fraction; (b) proton fraction.

whole for weaker fields the surface energy decreases with B.
For the larger magnetic fields no neutrons drip out and the
proton fraction of the droplet becomes 0.1. This very small
fraction of protons favors smaller droplets, because a large
asymmetry term reduces the stability of the clusters.

In fact, increasing the magnetic field intensity changes the
structure of the droplet pasta phase for a proton fraction ¥, =
0.1, eliminating completely the neutron dripped gas (see Fig. 7)
and making the clusters less proton rich. A direct consequence
is the transition to the rod geometry driven by magnetic field.

In Fig. 10 the average radius of the distribution of neutrons
and electrons inside a spherical cluster is plotted for a set
of densities close to the droplet-rod transition calculated
according to Eq. (36). The main effect of the magnetic field
shows itself on the neutron distribution with an average radius
that decreases with B. Due to an increase of the surface
energy, neutrons do not drip so easily and therefore the
number of neutrons outside the cluster is smaller. Electrons

0.1 __V_W__[_\leutrons 0.1... Neutrons
~ 0.08 _. 0.08
° @
£ 006 £ 006
= 0.04 < 0.04
002/ (@ \ 0.02} (b) !
0 0 Y
0 4 8 12 16 20 0 4 8 12 16 20
r (fm) r (fm)
0.05; _Protons 0.04 Protons
&~ 0.04F N £ 003
£ 003 £ 002
& 0.02 ,\_ =
0.01} (¢) | 0.01 + \ @
0 4 8 12 16 20 0 4 8 12 16 20
r (fm) r (fm)
0.01 Electrons 0.01 Electrons
a T —~ 17~
T 0008t 7 Lo~
S n £ 0005 () 1oxi0'%G
& 0.006 ST S §~.0X1018G
0.004 0
0 4 8 12 16 20 0 4 8 12 16 20
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FIG. 8. (Color online) Density profile in the Wigner-Seitz cell for
the droplet geometry, NL3 parametrization, proton fraction ¥, = 0.3
(left) and Y, = 0.1 (right) for baryonic density p = 0.019 fm~3 for
neutrons, protons, and electrons.
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FIG. 9. (Color online) Landau levels in the Wigner-Seitz cell for
the droplet geometry, NL3 parametrization, proton fraction ¥, = 0.3
(left) and Y, = 0.1 (right) for the baryonic density p = 0.019 fm™3
for protons and electrons.

are particularly sensitive to magnetic fields as strong as
10'7-10"® G due to their small mass. The filling of Landau
levels gives rise to the fluctuations shown on the right panel
of Fig. 10. This is a manifestation of the De Haas—van Alphen
effect.

It is seen that the distribution of electrons is not flat and
a self-consistent calculation that takes into account correctly
charge distribution will be affected by the magnetic field. In
particular, the rearrangement of the proton distributions will
give rise to smaller proton fractions at the cluster center and
smaller neutron skins. The effect on the neutron skins is seen in
Fig. 11 where the neutron-skin thickness calculated with NL3
for ¥, = 0.3 and densities close to the drop-rod transition,
according to Eq. (37), is plotted. There is a decrease of about
3-4% when the field increases from 5 x 10'¢ to 2 x 10'7 G.
Above B = 10'7 G the oscillations present are a consequence
of the Landau quantization of the proton energy levels.

We next analyze the effect of the magnetic field on the
crust-core transition. The evolution of the Wigner-Seitz radius
and particle distributions inside the cell with the magnetic
field is plotted in Fig. 12 for two bubble configurations, at p =
0.095 and 0.0995 fm—3, the second one close to the crust-core
transition. For 10" < B < 10'® G and p = 0.095 fm—3, the
variation of Rws is small and becomes more pronounced for

12.76
1274} <0
£ -3
£ 12.7210.0179 fm; —
C 0.0184 fm ;-
127 0.0188 fm

0.0191 fm™
04 08 12 16 2
B(10"7G)

FIG. 10. (Color online) Average radius for the droplet geometry,
NL3 parametrization, and proton fraction Y, = 0.3: (a) neutrons;
(b) electrons.
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FIG. 11. (Color online) Neutron-skin thickness forNL3 and Y, =
0.3 for densities close to the drop-rod transition: (a) droplet geometry;
(b) rod geometry.

stronger fields. However, the effect of B on the surface energy
is clearly seen, which gives rise to a narrower surface thickness,
larger central densities, and smaller tails at the bubble center.
This is true for both neutrons and protons. As expected due to
their much smaller mass, the electron distributions are more
sensitive to the field intensity.

The density p = 0.0995 fm~? is very close to the crust-core
transition, and the filling of the Landau levels may dictate
that for a given B the transition to the core has already
occurred (B = 6.8 x 10'7 G) while for other intensities a more
pronounced bubble occurs with smaller electron densities in
the center of the bubble (B ~ 10'® G). For B =3 x 108 G a
configuration very close to the crust-core transition occurs. The
transition density to the homogeneous phase suffers essentially
an increase that will be about 1% for 2 x 10'7 G and can go
up to 5% for B = 10'8 G, see Fig. 13.
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FIG. 12. (Color online) Density profile in the Wigner-Seitz cell
for the bubble geometry, NL3 parametrization, proton fraction Y, =
0.3, and baryonic density p = 0.095 fm=3 (left) and p = 0.0995 fm~>
(right) for neutrons, protons, and electrons.
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FIG. 13. (Color online) Transition density at the bubble-
homogeneous matter, for NL3 Y, = 0.3.

Magnetic field fluctuations may give rise to nonequilibrium
configurations that will tend to evolve in time to equilibrium
configurations originating inner tensions that could give rise
to star quakes and bursting activity of magnetars.

V. CONCLUSION

In the present study the effect of the magnetic field on the
pasta phase calculated within a Thomas-Fermi formalism has
been discussed. Nuclear matter was described mostly by the
RMF parametrization NL3 and proton fractions of 0.3 and 0.1
were considered.

Our main aim was to determine how the magnetic field
could affect the free energy per particle, the radius of the
Wigner-Seitz cells, the cluster properties, and the transitions
between different configurations, or the crust-core transition.

PHYSICAL REVIEW C 88, 035804 (2013)

Most of the calculations were done for fields below 10'8 G,
although, in order to estimate upper limits, some of the
calculations were pushed to 3 x 10'8 G.

It is known that the pasta phase is a frustrated system that
results from the competition between the Coulomb and the
surface energy. It is, therefore, expected that this phase will
be affected by a strong magnetic field. Charged particles in a
magnetic field suffer the Landau quantization, which gives rise
to a decrease of the free energy per particle due to the large
degeneracy levels in the direction perpendicular to the field
and, therefore, to an increase of the surface energy. The surface
thickness of clusters will be thinner, the inner densities larger,
and, since neutrons will not drip off so easily, a smaller number
of particles will occur in the background gas. We have also
shown that the transition between different configurations
or crust-core will be affected although in an irregular way.
Fluctuations of the magnetic field may give rise to inner
stresses that oblige the system to evolve to an equilibrium
configuration and originate bursting activity of magnetars.

The present work was just exploratory and a more careful
study should be done that uses models with a symmetry energy
that satisfies experimental constraints and considers smaller
proton fractions, namely, S-equilibrium stellar matter. A study
of the stress developed on these structures should also be
performed.
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