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Polarization of the neutron induced by hadronic weak interactions
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New polarization observables with which we can study the two-nucleon weak interactions at low energies
are considered. In the breakup of the deuteron by photons, polarization of outgoing neutrons can depend on the
parity-violating component of two-nucleon interactions. We express the parity-violating polarization in general
forms, and perform numerical calculations with a pionless effective field theory. The theory has three unknown
parity-violating low energy constants, and new polarization observables are expressed in linear combinations of
them. We discuss how the unknown constants may be determined and their implication to the understanding of
the hadronic weak interactions.
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I. INTRODUCTION

The present understanding about the most fundamental
interactions is that parity is not conserved only in the weak
interactions. Such a nature of the weak interaction has been
successfully probed in leptonic and semileptonic processes
in high-energy experiments as well as in radioactive decays.
In principle, parity-violating (PV) aspects of the weak interac-
tion can emerge in the pure hadronic processes too at both high
and low energies. However our understanding of PV aspects
of the weak interaction in the low energy region is still very
poor even though more than 50 years have passed since the
first observation of the parity violation in nuclear phenomena.

Nevertheless, efforts in both experiments and theories have
been continued. Especially there has been significant progress
in the low energy few-nucleon systems in the last three
decades. In Ref. [1], the authors wrote down the two-nucleon
PV interactions in terms of π -, ρ-, and ω-meson exchanges
(so-called DDH potential), which contain seven weak meson-
nucleon coupling constants. Several PV observables in nuclear
and hadronic processes have been calculated in terms of the
DDH potential, and experiments were attempted to determine
the values of the seven weak meson-nucleon coupling con-
stants. In the last decade, calculations have been improved
by using modern nucleon-nucleon (NN) phenomenological
potentials such as Argonne v18, CD Bonn, and Nijmegen93.
Relevant PV observables are the asymmetry of the photon
momentum with respect to the neutron spin in �np → dγ [2,3],
the anapole moment of the deuteron [4,5], several quantities
in elastic e − d scattering [6], polarization in np → dγ [7]
or asymmetry in d �γ → np [8–10] due to the circularly
polarized photons, and the longitudinal asymmetry in �pp
scattering [11,12]. The PV observables were expressed in
terms of the seven meson-nucleon coupling constants in the
DDH potential. Longitudinal asymmetries were measured with
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good accuracies at low energies [13]. PV circular polarization
of the γ ray in np → dγ was measured in the late 1970s,
but the experiments could provide only the upper limit [14].
PV up-down asymmetry Aγ with respect to the neutron
spin direction of γ rays emitted from �np → dγ is under
measurement at SNS in Oak Ridge [15], and there was an
experimental trial for the measurement of the deuteron anapole
moment.

In the meantime, there was a reformulation of the theory
for the PV interactions in the framework of effective field
theory (EFT) [16]. The authors in Ref. [16] derived the NN
PV interactions from a theory with pions (pionful theory)
and also without pions (pionless theory). In the pionless
theory where all the interactions are described in terms of
contact terms only, it was shown that only five PV low energy
constants (LECs) are independent after removing redundancy
in the DDH potential [17]. PV observables in the two-nucleon
systems were recalculated with the EFT PV potentials with
and without pions [18–23]. Nowadays, determination of the
PV LECs in the pionless theory is getting more attention
in the field. Asymmetry in d �γ → np is now becoming a
potential candidate for the measurements in the two-nucleon
processes. Measurements have been proposed at JLab,
SPring-8, Shanghai Synchrotron, and most recently at TUNL.
The aimed accuracy in the experiment at TUNL is of the order
of 10−8, with which one can obtain stringent constraint to pin
down the values of either meson-nucleon coupling constants
in the DDH potential or the PV LECs in the pionless theory.
For precise determination of the coupling constants or LECs,
however, it is necessary to have additional observables.

In this work, we calculate polarization of the neutron in
dγ → �np at low energies. There is a long history of dis-
crepancy between theory and experiment for the polarization
Py ′ [24–28], which is a parity-conserving (PC) quantity. This
problem of discrepancy was revisited by using a pionless EFT
with dibaryon fields as auxiliary fields for the two-nucleon
states [29]. With dibaryon fields, the calculation becomes
simple and the convergence is especially efficient at low
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energies. In fact, we applied the theory successfully to various
quantities such as the electromagnetic moments of the deuteron
[30], np capture at the big-bang nucleosynthesis energies [31],
and pp fusion in the Sun [32]. Though we observed good
agreement with other theoretical results for Py ′ at low energies
by using dibaryons, the discrepancy with the measurements
still remains unresolved. Py ′ is the polarization along the y ′ axis
(convention for the coordinate system will be shown later). One
can also think of the polarization along z′ and x ′ directions, but
they vanish if only PC interactions are considered. As will be
shown in the following section, however, PV interactions cause
nonzero contributions to Pz′ and Px ′ . Motivated by this simple
observation, we calculate Pz′ and Px ′ with a pionless EFT with
dibaryon fields. By assuming the first order approximation,
the observables are obtained in the linear combination of
PV LECs. Since the values of PV LECs are completely
unknown, we cannot determine the numerical values of the
polarizations. Instead, the coefficients for the PV LECs can be
calculated easily. We compare the resultant coefficients with
those appearing in other PV observables such as the asymmetry
in �np → dγ and the polarization in np → dγ . Through this
comparison, we can roughly estimate the order of the physical
quantities, and discuss the feasibility of the measurements.

The paper is organized as follows. In Sec. II, we present
the basic Lagrangians. In Sec. III, we obtain the diagrams
and calculate the amplitudes up to the next-to-leading order
(NLO). The numerical results are discussed in Sec. IV.
We summarize the work in Sec. V, and detailed forms of
complicated equations are given in the Appendix.

II. EFFECTIVE LAGRANGIAN

In the pionless theory, pions are treated as heavy degrees
of freedom, and thus the typical scale of expansion parameter
is Q/mπ , where Q is a physical or exchange momentum. In
a system where scattering length is unusually long or binding
energy is very shallow, one can also treat these small scales
as expansion parameters. It is natural to assign order Q to
the quantities such as γ , 1/a0, 1/a1, 1/r0, and 1/ρd , where
a0, a1 are the np scattering length in the 1S0 and 3S1 states,
respectively, and r0 is the effective range in the 1S0 state. γ =√

mN B where B is the binding energy of the deuteron and
ρd is the effective range corresponding to the deuteron. In
a diagram, propagators of a single nucleon and a dibaryon
field are counted as Q−2 and the integration of a nucleon loop
generates Q5.

A. Parity-conserving part

PC part of the Lagrangian consists of strong and electro-
magnetic (EM) interactions. PC Lagrangian with dibaryon
fields can be written as [30]

LPC = LN + Ls + Lt + Lst , (1)

where LN , Ls , Lt , and Lst include interactions for nucleons,
dibaryon in 1S0 state, dibaryon in 3S1 state, and EM transition
between 1S0 and 3S1 states, respectively. Retaining terms that

are relevant to the present work, we have

LN = N †
{

iD0 +
�D2

2mN

− e

2mN

1

2
(μS + μV τ3)�σ · �B

}
N,

(2)

Ls = −s†a

{
iD0 +

�D2

4mN

+ �s

}
sa

− ys

{
s†a
[
NT P (1S0)

a N
]+ H.c.

}
, (3)

Lt = −t
†
i

{
iD0 +

�D2

4mN

+ �t

}
ti

− yt

{
t
†
i

[
NT P

(3S1)
i N

]+ H.c.
}− 2L2

mNρd

(i)εijkt
†
i tjBk,

(4)

Lst = L1

mN
√

r0ρd

[t†i s3Bi + H.c.], (5)

where the projection operators for the 1S0 and 3S1 states are
respectively defined as

P (1S0)
a = 1√

8
σ2τ2τa, P

(3S1)
i = 1√

8
σ2σiτ2. (6)

The covariant derivative is defined as Dμ ≡ ∂μ − ieqV ext
μ

whereV ext
μ represents the external vector field. For the nucleon,

we use D0 = ∂0 − ieqV ext
0 and �D = �∇ + ieq �V ext, where q =

1
2 (1 + τ3) is the charge operator. For the dibaryon fields, we

have D0 = ∂0 − ieV ext
0 and �D = �∇ + ie �V ext. Dibaryon fields

in 1S0 and 3S1 states are denoted by sa and ti , respectively, and
Bi is the external magnetic field given by �B = ∇ × �V ext. �s,t

are defined by the mass difference between the dibaryon and
two nucleon states, i.e., �s,t = ms,t − 2mN .

LECs ys and yt represent the strength of the coupling
between a two-nucleon state and a dibaryon field. They
are determined from the empirical values of effective range

parameters, ys = 2
mN

√
2π
r0

and yt = 2
mN

√
2π
ρd

. LECs L1 and

L2 can be determined from the np capture cross section at
threshold and the deuteron magnetic moment, respectively
[30].

B. Parity-violating part

It was shown that the insertion of a nucleon loop in the
propagator of a dibaryon field leaves the order of the diagram
the same as that of a single dibaryon propagator [33]. As a
result, PC diagrams have only dibaryon-NN (dNN) vertices for
the strong interaction, and other types of strong vertices, e.g.,
four-nucleon contact terms belong to subleading contributions.
If we are to consider the weak effects, we have to include PV
interactions in a diagram. This can be easily achieved by simply
replacing one PC vertex in a diagram for PC transition with a
PV interaction. Even with this replacement, the remaining part
of the diagram is unchanged, and so the ordering of the diagram
is not affected by the insertion of a PV vertex. Therefore, it
may suffice to represent the weak interactions in terms of only
PV dNN vertices.
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At low energies, two-nucleon systems are dominantly
occupied by S-wave states, i.e., 1S0 and 3S1. PV interactions
change the spatial parity of the S-wave states to the next low
lying opposite parity states such as 3PJ or 1P1. 1P1 is isosinglet,
and thus it is allowed to np system only. On the other hand,
3PJ (J = 0, 1) are isotriplet, and thus nn and pp as well as np
can occupy the states. If we consider the change of the states
from S wave to P wave by the PV interaction, we have the
following selections: 1S0 to 3P0 (nn, pp, np), 3S1 to 1P1 (np),
and 3S1 to 3P1 (np). As a result, we have five terms for the PV
dNN interactions as

L0
PV =

3∑
a=1

h0sa
d

2
√

2 ρd r0 m
5/2
N

s†a NT σ2σiτ2τa

i

2
(
←
∇ − →

∇)iN

+ H.c. (7)

+ h0t
d

2
√

2ρd m
5/2
N

t
†
i NT σ2τ2

i

2
(
←
∇ − →

∇)iN + H.c.,

(8)

L1
PV = i

h1
d

2
√

2ρd m
5/2
N

εijk t
†
i NT σ2σjτ2τ3

i

2
(
←
∇ − →

∇)kN

+ H.c. (9)

The superscript in LPV denotes the change in the isospin
accompanied in the interaction. In Eq. (7), a = 1 and 2
give isospin operator proportional to τ3 and identity matrix,
respectively. With the isodoublet of the proton and the neutron,
these matrices give a mixture of nn and pp states. These
terms are irrelevant in this work, and the term corresponding
to a = 3 generates isotriplet state of the np system. Thus, we
disregard the constants h0s1

d and h0s2
d , and replace h0s3

d with h0s
d

for brevity. Consequently we have three unknown LECs h0s
d ,

h0t
d and h1

d for the coupling constants of PV interactions.

III. AMPLITUDE

With the counting rules, we can arrange the pertinent
Feynman diagrams order by order. We have verified in former
works that applications to the PC processes were successful
[29–32] already up to NLO. PC amplitude of dγ → np
reaction is written as [29]

APC = χ
†
1 �σσ2τ2χ

T †
2 · {[�ε(d) × (k̂ × �ε(γ ))]XMS

+ �ε(d)�ε(γ ) · p̂ YE} + χ
†
1σ2τ3τ2χ

T †
2 i�ε(d)

·(k̂ × �ε(γ )) XMV + χ
†
1 �σσ2τ3τ2χ

T †
2 · {�ε(d)�ε(γ ) · p̂ XE

+ [�ε(d) × (k̂ × �ε(γ ))] YMV }
+χ

†
1σ2τ2χ

T †
2 i�ε(d) · (k̂ × �ε(γ )) YMS, (10)

where �ε(d) and �ε(γ ) are the spin polarization vectors for the
incoming deuteron and photon, respectively, while χ

†
1 and χ

†
2

are the spinors of the outgoing nucleons. �k is the momentum of
an incoming photon, �p is the relative three-momentum of the
two nucleons in the final state, and unit vectors k̂ ≡ �k/|�k|
and p̂ ≡ �p/| �p|. Details for X’s and Y ’s can be found in
Appendix 1.

FIG. 1. (Color online) PV diagrams for dγ → �np. Single solid
line denotes a nucleon, a wavy line refers to a photon, and a double
line with a filled circle represents a dressed dibaryon propagator. A
circle with a cross represents a PV dNN vertex.

PV vertices have a spatial derivative as shown in Eqs. (7)–
(9), and thus they are linear in momentum. It is natural to
count the order of a PV vertex as Q1. When a photon is
minimally coupled to a PV vertex, it is equivalent to replacing
the derivative by a photon field, and thus the order of minimally
coupled PV vertices becomes Q0. With the additional counting
rules for the PV vertices, the diagrams for dγ → �np are
obtained and depicted in Fig. 1. If we neglect the orders of the
propagators for incoming dibaryon and outgoing nucleons, the
diagrams are of Q0. PV amplitudes obtained from the diagrams
can be written as

APV =
h∑

i=a

APV(i). (11)

Detailed expressions for APV(i) are summarized in Ap-
pendix 2. The sum of both PC and PV contributions is

A = APC + APV. (12)

The polarization is defined as

Pi ≡ σi+ − σi−
σi+ + σi−

, (13)

where σi+ and σi− are the differential cross sections with
the neutron spin up and down along a specific direction i,
respectively. Polarization of neutrons can be expressed by
introducing the projection operator

P± = 1
2 (1 − τ3) 1

2 (1 ± �σ · n̂), (14)

where n̂ denotes the direction of the neutron spin. Squaring
the amplitude given by Eq. (12) with the polarized neutrons,
we obtain

S−1
P∑

spin

|A|2 = 4(|XMS |2 + |YMV |2 − 2YMV ReXMS)

+ 2(|XMV |2 + |YMS |2 − 2YMSReXMV )

+ 3[1 − (k̂ · p̂)2](|XE|2 + |YE|2 − 2XEYE)

∓ 2n̂ · (k̂ × p̂)(XE − YE)ImXMV

∓ 2(k̂ · n̂)Imf̃1 ∓ 2(p̂ · k̂)(k̂ · n̂)Imf̃2

∓ 2(p̂ · n̂)Imf̃3 ∓ 2(p̂ · k̂)(p̂ · n̂)Imf̃4, (15)
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where S is a symmetry factor for spin average, S = 2, and f̃i’s
are the PV-PC interference terms, whose details can be found
in Appendix 3.

Conventions for the coordinate systems are quoted
from [24]. We have the incoming photons along k̂ =
(0, 0, 1), relative momentum of the nucleons along p̂ =
(sin θ cos φ, sin θ sin φ, cos θ ), and orthogonal basis vectors
are defined as x̂ ′ = (cos θ cos φ, cos θ sin φ, − sin θ ), ŷ ′ =
(− sin φ, cos φ, 0), and ẑ′ = (sin θ cos φ, sin θ sin φ, cos θ ). If
the neutron spin component along ŷ ′ is measured, scalar
products of the unit vectors for the PV-PC interference terms
f̃i vanish. In this case, we obtain the PC polarization Py ′ [29].
If one measures polarization of the neutrons along n̂ = x̂ ′,
k̂ · x̂ ′ = − sin θ while p̂ · x̂ ′ = 0, and thus f̃1 and f̃2 terms
are nonvanishing. With n̂ = ẑ′, all the f̃i terms contribute to
the polarization Pz′ . With n̂ = x̂ ′ and ẑ′, one can easily check
that PC interference term proportional to n̂ · (k̂ × p̂) becomes
null. Consequently, we can obtain hadronic weak effects by
calculating the polarizations Pz′ and Px ′ .

IV. RESULT AND DISCUSSION

A. Polarization along ẑ′

In this section, we present and discuss the results for Pz′ .
With Eqs. (13) and (15), we obtain Pz′ as

Pz′ = (−2)Im[(f̃1 + f̃4) cos θ + f̃2 cos2 θ + f̃3]/�PC, (16)

where

�PC ≡ 4(|XMS |2 + |YMV |2 − 2YMV ReXMS)

+ 2(|XMV |2 + |YMS |2 − 2YMSReXMV )

+ 3(1 − cos2 θ )(|XE|2 + |YE|2 − 2XEYE). (17)

Since f̃i’s contain linear combinations of hT
d ’s (T = 0t, 0s, 1)

whose values are not known, we may rewrite the polarization
in the form

Pz′ ≡ c0t
z h0t

d + c0s
z h0s

d + c1
zh

1
d . (18)

Coefficients cT
z are functions of the colatitude angle θ and

the relative momentum p (or equivalently photon energy in
the laboratory frame Elab

γ ), and they take into account the

characteristics of PV as well as PC interactions of the theory.
Explicit forms of cT

z can be found in Appendix 4.
In Fig. 2, we plot the numerical results for cT

z ’s as functions
of photon energies in the laboratory frame. Angle dependences
are examined by choosing three angles, θlab = 30◦, 60◦, and
90◦. A common feature in cT

z is that there is a minimum in
the range Elab

γ = 2.4 ∼ 2.8 MeV regardless of angles and the
isospin structure of the PV vertex, i.e., the superscript T in hT

d .
This pronounced minimum comes from the manifestation of a
large scattering length a0 in 1S0 channel of np scattering, which
is embedded in the dibaryon field through the propagator of
d ′

s of Eq. (A17). At higher energies, c0t
z tends to converge to

a value, while c0s
z and c1

z show a more or less linear increase.
Another noticeable behavior at higher energies is that c0s

z

and c1
z show distinct dependence on the angles, but c0t

z is
relatively independent of the angles, and the magnitude of the
coefficients c0t

z and c1
z can be greater than that of c0s

z nearly by
an order.

Next, we investigate the behavior of cT
z ’s by changing the

angle θ continuously for a few values of Elab
γ between threshold

and 10 MeV. We have calculated cT
z at nine energies from

Elab
γ = 2.3 MeV to 10 MeV, but here we only show a few

results at Elab
γ = 2.75 and 10 MeV, because the tendency of

results look more or less similar. Elab
γ = 2.75 MeV is chosen

arbitrarily in the range Elab
γ = 2.4 ∼ 2.8 MeV where there are

minima of cT
z ’s. We find that the behavior of cT

z at Elab
γ =

10 MeV shows very unique features. Figure 3 shows cT
z ’s at

two energies, Elab
γ = 2.75 MeV and 10 MeV. Figure 3(a) shows

c0s
z is almost zero regardless of the angles. The magnitude of c0s

z

and c0t
z does not exceed 7.5 × 10−3, and thus the contribution

from c1
z dominates at forward or backward angles, where its

magnitude is greater than 2 × 10−2. Figure 3(b) shows that
c0t
z for Elab

γ = 10 MeV is smaller than that for 2.75 MeV,
and c1

z is, though the sign is reversed, similar in behavior
and in the order of magnitude. A remarkable feature is that
the signs of c0s

z and c1
z are the same at forward angles, but

opposite in backward angles. We may be able to neglect the
contribution from c0t

z at all angles for Elab
γ = 10 MeV. If precise

measurements of Pz′ can be performed at the energies close to
threshold, we may be able to determine h1

d with less uncertainty

FIG. 2. (Color online) (a) c0t
z , (b) c0s

z , and (c) c1
z as functions of Elab

γ at θlab = 30◦, 60◦, and 90◦.
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FIG. 3. (Color online) c0t
z , c0s

z , and c1
z as functions of cos θ for (a) Elab

γ = 2.75 and (b) Elab
γ = 10 MeV.

since Pz′ is dominated by c1
zh

1
d term. Next, if we can have

reliable measurements at the energies around 10 MeV, we can
extract the value of h0s

d by using the value of h1
d determined

from the measurements at low energies.
Since the values of hT

d are unknown, it is not feasible to
estimate directly the order of magnitude of Pz′ . However,
we can roughly estimate the order of magnitude of Pz′ in
comparison with other PV observables.

In Ref. [18], PV up-down asymmetry of γ rays with respect
to the neutron spin direction in �np → dγ , Aγ defined from

1

�

d�

cos θ
= 1 + Aγ cos θ, (19)

where � is the width for np → dγ and θ is the angle
between the photon momentum and the neutron polarization
was calculated at threshold with the dibaryon fields. The result
is

Aγ = − m
3/2
N

2
√

2π
h

(1)
33

1 − γ a1/3

κ1(1 − γ a0) − γ 2 a0 L1/2
, (20)

where h
(1)
33 is the convention used for the PV dNN LEC in

Ref. [18]. h
(1)
33 and h1

d are related through

h
(1)
33 = h1

d

ρ
1/2
d m2

N

, (21)

which allows us to write Aγ in terms of h1
d as

Aγ = −3.2 × 10−3h1
d . (22)

The experimental value of Aγ measured with cold neutrons
is −(1.5 ± 4.8) × 10−8 [34], and NPDGamma collaboration
aims at determining the value unambiguously at the order of
10−8. The magnitude of Pz′ , e.g., for Elab

γ = 2.75 MeV at
forward angles can be larger than that of Aγ at threshold by
a factor of about 8. It seems certain that Pz′ is an observable
experimentally advantageous in measurement to determine PV
LEC h1

d with a better accuracy than one can achieve with Aγ .

B. Polarization along x̂′

Polarization along the x ′ axis is obtained as

Px ′ = 2 sin θ Im[f̃1 + f̃2 cos θ ]/�PC. (23)

We can cast it in the form

Px ′ ≡ c0t
x h0t

d + c0s
x h0s

d + c1
xh

1
d, (24)

and investigate the characteristics of cT
x ’s. Complete expres-

sions for cT
x are shown in Appendix 4.

Figure 4 shows the energy dependence of cT
x ’s at the angles

θlab = 30◦, 60◦, and 90◦. c0t
x and c0s

x show the behavior and
order of magnitudes similar to those of c0t

z and c0s
z , respectively.

The magnitude of c1
x is smaller than c1

z by roughly a factor of 2,
and shows a structure with a maximum and a minimum slightly
below and above 3 MeV, respectively. As was observed for
cT
z ’s, cT

x ’s have extrema for Elab
γ = 2.3 ∼ 2.7 MeV reflecting

the large scattering length a0 in 1S0 channel.
In Fig. 5, we plot cT

x with respect to cos θ only for Elab
γ = 2.3

and 2.75 MeV, though calculations of cT
x are done for various

FIG. 4. (Color online) (a) c0t
x , (b) c0s

x , and (c) c1
x as functions of Elab

γ at θlab = 30◦, 60◦, and 90◦.
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FIG. 5. (Color online) c0t
x , c0s

x , and c1
x as functions of cos θ for (a) Elab

γ = 2.3 and (b) Elab
γ = 2.75 MeV.

energies of Elab
γ , to see the dependence of cT

x on the energy
from threshold to 10 MeV. As we see from cT

z ’s at 10 MeV,
cT
x ’s around 10 MeV show behaviors different from those at

lower energies. However we have obtained more interesting
differences among the low-energy results which are worthy
of discussions. Figure 5(a) shows cT

x ’s for Elab
γ = 2.3 MeV.

At θ = 90◦, c0t
x and c0s

x are of the order of 10−4 or less,
while c1

x � 1.3 × 10−2. At this angle, we can neglect the
contributions from c0t

x and c0s
x . Again we have a unique

chance to determine h1
d with a small uncertainty. Note that

the magnitude of this value is roughly four times larger than
the magnitude of the coefficients of Aγ at threshold, Aγ �
−3.2 × 10−3h1

d . With the measurements of Aγ in �np → dγ ,
Pz′ at forward or backward angles, and Px ′ at around θ = 90◦,
we can simultaneously check the consistency of the theory and
determine the value of h1

d . In Fig. 5(b), we show the values of
cT
x for Elab

γ = 2.75 MeV. c0t
x becomes maximum at θ � 22◦

with the value c0t
x � −8.8 × 10−3. The values of c0s

x and c1
x

at this angle are −2.0 × 10−3 and 2.0 × 10−4, respectively,
and thus the contribution from h1

d can be safely ruled out at
this angle. In Ref. [22], we calculated PV polarization Pγ in
np → dγ at threshold with the same theory as in the present
work, where we obtained the result

Pγ = −(2.59h0t
d − 1.01h0s

d

)× 10−2. (25)

The coefficient of h0t
d in Pγ is larger than c0t

x in Px ′ at θ � 22◦
by a factor of 3, but they are roughly similar in order. Therefore,
the measurement of Px ′ at the θ � 22◦, in addition to PV
Pγ in np → dγ , can provide a complementary constraints to
determine h0t

d and h0s
d . At the angles around θ = 157◦, all

the cT
x ’s become maximum with c1

x � 1.15 × 10−2, and the
ratios of c0t

x and c0s
x to c1

x are 0.76 and 0.27, respectively. By
determining h0t

d from Px ′ at θ � 22◦, and h1
d from Aγ , Pz′ at

θ � 0◦ or 180◦, and Px ′ at θ � 90◦, we may be able to pin down
the value of h0s

d through the measurement of Px ′ at the angles
in the backward direction. The result will serve a countercheck
of the value extracted from the measurement of Pz′ at around
10 MeV.

V. SUMMARY

We have considered the polarization of the neutron in
dγ → �np with a pionless EFT incorporating dibaryon fields.

Polarization along the azimuthal direction y ′ gives us the
information about the interactions that conserve parity. Along
the radial (z′) and colatitude (x ′) directions, on the other
hand, nonvanishing contributions reflect the effect of PV
interactions. We focused on the PV components of the
polarization, and calculated Pz′ and Px ′ as functions of the
incident photon energies up to 15 MeV. Since the coefficients
cT
z ’s and cT

x ’s can be evaluated at different angles and
energies, one can determine the unknown PV LECs by
comparing the calculated Pz′ and Px ′ with the experimental
values.

At low energies, pionless EFT with dibaryon fields is
verified to a good accuracy for many observables in the
two-nucleon processes, but care should be taken as we increase
energy near ∼15 MeV [35]. Therefore, if measurement is
performed, it may be most desirable to have it done at low
energies.

By choosing the photon energy as 2.75 MeV, we explored
the dependence of cT

z and cT
x on the angle θ . Concerning Pz′ , the

coefficients of the isoscalar components of the PV interaction,
c0s
z and c0t

z , are more or less constant in the angle, but the
coefficient of the isovector component, c1

z , changes drastically
in the forward and backward angles. In these directions, Pz′

is exclusively dominated by the PV isovector interaction, and
thus the measurement of Pz′ along with Aγ in �np → dγ can
provide a chance for a unique determination of h1

d . Px ′ is
expected to give more information about the PV LECs. At
the angles close to the forward direction, the values of c0t

x

are more significant than those of c0s
x and c1

x , and thus Px ′

is expected to be dominated by h0t
d . On the other hand, in

the backward directions, contributions from h1
d , h0t

d , and h0s
d

terms are expected to be of the same order. By combining
the measurements of Pz′ and Px ′ at various angles, we can
determine the PV LECs in the np system, h0t

d , h0s
d , and h1

d .
The fact that the value of Pz′ can be an order of magnitude

larger than that of Aγ is a striking result. Since the prediction
can imply significant impact on the experiments, the results
in this work need to be counterchecked by other calculations.
One possibility is to adopt the DDH potential, and obtain
the results for Pz′ and Px ′ in terms of the PV meson-
nucleon coupling constants. Many PV observables in the
two-nucleon systems were already calculated in terms of the
DDH potential. The work is in progress for evaluating Pz′

and Px ′ [36].
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APPENDIX: SUMMARY OF LENGTHY EXPRESSIONS

1. PC terms

Several quantities in the PC amplitude up to NLO in Eq. (10) are expressed as follows.

XMV = −
√

πγ

1 − γρd

1
1
a0

+ ip − 1
2 r0p2

1

2mN

⎧⎨
⎩μV

⎡
⎣arccos

⎛
⎝ mN√(

mN + 1
2ωγ

)2 − p2

⎞
⎠+ i ln

⎛
⎝ mN + 1

2ωγ + p√(
mN + 1

2ωγ

)2 − p2

⎞
⎠
⎤
⎦

− μV

mN

(
1

a0
+ ip − 1

2
r0p

2

)
F+ + ωγ L1

⎫⎬
⎭ , (A1)

XMS = −
√

πγ

1 − γρd

1

γ + ip − 1
2ρd (γ 2 + p2)

1

2mN

⎧⎨
⎩μS

⎡
⎣arccos

⎛
⎝ mN√(

mN + 1
2ωγ

)2 − p2

⎞
⎠+ i ln

⎛
⎝ mN + 1

2ωγ + p√(
mN + 1

2ωγ

)2 − p2

⎞
⎠
⎤
⎦

− μS

mN

[
γ + ip − 1

2
ρd (γ 2 + p2)

]
F+ + 2ωγ L2

⎫⎬
⎭ , (A2)

XE =
√

πγ

1 − γρd

1

m2
N

p

ωγ

F+, YE =
√

πγ

1 − γρd

1

m2
N

p

ωγ

F−, (A3)

YMV =
√

πγ

1 − γρd

μV

2m2
N

F−, YMS =
√

πγ

1 − γρd

μS

2m2
N

F−, (A4)

where ωγ is the incident photon energy in the c.m. frame, and

F± = 1

2

⎡
⎣ 1

1 + ωγ

2mN
− �p·k̂

mN

± 1

1 + ωγ

2mN
+ �p·k̂

mN

⎤
⎦ . (A5)

2. PV amplitudes

Each amplitude for diagrams from Fig. 1(a) to Fig. 1(h) can be expressed as follows. χ †
1 and χ

T †
2 are the spinors of the nucleons

in the final state.

iAPV(a) = Ch0t
d

[
(i)χ †

1σ2τ2χ
T †
2 ε(d)iε(γ )j k̂i p̂j

p

mN

F+ − (i)χ †
1σ2τ2χ

T †
2 ε(d)iε(γ )j p̂i p̂j

2p2

mNωγ

F−

+ (i)χ †
1σ2τ3τ2χ

T †
2 ε(d)iε(γ )j k̂i p̂j

p

mN

F− − (i)χ †
1σ2τ3τ2χ

T †
2 ε(d)iε(γ )j p̂i p̂j

2p2

mNωγ

F+

+χ
†
1σiσ2τ2χ

T †
2 εijkε(d)aε(γ )kk̂j p̂a

μS

mN

pF− − χ
†
1σiσ2τ2χ

T †
2 εijkε(d)aε(γ )kk̂j k̂a

μS

2mN

ωγ F+

+χ
†
1σiσ2τ3τ2χ

T †
2 εijkε(d)aε(γ )kk̂j p̂a

μV

mN

pF+ − χ
†
1σiσ2τ3τ2χ

T †
2 εijkε(d)aε(γ )kk̂j k̂a

μV

2mN

ωγ F−
]

+Ch1
d

[
χ
†
1σiσ2τ2χ

T †
2 εijkε(d)j ε(γ )ap̂kp̂a

2p2

mNωγ

F+ − χ
†
1σiσ2τ2χ

T †
2 εijkε(d)j ε(γ )ak̂kp̂a

p

mN

F−

+χ
†
1σiσ2τ3τ2χ

T †
2 εijkε(d)j ε(γ )ap̂kp̂a

2p2

mNωγ

F− − χ
†
1σiσ2τ3τ2χ

T †
2 εijkε(d)j ε(γ )ak̂kp̂a

p

mN

F+

+ (i)χ †
1σ2τ2χ

T †
2 ε(d)iε(γ )i

(
μV

2mN

ωγ F− − p̂j k̂j

μV

mN

pF−
)

+ (i)χ †
1σ2τ2χ

T †
2 ε(d)iε(γ )j k̂i p̂j

μV

mN

pF+
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+χ
†
1σiσ2τ2χ

T †
2 εabcε(d)cε(γ )i k̂ap̂b

μV

mN

pF− − χ
†
1σiσ2τ2χ

T †
2 εabcε(d)cε(γ )ak̂i p̂b

μV

mN

pF−

+χ
†
1σiσ2τ2χ

T †
2 εabcε(d)cε(γ )ak̂i k̂b

μV

2mN

ωγ F+ + (i)χ †
1σ2τ3τ2χ

T †
2 ε(d)iε(γ )i

(
μS

2mN

ωγ F+ − p̂j k̂j

μS

mN

pF−
)

+ (i)χ †
1σ2τ3τ2χ

T †
2 ε(d)iε(γ )j k̂i p̂j

μS

mN

pF− + χ
†
1σiσ2τ3τ2χ

T †
2 εabcε(d)cε(γ )i k̂ap̂b

μS

mN

pF+

−χ
†
1σiσ2τ3τ2χ

T †
2 εabcε(d)cε(γ )ak̂i p̂b

μS

mN

pF+ + χ
†
1σiσ2τ3τ2χ

T †
2 εabcε(d)cε(γ )ak̂i k̂b

μS

2mN

ωγ F−
]
, (A6)

iAPV(b) = Cp ωγ

[
h0s

d d ′
sL1χ

†
1σiσ2τ3τ2χ

T †
2 εabcε(d)aε(γ )bk̂cp̂i + h0t

d d ′
t (i)2L2χ

†
1σ2τ2χ

T †
2 (ε(d)iε(γ )i k̂j p̂j − ε(d)iε(γ )j k̂i p̂j )

+h1
d d ′

t2L2χ
†
1σiσ2τ3τ2χ

T †
2 (εijkε(d)aε(γ )ak̂kp̂j − εijkε(d)aε(γ )kk̂ap̂j )

]
, (A7)

iAPV(c) = Cd ′
t

[
h1

dχ
†
1σiσ2τ2χ

T †
2 εabcε(d)cε(γ )ak̂i k̂bμV (mNf1 − γ − ip) − h0t

d χ
†
1σiσ2τ2χ

T †
2 εijkε(d)aε(γ )kk̂j k̂aμS(mNf1 − γ − ip)

−h1
dχ

†
1σiσ2τ2χ

T †
2 εijkε(d)j ε(γ )kf2

]+ Cd ′
s

[
h1

d (i)χ †
1σ2τ3τ2χ

T †
2 ε(d)iε(γ )iμS

{(
mN + 1

2
ωγ

)
f1 − γ − ip

}

+h0t
d (i)χ †

1σ2τ3τ2χ
T †
2 ε(d)iε(γ )if2

]
, (A8)

iAPV(d) = Cd ′
t

[
h0t

d χ
†
1σiσ2τ2χ

T †
2 εabcε(d)cε(γ )ak̂i k̂bμS

{(
mN + 1

2
ωγ

)
f1 − γ − ip

}

−h1
dχ

†
1σiσ2τ2χ

T †
2 εijkε(d)aε(γ )kk̂j k̂aμV

{(
mN + 1

2
ωγ

)
f1 − γ − ip

}
− h1

dχ
†
1σiσ2τ2χ

T †
2 εijkε(d)j ε(γ )kf2

]

+Cd ′
s

[
h0s

d (i)χ †
1σ2τ3τ2χ

T †
2 ε(d)iε(γ )iμV

{(
mN + 1

2
ωγ

)
f1 − γ − ip

}
+ h0s

d (i)χ †
1σ2τ3τ2χ

T †
2 ε(d)iε(γ )if2

]
, (A9)

iAPV(e) = Cf1p
[
h0s

d d ′
sμV χ

†
1σiσ2τ3τ2χ

T †
2 εabcε(d)cε(γ )ak̂bp̂i + h0t

d d ′
tμS(i)χ †

1σ2τ2χ
T †
2 (ε(d)iε(γ )i k̂j p̂j − ε(d)iε(γ )j k̂i p̂j )

+h1
d d ′

tμSχ
†
1σiσ2τ3τ2χ

T †
2 (εijkε(d)aε(γ )ak̂kp̂j − εijkε(d)aε(γ )kk̂ap̂j )

]
, (A10)

iAPV(f ) = C
[
h0t

d (i)χ †
1σ2τ3τ2χ

T †
2 ε(d)iε(γ )i − h1

dχ
†
1σiσ2τ2χ

T †
2 εijkε(d)j ε(γ )k

]
, (A11)

iAPV(g) = Cp
[
h0t

d d ′
sχ

†
1σ2τ3τ2χ

T †
2 ε(d)iε(γ )i + h1

d d ′
t (i)χ

†
1σiσ2τ2χ

T †
2 εijkε(d)j ε(γ )k

]
, (A12)

iAPV(h) = Cγ
[
h0s

d d ′
s(i)χ

†
1σ2τ3τ2χ

T †
2 ε(d)iε(γ )i − h1

d d ′
t χ

†
1σiσ2τ2χ

T †
2 εijkε(d)j ε(γ )k

]
, (A13)

where

C = 1

2

√
γρd

1 − γρd

1

2
√

2ρdm
5/2
N

, (A14)

f1 = arccos

⎛
⎝ mN√(

mN + 1
2ωγ

)2 − p2

⎞
⎠+ i ln

⎛
⎝ mN + 1

2ωγ + p√(
mN + 1

2ωγ

)2 − p2

⎞
⎠ , (A15)

f2 = 1

ωγ

[
mNγ + i

(
mN + 1

2
ωγ

)
p −

{(
mN + 1

2
ωγ

)2

− p2

}
f1

]
, (A16)

d ′
s = 1

1
a0

+ ip − 1
2 r0p2

, d ′
t = 1

γ + ip − 1
2ρd (γ 2 + p2)

. (A17)

3. PV-PC interference terms

The transition rate can be written as

S−1
P∑

spin

|A|2 = 4(|XMS |2 + |YMV |2 − 2YMV ReXMS) + 2(|XMV |2 + |YMS |2 − 2YMSReXMV )

+ 3(1 − (k̂ · p̂)2)(|XE|2 + |YE|2 − 2XEYE) ± 2n̂ · (k̂ × p̂)(YE − XE)ImXMV

± i(k̂ · n̂)[f̃1 − f̃ ∗
1 ] ± i(p̂ · k̂)(k̂ · n̂)[f̃2 − f̃ ∗

2 ] ± i(p̂ · n̂)[f̃3 − f̃ ∗
3 ] ± i(p̂ · k̂)(p̂ · n̂)[f̃4 − f̃ ∗

4 ] . (A18)
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PV-PC interference terms f̃i are given as

f̃1 = [
h0t

d Z̃
pg
MS − h0s

d Z̃
pg
MV + h1

dZ̃
pg
MS

]
(X∗

E − Y ∗
E) − [

2h0t
d μSZ̃

tg + h1
d

(
X̃pp − Ỹpp + 2μV X̃gg − 2μSỸgg + 2Z̃1

E + 2μV Z̃t
)]

X∗
MV

+ [
2h0t

d

(
Z̃0t

E + μSZ̃
t
)+ 2h0s

d

(
Z̃0s

E + μV Z̃sg
)− 2h1

d

(
Z̃1

E − μV Z̃tg − μSZ̃
s
)]

Y ∗
MV

+ [
h0t

d (X̃pp − Ỹpp − 2μSX̃gg + 2μV Ỹgg − 2Z̃0t
E − 2μSZ̃

t
)− 2h0s

d

(
Z̃0s

E + μV Z̃sg
)

+h1
d

(
X̃pp − Ỹpp − 2μSX̃gg + 2μV Ỹgg + 2Z̃1

E − 2μV Z̃tg − 2μSZ̃
s
)]

X∗
MS + [

2h0t
d μSZ̃

tg + 2h1
d

(
Z̃1

E + μV Z̃t
)]

Y ∗
MS,

(A19)

f̃2 = [−h0t
d

(
Z̃0t

E + μSZ̃
t − μSZ̃

tg
)− h0s

d

(
Z̃0s

E + μV Z̃sg
)+ h1

d

(
2Z̃1

E + μV Z̃t − μSZ̃
s − μV Z̃tg

)]
(X∗

E − Y ∗
E)

+ [
h0t

d (μV X̃pg − μSỸpg) − h1
d (X̃pg − Ỹpg + μSX̃pg − μV Ỹpg)

]
X∗

MV − [
h0t

d Z̃
pg
MS − h1

dZ̃
pg
MS

]
Y ∗

MV

+ [
h0t

d

(
X̃pg − Ỹpg − μV X̃pg + μSỸpg + Z̃

pg
MS

)+ h1
d

(
X̃pg − Ỹpg − μV X̃pg + μSỸpg + 2μSX̃pg − 2μV Ỹpg − Z̃

pg
MS

)]
X∗

MS,

(A20)

f̃3 = [
h0t

d

(
Z̃0t

E + μSZ̃
t − μSZ̃

tg
)+ h0s

d

(
Z̃0s

E + μV Z̃sg
)− h1

d

(
2Z̃1

E − μV Z̃tg − μSZ̃
s + μV Z̃t

)]
(X∗

E − Y ∗
E)

− [
h0t

d (μV X̃pg − μSỸpg) − 2h0s
d Z̃

pg
MV − h1

d (X̃pg − Ỹpg − μSX̃pg + μV Ỹpg)
]
X∗

MV − [
h0t

d Z̃
pg
MS + 3h1

dZ̃
pg
MS

]
Y ∗

MV

− [
h0t

d

(
X̃pg − Ỹpg + μV X̃pg −μSỸpg − Z̃

pg
MS

)+ h1
d

(
X̃pg − Ỹpg + μV X̃pg − μSỸpg + 2μSX̃pg − 2μV Ỹpg − 3Z̃

pg
MS

)]
X∗

MS

− [
2h0s

d Z̃
pg
MV

]
Y ∗

MS, (A21)

f̃4 = [−h0t
d Z̃

pg
MS + h0s

d Z̃
pg
MV − h1

dZ̃
pg
MS

]
(X∗

E − Y ∗
E) + [

h1
d (X̃pp − Ỹpp)

]
X∗

MV − [
h0t

d (X̃pp − Ỹpp) + h1
d (X̃pp − Ỹpp)

]
X∗

MS, (A22)

where

X̃pg = C
1

mNωγ

(pωγ )F+, Ỹpg = C
1

mNωγ

(pωγ )F−, (A23)

X̃pp = C
1

mNωγ

(2p2)F+, Ỹpp = C
1

mNωγ

(2p2)F−, (A24)

X̃gg = C
1

mNωγ

(
ωγ

2

2

)
F+, Ỹgg = C

1

mNωγ

(
ωγ

2

2

)
F−, (A25)

Z̃0s
E = Cd ′

s[f2 + γ ], Z̃0t
E = Cd ′

s

[
f2 + 1

a0
− 1

2
r0p

2

]
, (A26)

Z̃1
E = −Cd ′

t

[
2f2 + 2γ − 1

2
ρd (γ 2 + p2)

]
, (A27)

Z̃sg = Cd ′
s

[(
mN + 1

2
ωγ

)
f1 − γ − ip

]
, Z̃s = Cd ′

s[mNf1 − γ − ip], (A28)

Z̃tg = Cd ′
t

[(
mN + 1

2
ωγ

)
f1 − γ − ip

]
, Z̃t = Cd ′

t [mNf1 − γ − ip], (A29)

Z̃
pg
MS = Cd ′

tp[μSf1 + 2ωγ L2], Z̃
pg
MV = Cd ′

sp[μV f1 + ωγ L1]. (A30)

4. cT
z and cT

x

c0t
z = − 2

�PC
Im
[

sin2 θ
(
Z̃0t

E + μSZ̃
t − μSZ̃

tg
)
(X∗

E − Y ∗
E) + {−2 cos θμSZ̃

tg − sin2 θ (μV X̃pg − μSỸpg)}X∗
MV

+ {
2 cos θ

(
Z̃0t

E + μSZ̃
t
)− (1 + cos2 θ )Z̃pg

MS

}
Y ∗

MV + {
2 cos θ (−μSX̃gg + μV Ỹgg − Z̃0t

E − μSZ̃
t ) − sin2 θ (X̃pg − Ỹpg)

+ (1 + cos2 θ )
(− μV X̃pg + μSỸpg + Z̃

pg
MS

)}
X∗

MS + 2 cos θμSZ̃
tgY ∗

MS

]
, (A31)

c0s
z = − 2

�PC
Im
[

sin2 θ
(
Z̃0s

E + μV Z̃sg
)
(X∗

E − Y ∗
E) + 2Z̃

pg
MV X∗

MV

+ 2 cos θ
(
Z̃0s

E + μV Z̃sg
)
Y ∗

MV − 2 cos θ
(
Z̃0s

E + μV Z̃sg
)
X∗

MS − 2Z̃
pg
MV Y ∗

MS

]
, (A32)

c1
z = − 2

�PC
Im
[

sin2 θ
(− 2Z̃1

E + μV Z̃tg + μSZ̃
s − μV Z̃t

)
(X∗

E − Y ∗
E) + {−2 cos θ (μV X̃gg − μSỸgg + Z̃1

E + μV Z̃t )

+ sin2 θ (X̃pg − Ỹpg) − (1 + cos2 θ )(μSX̃pg − μV Ỹpg)}X∗
MV + {−2 cos θ

(
Z̃1

E − μV Z̃tg − μSZ̃
s
)− (3 − cos2 θ )Z̃pg

MS

}
Y ∗

MV

+ {
2 cos θ (−μSX̃gg + μV Ỹgg + Z̃1

E − μV Z̃tg − μSZ̃
s) − sin2 θ (X̃pg − Ỹpg)

− (1 + cos2 θ )(μV X̃pg − μSỸpg) − 2 sin2 θ (μSX̃pg − μV Ỹpg) + (3 − cos2 θ )Z̃pg
MS

}
X∗

MS + 2 cos θ
(
Z̃1

E + μV Z̃t
)
Y ∗

MS

]
,

(A33)

035501-9
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c0t
x = 2

�PC
sin θ Im

[{
Z̃

pg
MS − cos θ

(
Z̃0t

E + μSZ̃
t − μSZ̃

tg
)}

(X∗
E − Y ∗

E)

+{−2μSZ̃
tg + cos θ (μV X̃pg − μSỸpg)}X∗

MV + {
2
(
Z̃0t

E + μSZ̃
t
)− cos θZ̃

pg
MS

}
Y ∗

MV

+ {(
X̃pp − Ỹpp − 2μSX̃gg + 2μV Ỹgg − 2Z̃0t

E − 2μSZ̃
t
)

+ cos θ
(
X̃pg − Ỹpg − μV X̃pg + μSỸpg + Z̃

pg
MS

)}
X∗

MS + 2μSZ̃
tgY ∗

MS

]
, (A34)

c0s
x = 2

�PC
sin θ Im

[−{Z̃pg
MV + cos θ

(
Z̃0s

E + μV Z̃sg
)}

(X∗
E − Y ∗

E) + 2
(
Z̃0s

E + μV Z̃sg
)
Y ∗

MV − 2
(
Z̃0s

E + μV Z̃sg
)
X∗

MS

]
, (A35)

c1
x = 2

�PC
sin θ Im

[{
Z̃

pg
MS + cos θ

(
2Z̃1

E + μV Z̃t − μSZ̃
s − μV Z̃tg

)}
(X∗

E − Y ∗
E)

− {(
X̃pp − Ỹpp + 2μV X̃gg − 2μSỸgg + 2Z̃1

E + 2μV Z̃t
)+ cos θ (X̃pg − Ỹpg + μSX̃pg − μV Ỹpg)

}
X∗

MV

+{−2
(
Z̃1

E − μV Z̃tg − μSZ̃
s
)+ cos θZ̃

pg
MS

}
Y ∗

MV

{(
X̃pp − Ỹpp − 2μSX̃gg + 2μV Ỹgg + 2Z̃1

E − 2μV Z̃tg − 2μSZ̃
s
)

+ cos θ (X̃pg − Ỹpg − μV X̃pg + μSỸpg + 2μSX̃pg − 2μV Ỹpg − Z̃
pg
MS

)}
X∗

MS + 2
(
Z̃1

E + μV Z̃t
)
Y ∗

MS

]
. (A36)
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151 (2009).

[7] C. H. Hyun, S. J. Lee, J. Haidenbauer, and S. W. Hong, Eur.
Phys. J. A 24, 129 (2005).

[8] C.-P. Liu, C. H. Hyun, and B. Desplanques, Phys. Rev. C 69,
065502 (2004).

[9] M. Fujiwara and A. I. Titov, Phys. Rev. C 69, 065503 (2004).
[10] C. H. Hyun, C.-P. Liu, and B. Desplanques, Eur. Phys. J. A 24,

179 (2005).
[11] C.-P. Liu, C. H. Hyun, and B. Desplanques, Phys. Rev. C 73,

065501 (2006).
[12] B. Desplanques, C. H. Hyun, S.-I. Ando, and C.-P. Liu, Phys.

Rev. C 77, 064002 (2008).
[13] P. D. Eversheim et al., Phys. Lett. B 256, 11 (1991).
[14] V. A. Knyazkov et al., Nucl. Phys. A 417, 209 (1984).
[15] M. T. Gericke et al., Phys. Rev. C 83, 015505 (2011).
[16] S. L. Zhu, C. M. Maekawa, B. R. Holstein, M. J. Ransey-Musolf,

and U. van Kolck, Nucl. Phys. A 748, 435 (2005).
[17] L. Girlanda, Phys. Rev. C 77, 067001 (2008).

[18] M. J. Savage, Nucl. Phys. A 695, 365 (2001).
[19] C. H. Hyun, S. Ando, and B. Desplanques, Phys. Lett. B 651,

257 (2007).
[20] C.-P. Liu, Phys. Rev. C 75, 065501 (2007).
[21] D. R. Phillips, M. R. Schindler, and R. P. Springer, Nucl. Phys.

A 822, 1 (2009).
[22] J. W. Shin, S. Ando, and C. H. Hyun, Phys. Rev. C 81, 055501

(2010).
[23] M. R. Schindler and R. P. Springer, Nucl. Phys. A 846, 51 (2010).
[24] M. L. Rustgi, W. Zernik, G. Breit, and D. J. Andrews, Phys. Rev.

120, 1881 (1960).
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