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Medium modifications of baryon properties in nuclear matter and hypernuclei
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We study the medium modifications of baryon properties in nuclear many-body systems, especially in �

hypernuclei. The nucleon and the � hyperon are described in the Friedberg-Lee model as nontopological solitons
which interact through the self-consistent exchange of scalar and vector mesons. The quark degrees of freedom
are explicitly considered in the model, so that the medium effects on baryons could be investigated. It is found
that the model can provide reasonable descriptions for nuclear matter, finite nuclei, and � hypernuclei. The
present model predicts a significant increase of the baryon radius in nuclear medium.
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I. INTRODUCTION

The change of hadron properties in nuclear medium is a very
active field of experimental and theoretical research. There are
many experimental evidences indicating that the properties of
the nucleon bound in a nucleus differ from those of a free
nucleon. The famous European Muon Collaboration (EMC)
effect implies that the nucleon structure function in nuclei
deviate from those in a free nucleon [1]. Recent experiments
at Jefferson Laboratory have provided precise measurements
of the EMC effect in light nuclei [2,3]. On the other hand, there
are many theoretical works on the study of in-medium hadron
properties based on various models [4–7]. The quark-meson
coupling (QMC) model proposed by Guichon [8] opens the
possibility of understanding the change of the nucleon internal
structure in nuclei based on quark degrees of freedom. The
QMC model is considered as an extension of the successful
treatment of nuclear many-body systems at the hadron level,
known as the relativistic mean-field (RMF) model [9]. The
QMC model describes the nuclear system as nonoverlapping
MIT bags in which the confined quarks interact through the
self-consistent exchange of scalar and vector mesons in the
mean-field approximation. In the QMC model, the quark
structure of the nucleon plays a crucial role in the description
of nuclear matter and finite nuclei [7]. The QMC model could
be used to study the medium modifications of nucleons and
mesons [10,11]. In the past few decades, the QMC model
has been extensively developed and applied to various nuclear
phenomena [7,12–19]. There are other models that incorporate
quark degrees of freedom in the study of nuclear many-body
systems. The quark mean-field (QMF) model [5] uses the
constituent quark model for the nucleon instead of the MIT bag
model, where the constituent quarks interact with the meson
fields created by other nucleons. The QMF model has been
successfully used for the description of nuclear matter, finite
nuclei, and hypernuclei [20–22]. Recently, the QMF model
has been extended to a model based on SU(3)L × SU(3)R
symmetry and scale invariance [23]. Using the Nambu-Jona-
Lasinio model to describe the nucleon as a quark-diquark state,
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it is also possible to discuss the stability of nuclear matter based
on the QMC idea [24]. The advantage of these models is their
simplicity and self-consistency to incorporate quark degrees
of freedom in the study of nuclear many-body systems.

In this paper, we prefer to use the Friedberg-Lee (FL)
model [25] to describe the baryons in nuclear matter and
� hypernuclei. In the FL model, the baryon is described
as a bound state of three quarks in a nontopological soliton
formed by a scalar composite gluon field. The FL model has
the advantages that it is manifestly covariant and it exhibits
dynamical bag formation due to the coupling of quarks to the
phenomenological scalar field. Furthermore, it includes the
MIT bag as a special case. The FL model has the structure of
a simple field theory with quarks coupled to the scalar field,
and the source of the scalar field is the quark scalar density.
Therefore, the coupled equations of this model must be solved
in a self-consistent manner. The structure of the baryon is
fully dynamical in the FL model, so its response to external
fields can be calculated consistently. The attractive feature of
the FL model makes it suitable for the study of the medium
modifications of baryon properties. Also, it could be used to
investigate the deconfinement phase transition at high densities
and/or temperatures based on its dynamical formation of
solitons. In past decades, the FL model has been extensively
used to study the properties of hadrons in free space [26–34].
It has also been applied to study the medium modifications
of the nucleon [4,35] and dense-matter properties [6,36]. In
our previous work [37], we studied the properties of nuclear
matter and finite nuclei by describing the nuclear many-body
system as a collection of nontopological solitons within the FL
model. The quarks inside the soliton bag couple not only to
the scalar composite gluon field that binds the quarks together
into nucleons but also to additional meson fields generated by
the nuclear environment. The nucleons interact through the
self-consistent exchange of these mesons, which are treated
as classical fields in the spirit of the QMC and QMF models.
The properties of finite nuclei and inner nucleons have been
investigated in Ref. [37]. The main purpose of the present work
is to extend the model to flavor SU(3) and further to the study
of � hypernuclei. Considering the importance and complexity
of medium modifications of baryons, it is interesting to study
the change of baryon properties in nuclear medium based on
various feasible methods and compare their results.
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Extensive efforts have been devoted to the study of
hypernuclei, which play an important role in strangeness
nuclear physics. Among many strange nuclear systems, the
single-� hypernucleus is the most investigated one [38].
There exist many experimental data for various single-�
hypernuclei over almost the whole mass table [38–41], while
there are few experimental data concerning other hypernuclei.
Theoretically, the properties of � hypernuclei have been
investigated based on various models. The RMF models
have been successfully applied to describe hypernuclei with
adjustable meson-hyperon couplings and tensor couplings
[42–46]. The properties of � hypernuclei have also been
examined in the QMC and QMF models [15,16,21], where
both the nucleon and � are the composites of three quarks.
For � hypernuclei, the situation is quite different. So far, only
one bound � hypernucleus, 4

�He, was detected [47], despite
extensive searches. The analysis of � atomic experimental
data suggests that �-nucleus potentials have a repulsion inside
the nuclear surface and an attraction outside the nucleus with a
sizable absorption. In the case of � hypernuclei, although there
is no definitive data for any � hypernucleus at present, several
experimental results suggest that �-nucleus interactions are
weakly attractive [48,49]. It is a challenge to naturally explain
the attraction in �-nucleus potentials and at the same time
the repulsion in �-nucleus potentials. In general, the RMF
models use some suggested potential values to determine the
meson-hyperon couplings [50,51], which play important roles
in hypernuclear physics and neutron star properties. The QMC
model has been applied to a systematic study of �, �, and �
hypernuclei in Ref. [16], where � hypernuclei could be bound
by an amount similar to � hypernuclei. Recently, the QMC
model has been extended to include the quark-quark hyperfine
interactions due to gluon and pion exchanges [52–55]. It was
found that the hyperfine interaction due to the gluon exchange
plays an important role in the in-medium baryon spectra, while
the pion-cloud effect is relatively small [55]. Furthermore,
the hyperfine interaction can make the equation of state
hard and thus enhance the mass of a neutron star [52,56].
The medium effect on the hyperfine interaction increases the
splitting between the � and � masses as the density rises, and
� hypernuclei are found to be unbound in Ref. [53], which is
completely different from the prediction of Ref. [16]. In the
present work, we focus on the description of � hypernuclei
with the baryons described by the FL model, which is an
extension of our previous work [37]. In addition, a primary
application of the present model to � and � hypernuclei is
briefly discussed.

The outline of this paper is as follows. In Sec. II we briefly
describe the FL model both in free space and in nuclear
medium. In Sec. III, we show the calculated results of �
hypernuclei and the medium modifications of the nucleon and
� in nuclear matter and hypernuclei. Section IV is devoted to
a summary.

II. FORMALISM

In this section, we first give a brief description of the FL
model. Then we describe nuclear matter as a collection of non-
topological solitons and study the properties of nucleons and

� hyperons inside nuclear matter. The model can be applied
to study finite systems such as nuclei and � hypernuclei.

A. Baryons in the FL model

The nucleon and the � hyperon as composites of three
quarks are described in terms of the FL model, in which three
quarks couple with a phenomenological scalar field to form
a nontopological soliton bag. The effective Lagrangian of the
FL model is written as

L =
∑

f =u,d,s

ψ̄f

(
iγμ∂μ − mf − g

f
φ φ

)
ψf

+ 1

2
∂μφ∂μφ − U (φ), (1)

where ψf denotes the quark field of flavor f . We take the
quark masses mu = md = 5 MeV and ms = 190 MeV. φ
is a color-singlet scalar field that can be interpreted as the
phenomenological representation of quantum excitations of
the self-interacting gluon field. The self-interaction of the
scalar field is described by the potential

U (φ) = a

2!
φ2 + b

3!
φ3 + c

4!
φ4 + P, (2)

where the parameters a, b, and c are within a range so that
U (φ) has a local minimum at φ = 0 and a global minimum at
φ = φv . The constant P is determined to make U (φv) = 0, and
then the value U (0) = P is to be identified with the volume
energy density of the bag. φv is the value of the soliton field
in the physical vacuum where the quark of flavor f has the
effective mass mf + g

f
φ φv . In the perturbative vacuum where

valence quarks exist, the soliton field φ is reduced to be near
zero.

The quark field operator is expanded in a complete
orthogonal set of Dirac spinor functions as ψf = ∑

i

b
f
i ψ

f
i ,

where b
f
i is the annihilation operator of the quark with flavor

f = u, d, s. The soliton field is treated as a classical field that
is a time-independent c-number field φ (r). In the nucleon or �,
the valence quarks are in the lowest Dirac state ψ

f
0 , then φ and

ψ
f
0 (f = u, d, s) satisfy the coupled differential eqnarrays[−iα · ∇ + β

(
mf + g

f
φ φ

)]
ψ

f
0 = ε

f
0 ψ

f
0 , (3)

−∇2φ + ∂U (φ)

∂φ
= −

∑
f

g
f
φ ψ̄

f
0 ψ

f
0 . (4)

The coupled eqnarrays have to be solved numerically. The
lowest Dirac state has the form

ψ
f
0 =

(
u (r)

iσ · r̂v (r)

)
χ, (5)

with χ being the Pauli spinor. The total energy of the baryon
B (B = N, �) is given by

EB =
∑
f

ε
f
0 + 4π

∫
dr r2

[
1

2

(
dφ

dr

)2

+ U (φ)

]
. (6)

There are several methods for the removal of the center-
of-mass motion in the FL model [27–29]. In our previous
work [37], we used two approaches for the center-of-mass
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correction. The first one is based on the relativistic energy-
momentum relation [27] and the second one is the Peierls-
Yoccoz projection technique [28]. For simplicity, in this
work we take only the first approach for the center-of-mass
correction that has been extensively discussed in Refs. [27,37].
The rest mass of the baryon is given by

MB =
√

E2
B −

∑
f

〈
p2

f

〉
. (7)

The corrected root-mean-squared (rms) radius is given by

rB =
√√√√1

3

∑
f

[
1 − 2ε

f
0

EB

+ 3ε
f
0

2

E2
B

]〈
r2
f

〉 + 3

2E2
B

. (8)

In the present work, we take two sets of parameters
in the FL model which are constrained to reproduce the
nucleon rms radius rN = 0.83 fm, the nucleon mass MN =
939 MeV, and the � mass M� = 1115.7 MeV. Set A (a = 0,
b = −8.71 fm−1, c = 57.76, gu

φ = gd
φ = 16.7, gs

φ = 4.675) is
characterized by a = 0, where U (φ) has a inflection point at
φ = 0. Set B (a = 17 fm−2, b = −289.048 fm−1, c = 1638.2,
gu

φ = gd
φ = 20.345, gs

φ = 5.52) is characterized by P = 0. We
note that sets A and B correspond to the two limiting cases in
the parameter space of the FL model.

B. Baryons in nuclear matter

We describe nuclear matter as a collection of nontopological
solitons. The baryons interact through the self-consistent
exchange of σ , ω, and ρ mesons that are treated as classical
fields in the mean-field approximation. The quarks inside the
baryon couple not only to the soliton field φ which binds the
quarks together but also to additional meson fields σ , ω, and ρ
generated by other baryons in nuclear matter. We assume that
the meson mean fields σ , ω, and ρ can be regarded as constants
in uniform matter and that the soliton field φ that serves to
bind the quarks together does not participate in baryon-baryon
interactions. Therefore, φ depends on spatial coordinates
inside the soliton bag, whereas σ , ω, and ρ are constants. In
nuclear matter, the coupled Eqs. (3) and (4) are expressed as[−iα · ∇ + β

(
mf + g

f
φ φ + gf

σ σ
) + gf

ωω + gf
ρ τ3ρ

]
ψ

f
0

= ε̃
f
0 ψ

f
0 , (9)

−∇2φ + ∂U (φ)

∂φ
= −

∑
f

g
f
φ ψ̄

f
0 ψ

f
0 , (10)

where g
f
σ , g

f
ω , and g

f
ρ are the coupling constants of the σ , ω,

and ρ mesons with the quark of flavor f , respectively. Accord-
ing to the Okubo-Zweig-Iizuka (OZI) rule, the nonstrange
mesons couple exclusively to the u and d quarks, not to the
s quark. Therefore, we take gs

σ = gs
ω = gs

ρ = 0 in the present
work. The couplings of these mesons to the u and d quarks are
determined by fitting saturation properties of nuclear matter.
In uniform matter, the constant σ field provides an additional
scalar potential to the u and d quarks, and as a result the
solutions of Eqs. (9) and (10) are affected by the σ field. On
the other hand, the ω and ρ fields do not cause any changes of

ψ
f
0 and φ except to shift the energy level by a constant vector

potential, ε̃
f
0 (σ, ω, ρ) = ε

f
0 (σ ) + g

f
ωω + g

f
ρ τ3ρ.

Analogously to the case of free baryons, we consider
the center-of-mass correction and calculate the properties
of baryons in nuclear matter. The effective baryon mass is
given by

M∗
B (σ ) =

√
E2

B −
∑
f

〈p2
f

〉
, (11)

where

EB =
∑
f

ε
f
0 (σ ) + 4π

∫
dr r2

[
1

2

(
dφ

dr

)2

+ U (φ)

]
. (12)

Since the quark wave function ψ
f
0 and the soliton field φ are

altered by the σ mean field in nuclear matter, the calculated
baryon properties are different from those in free space. They
can be expressed as a function of the σ mean field; for instance,
the effective baryon mass is given by Eq. (11).

We use a hybrid treatment for nuclear matter, in which
the effective masses and couplings are obtained at the quark
level, whereas the baryon Fermi motion is treated at the hadron
level. The description of nuclear matter in this model has been
presented in Ref. [37]. Here, we only study the � hyperon
immersed in nuclear medium, which satisfies the following
Dirac eqnarray:[

iγμ∂μ − M∗
�(σ ) − g�

ω γ 0ω
]
ψ� = 0. (13)

The influence of the σ meson on the � hyperon is contained in
M∗

� and generates the scalar potential U�
s = M∗

� − M�. The
ω meson couples to the � hyperon with the coupling constant
g�

ω = 2g
q
ω (q = u, d) and generates the vector potential U�

v =
g�

ω ω. In the present model, the mesons couple directly to the
quarks inside the baryons, and the quark-meson couplings are
determined by fitting saturation properties of nuclear matter.
Therefore, no more adjustable parameters exist when we study
the properties of the � hyperon in nuclear matter.

C. � hypernuclei

We treat a single � hypernucleus as a system of many
nucleons and a � hyperon which interact through the exchange
of σ , ω, and ρ mesons. The nucleon and the � hyperon
as composites of three quarks are described in terms of the
FL model, and the mesons couple directly to the quarks
inside the baryons. The effective baryon masses are obtained at
the quark level, whereas the baryon Fermi motion is treated at
the hadron level. To study the properties of � hypernuclei, we
start from the effective Lagrangian at the hadron level within
the mean-field approximation

L = ψ̄N

[
iγμ∂μ − M∗

N (σ ) − gN
ω γ 0ω

− gN
ρ γ 0τ3ρ − eγ 0 1 + τ3

2
A

]
ψN

+ ψ̄�

[
iγμ∂μ − M∗

� (σ ) − g�
ω γ 0ω

]
ψ�

− 1

2
(�σ )2 − 1

2
m2

σ σ 2 + 1

2
(�ω)2 + 1

2
m2

ωω2

+ 1

2
(�ρ)2 + 1

2
m2

ρρ
2 + 1

2
(�A)2, (14)
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TABLE I. The quark-meson couplings (q = u, d) and the nuclear matter properties corresponding to the parameter sets A and B. The
saturation density and the energy per particle are denoted by ρ0 and E/A, the symmetry energy by asym, the incompressibility by K , and the
effective nucleon mass by M∗

N .

gq
σ gq

ω gq
ρ ρ0 (fm−3) E/A (MeV) asym (MeV) K (MeV) M∗

N/MN

Set A 17.023 3.629 3.96 0.15 −16.0 32 317 0.69
Set B 9.275 3.056 4.15 0.15 −16.0 32 338 0.77

where ψN and ψ� are the Dirac spinors for the nucleon and
�. The mean-field approximation has been adopted for the
exchanged σ , ω, and ρ mesons, while the mean-field values
of these mesons are denoted by σ , ω, and ρ, respectively. We
take the meson masses mσ = 500 MeV, mω = 783 MeV, and
mρ = 770 MeV. Since the � hyperon is neutral and isoscalar,
it only couples to the σ and ω mesons. The influence of the σ
meson is contained in M∗

N and M∗
�. For ω and ρ mesons, the

couplings at the hadron level are related to those at the quark
level by gN

ω = 3g
q
ω, g�

ω = 2g
q
ω, and gN

ρ = g
q
ρ , which are based

on a simple quark counting rule.
From the Lagrangian given above, we obtain the following

Euler-Lagrange eqnarrays:[
iγμ∂μ−M∗

N−gN
ω γ 0ω−gN

ρ γ 0τ3ρ−eγ 0 1+τ3

2
A

]
ψN = 0,

(15)[
iγμ∂μ − M∗

� − g�
ω γ 0ω

]
ψ� = 0, (16)

−∇2σ + m2
σ σ = −∂M∗

N

∂σ
ρN

s − ∂M∗
�

∂σ
ρ�

s , (17)

−∇2ω + m2
ωω = gN

ω ρN
v + g�

ω ρ�
v , (18)

−∇2ρ + m2
ρρ = gN

ρ ρ3, (19)

−∇2A = eρp, (20)

where ρN
s (ρ�

s ), ρN
v (ρ�

v ), ρ3, and ρp are the scalar, vector, third
component of isovector, and proton densities, respectively. The
mean-field values σ , ω, ρ, and A are functions of the spatial
coordinates in a finite system, such as the � hypernucleus.
However, it is rather complicated to consider the variation
of these quantities over the small baryon volume. Therefore,
we take some suitably averaged form for the meson mean
fields in order to make the numerical solution feasible. We use
the local density approximation, which replaces the meson
mean fields by their value at the center of the baryon, and
neglect the spatial variation of the mean fields over the small
baryon volume [12,20]. Within this approximation, we solve
the coupled Eqs. (15)–(20) for the � hypernucleus, where
the effective masses M∗

N and M∗
� are obtained at the quark

level.

III. RESULTS AND DISCUSSION

In this section, we investigate the properties of nucleons
and � hyperons inside nuclear matter and � hypernuclei.
The baryons as composites of three quarks are described

in terms of the FL model. We take two sets of parameters
in the FL model (sets A and B), which are constrained to
reproduce the baryon properties in free space as described in
Sec. II A.

To study the medium modifications of baryon properties,
we take the hybrid treatment, in which the effective baryon
masses are obtained at the quark level, whereas the baryon
Fermi motion is treated at the hadron level. We describe
nuclear matter as a collection of nontopological solitons. The
baryons interact through the self-consistent exchange of σ ,
ω, and ρ mesons that are treated as classical fields in the
mean-field approximation. The mesons couple directly to the
quarks inside the baryons. The quark-meson couplings are
determined by fitting saturation properties of nuclear matter.
We list in Table I the quark-meson couplings and the nuclear
matter properties corresponding to the parameter sets A and
B. It is shown that the present model can provide a satisfactory
description of nuclear matter properties. For the � hyperon
in nuclear matter, there is no more adjustable parameters in
the present model. We obtain the potential depth of a � in
saturated nuclear matter to be around −24 MeV for set A and
−30 MeV for set B.

In Fig. 1, we present the ratio of the effective baryon mass
in nuclear matter to that in free space M∗

B/MB (B = N, �)
as a function of the nuclear matter density ρ. The solid and
dashed lines correspond to the results of N and �, respectively.

FIG. 1. The ratio of the effective baryon mass in nuclear matter
to that in free space M∗

B/MB (B = N, �) as a function of the density
ρ. The results of N and � are shown by the solid and dashed lines,
respectively.
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FIG. 2. The ratio of the baryon radius in nuclear matter to that
in free space r∗

B/rB (B = N, �) as a function of the density ρ.
The results of N and � are shown by the solid and dashed lines,
respectively.

In the present model, the effective baryon mass is calculated
at the quark level, which is not a simple linear function of σ as
given in the RMF model [9]. It is more like the characteristics
of the QMC model [7]. As shown in Fig. 1, both M∗

N (solid
lines) and M∗

� (dashed lines) decrease with increasing ρ. It
is seen that the reduction of M∗

� is smaller than that of M∗
N ,

because only two of the three quarks in the � hyperon are
affected by the σ mean field. We note that the dependence of
the effective baryon mass on the σ mean field is calculated
self-consistently within the FL model, and therefore the ratio
between the variation of the effective mass for � and that for
N is not as simple as a constant obtained in the RMF models
[42,43]. In Fig. 2, we show the ratio of the baryon rms radius
in nuclear matter to that in free space r∗

B/rB (B = N, �) as a
function of the nuclear matter density ρ. It is very interesting
to see the expansion of the baryon size in nuclear matter.
The increase of the baryon size in the present model is quite
large. At normal nuclear matter density, we obtain r∗

N/rN ∼
1.13 (1.30) and r∗

�/r� ∼ 1.09 (1.23) with the parameter set B
(A). The results of set B are similar to that obtained in Ref. [37],
while those of set A are apparently too large. The main reason
of the large expansion is due to the significant modification of
the quark wave function in nuclear medium, which has been
shown in Fig. 3 of Ref. [37]. Compared with the nucleon, the
� hyperon has less expansion since the wave function of the s
quark is not obviously affected by the σ mean field in nuclear
matter. The increase of the nucleon size in the present model
is rather different from those obtained in other models. For
example, the QMC model predicts only 1–3% enhancement in
the nucleon rms radius at normal nuclear matter density [12],
and the QMF model gives about 5–9% increase [20]. The chiral
quark-soliton model predicts a 2.4% enhancement, while the
swelling constrained by quasielastic inclusive electron-nucleus
scattering data is less than 6% [57].

FIG. 3. The calculated � single-particle energy E� in 41
� Ca, 91

� Zr,
and 209

� Pb with the parameter sets A and B. The experimental data of
E� in 40

� Ca, 90
� Zr, and 208

� Pb are shown for comparison [40,41].

We study the properties of � hypernuclei within the model
where the nucleon and � are described in terms of the FL
model. In our previous work [37], we studied the properties of
finite nuclei and the modifications of nucleon properties inside
nuclei. Here we focus on the description of � hypernuclei.
In Fig. 3, we present the calculated � single-particle energy
E� in several hypernuclei consisting of a closed-shell nuclear
core and a single � hyperon. The experimental values [40,41]
are also shown for comparison. It is found that the results
of set B are closer to the experimental values than those
of set A. This is consistent with the potential depth of the
� hyperon in nuclear matter, which is found to be around
−24 MeV for set A and −30 MeV for set B at the saturation
density. Generally, a � potential around −30 MeV is often
used to constrain the meson-hyperon couplings in the RMF
model [58]. We note that there is no adjustable parameter in
the present calculation of � hypernuclei. This is different from
the treatment of � hypernuclei in the RMF model. Most studies
of hypernuclei in the RMF model are performed by treating
meson-hyperon couplings as phenomenological parameters,
which are determined by experimental data [42–45]. In the
present calculation, the basic parameters are the quark-meson
couplings, and the effective meson-hyperon couplings are
obtained self-consistently at the quark level. The resulting �
single-particle energies with the parameter set B are very close
to the experimental values as shown in Fig. 3.

It is interesting to discuss the medium modifications of
baryon properties in � hypernuclei. Using the local density
approximation, the baryon properties at the radial coordinate
r are obtained through the value of σ (r). The dependence of
baryon properties on the σ mean field are obtained at the quark
level in the FL model. In Fig. 4, we show the ratio of the baryon
rms radius in 209

� Pb to that in free space as a function of the
radial coordinate r with the parameter set B. It is found that
both r∗

N and r∗
� increase significantly at the center of 209

� Pb,
while they decrease to the values in free space at the surface. In
Fig. 5, we plot the scalar and vector potentials of the neutron
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FIG. 4. The ratio of the baryon rms radius in 209
� Pb to that in free

space r∗
B/rB (B = N, �) as a function of the radial coordinate r with

the parameter set B. The results of N and � are shown by the solid
and dashed lines, respectively.

and � at 1s1/2 state in 209
� Pb. It is seen that both U�

s and U�
v are

smaller than UN
s and UN

v . At the center of 209
� Pb, the attractive

scalar potentials are mostly canceled by the repulsive vector
potentials, so that the difference between the scalar and vector
potentials is about −56 MeV for the neutron and −29 MeV
for the � hyperon.

To examine the influence of � on the nucleons in hy-
pernuclei, we list in Table II the calculated single-particle
energies of protons and neutrons in 41

� Ca with a 1s1/2 �
and compare them with those in 40Ca. It is shown that the
existence of the � hyperon does not cause observed changes
of the single-particle energies of protons and neutrons. The

FIG. 5. The scalar and vector potentials of the neutron (solid line)
and � (dashed line) in 209

� Pb as functions of the radial coordinate r

with the parameter set B.

TABLE II. The calculated single-particle energies of protons and
neutrons in 41

� Ca and 40Ca. The � hyperon in 41
� Ca is at 1s1/2 state.

The experimental data are taken from Ref. [59]. All energies are
in MeV.

Set A Set B Expt.
41
� Ca 40Ca 41

� Ca 40Ca 40Ca

Proton 1s1/2 38.2 38.5 36.3 36.5 50 ± 11
1p3/2 25.8 25.9 25.1 25.1 34 ± 6
1p1/2 23.4 23.5 23.5 23.6 34 ± 6
1d5/2 13.0 12.9 12.8 12.6 15.5
1d3/2 9.1 9.0 10.1 10.0 8.3
2s1/2 8.2 8.2 7.8 7.8 10.9

Neutron 1s1/2 46.3 46.7 44.5 44.7 50.0
1p3/2 33.6 33.7 32.9 33.0 30.0
1p1/2 31.2 31.3 31.4 31.4 27.0
1d5/2 20.4 20.3 20.3 20.2 21.9
1d3/2 16.5 16.4 17.6 17.5 15.6
2s1/2 15.5 15.6 15.3 15.3 18.2

appearance of the � increases the baryon density in the
hypernucleus, so that both scalar and vector potentials are
enhanced in comparison with the nucleus without the �
hyperon. However, the enhancements of the scalar and vector
potentials can be mostly canceled by each other, so that no
significant effect is left to the nucleon single-particle motion.
This is consistent with the results of the RMF models [42–45].

It is also interesting to discuss the applicability of the
present model to � and � hypernuclei. We note that both
� and �0 are made up of three quarks (uds), which couple
with a scalar field to form the baryon in the FL model. To
obtain the mass difference between � and �, we take into
account the spin-dependent interactions between quarks by
adding EB

spin in Eq. (11). Then the effective baryon mass is

given by M∗
B(σ ) =

√
(EB + EB

spin)2 − ∑
f 〈p2

f 〉, where EB
spin

is determined by the baryon mass in free space. This treatment
is very like the method used in the QMF model [21], and it is
similar to adjusting the parameter ZY by hyperon masses in
an earlier version of the QMC model [16]. Using this simple
method, we obtain the potential depth of a � in saturated
nuclear matter to be around −28 MeV with the parameter set
B, which is very close to the value of � case. Therefore, �
hypernuclei in the present model could be bound by an amount
similar to � hypernuclei. Such a result is not consistent with
the repulsive � potential suggested by recent experimental
studies. Hopefully, the model can be improved by including
the quark-quark hyperfine interactions as done in the QMC
model [53]. For � hypernuclei, we obtain the potential depth of
a � in saturated nuclear matter to be around −14 MeV with the
parameter set B, and consequently � hypernuclei are weakly
bound in the present model. We note that the parameter set A
yields qualitatively similar results for � and � hypernuclei.

IV. CONCLUSION

In this paper, we have developed a model for the de-
scription of � hypernuclei and for investigating the medium
modifications of baryon properties. We have used the FL
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model to describe the nucleon and � in nuclear matter and
hypernuclei. In the FL model, the baryon is described as
a bound state of three quarks in a nontopological soliton
formed by a scalar composite gluon field. The baryons interact
through the self-consistent exchange of scalar and vector
mesons generated by the nuclear environment. The mesons,
which are treated as classical fields in the spirit of the QMC
model, couple directly to the quarks inside the baryons. The
quark degrees of freedom are explicitly considered in the
model; therefore, it enables us to investigate the medium
modifications of baryons in a nuclear many-body system and
provide a reasonable description of the system in a consistent
manner.

We have presented the calculated results of � hypernuclei
and the medium modifications of baryon properties with two
sets of parameters, which correspond to the two limiting cases
in the parameter space of the FL model. The parameters in
the FL model are constrained by reproducing free baryon
properties, while the quark-meson couplings are determined
by fitting saturation properties of nuclear matter. Therefore,
no more adjustable parameters exist when we calculate the
properties of � hypernuclei. It has been found that the resulting
� single-particle energies with the parameter set B are very
close to the experimental values, while those with set A are
slightly underestimated. We have found that the properties
of the nucleon and � are significantly modified in nuclear
medium. At normal nuclear matter density, the nucleon radius
increases by about 13% (30%) with the parameter set B (A),
while the � radius increases by about 9% (23%). In the �

hypernucleus, both nucleon and � radii increase significantly
from the surface to the interior. It is gratifying to note that the
present model is able to provide a reasonable description of
� hypernuclei without adjusting parameters, and at the same
time it predicts a significant increase of the baryon radius in
nuclear medium.

It is important to point out the limitations of the present
model and possible directions for further improvements. We
have examined its applicability to � and � hypernuclei. Using
a simple method for including spin-dependent interactions, we
found that � hypernuclei are bound by an amount similar to �
hypernuclei and � hypernuclei are weakly bound in the present
model. This is not consistent with the repulsive � potential
suggested by recent experimental studies. According to recent
developments of the QMC model, the quark-quark hyperfine
interaction due to the gluon exchange plays an important
role in explaining why � hypernuclei are bound whereas �
hypernuclei are not. In further work, we plan to include the
quark-quark hyperfine interaction in the FL model and explore
its medium modification. It is very interesting to investigate
and compare the influence of the hyperfine interaction on
properties of in-medium baryons and hypernuclei.
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