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Color transparency in the reaction γ ∗ + A → ρ + p + (A − 1)∗
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We study the nuclear transparency T for the exclusive reaction γ ∗ + A → ρ + p + (A − 1)∗ at incident
virtual photon energies ν � 10 GeV to investigate the separate dependence on the photon virtuality, Q2, and the
four-momentum transfer squared to the knocked-out proton, t . If the effects of color transparency are included,
T shows significant variation with t even for small values of Q2 for fixed values of the coherence length lc, and
also shows significant increase as Q2 is increased at fixed lc and t . The value of T is found to depend strongly on
the phase space over which it is measured.
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I. INTRODUCTION

Color transparency (CT) is a prediction of perturbative
quantum chromodynamics for exclusive reactions which as-
serts that when a hadron undergoes a high-momentum-transfer
elastic or quasielastic reaction inside a nucleus, an incoming
or outgoing hadron experiences reduced interactions with the
nucleons of the nucleus, compared to their interaction in free
space. See the reviews [1–4].

For example, in the quasielastic scattering of an elec-
tron from a nucleus accompanied by proton knockout,
A(e, e′p)(A − 1), perturbative QCD predicts that if the mo-
mentum transfer from the electron to the proton is large
enough, the knocked-out proton will experience reduced
interactions with the rest of the nucleons on its way out
of the nucleus. For very large momentum transfer, the fast
moving proton would not interact with the other nucleons at
all. The quantity that characterizes the initial- and final-state
interactions of the projectile and/or outgoing hadrons is called
the nuclear transparency, which is defined as the ratio of two
cross sections:

T ≡ σ

σPWIA
, (1)

where σ is the actual measured cross section for the reaction
occurring in a nucleus, and σPWIA is the cross section calculated
in the plane wave impulse approximation (PWIA) in which all
initial- and final-state interactions are neglected. In the above
expression for T , the cross sections can be total cross sections
or differential cross sections.

The logic for color transparency to occur consists of three
steps [5–7]: 1. a high-momentum-transfer exclusive reaction
proceeds by the formation of a small-sized or pointlike
configuration (PLC), 2. the PLC has a small scattering
amplitude because, for a color neutral object, the sum of
gluon emission amplitudes cancel, and 3. the PLC expands
as it moves. The second and third steps require the use of a
high-energy coherent process. The first step is the interesting
assumption to be tested.

In reality, the cross section σ includes interactions of the
incoming and outgoing particles. These interactions generally
(but not always) lead to a value for σ which is smaller than
σPWIA, and therefore T < 1. Perturbative QCD predicts that,
in the limit of very large momentum transfer, T → 1, but

the validity of perturbative QCD is not a necessary condition
for color transparency to occur because confining interactions
could lead to pointlike configurations [1,8]. Thus observations
of color transparency verify the interesting relevance of point-
like or small-sized configurations, but they do not necessarily
validate the use of perturbative QCD for exclusive reactions.

For the density of nuclear matter ρ � 0.166 fm−3, and
proton-nucleon total cross section σ = 40 mb (for proton
momentum greater than a few GeV), the mean free path of
the outgoing proton in the nucleus would be l � 1.5 fm. Thus
for a nucleus of radius 3 fm the outgoing proton would have a
large probability of interacting with the other nucleons on its
way out, and T would be significantly smaller than 1. But the
prediction of color transparency is that the probability of the
outgoing hadron interacting with the other nucleons on its way
out is much smaller, and it becomes zero in the limit of very
large momentum transfer. In this case we would have T → 1.

At the present time, models must be used to account
for the expansion effects. The model used in this paper is
called the “quantum diffusion model” [9,10]. In this model,
the interaction cross section of the outgoing object with the
nucleons increases linearly with distance from the interaction
point where the hard scatter occurred which produced the
pointlike configuration [see Eq. (21)]. This model is derived
from perturbative QCD [10]: for a quark-antiquark system
starting from a transverse size of zero, gluon exchange between
the quark and antiquark proceeds until the system reaches the
normal meson size. It is shown in [10] that the transverse area
of the system (and hence its cross section) increases linearly
with distance traveled. The “naive” model of expansion would
correspond to free quarks expanding from zero transverse size
in both directions transverse to the momentum of the system.
In this case the transverse area of the system would increase
as the square of the distance traveled [9]. The physics of the
quantum diffusion model can also be captured by using a
hadronic basis [6,7,11,12].

The first experiment to search for effects of color trans-
parency was in 1988 at Brookhaven National Laboratory [13].
Quasielastic scattering of protons, A(p, 2p)A − 1, in various
nuclei was observed, at incident proton momenta in the range
of 6 to 12 GeV. The transparency, as a function of the
four-momentum transfer squared t , was observed to increase as
|t | increased, up to a point, but then the transparency decreased
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after that as |t | was increased further. In a later experiment
[14,15] similar results were obtained. This behavior did not
appear to agree with the predictions of color transparency, as
the transparency should increase as |t | is increased. However,
there may be other factors at work in the elementary pp
scattering cross section, and several models were proposed
to try to explain this behavior [4]. None are very convincing
and no calculation, whether with or without color transparency,
has been able to satisfactorily describe the data.

In the (p, 2p) reactions, in order for a small-sized configura-
tion to be formed it is necessary to have six quarks all localized
in a small region, which may have a very small probability.

For example, with the Landshoff [16] mechanism advocated
in Ref. [17] high-momentum-transfer proton-proton reactions
are achieved by three well-separated quarks in a proton
exchanging three gluons with three well-separated quarks
in the other proton. Such a mechanism would be more
important for baryon-baryon interactions than for meson-
baryon interactions. Thus it seems that the formation of
a small-sized configuration may be more likely if fewer
quarks are involved. Thus quasielastic electron scattering
[e + A → e + p + (A − 1)] may be a better candidate to
observe color transparency. Experiments have been performed
at the Stanford Linear Accelerator Center [18,19] and Jefferson
Lab (JLab) [20] with a range of momentum transfer squared,
Q2, from 1 to 8.1 GeV2. The results did not show any
indication of color transparency. The observations agreed
with the standard calculation in which the outgoing object is
assumed to be normal-sized proton with the usual free-space
value of its cross section of interaction with the other nucleons.
There are three possible interpretations of these results:
(1) pointlike configurations are not formed in quasielastic
electron scattering, (2) pointlike configurations are formed,
but they expand and therefore interact during their transversal
of the nucleus, and (3) the momentum transfer is not large
enough for pointlike configurations to be formed.

There has been one experiment that can be said to show
unambiguous evidence of color transparency. This was the
nuclear diffractive dissociation of pions into dijets [21,22]. The
result of the experiment [23] was a cross section depending
on A as A1.55 [24], compared to A2/3, which is what would
be expected in the absence of CT effects. At these high
energies effects of PLC expansion are computed to be small.
Thus the assumption that a PLC is formed in this reaction is
consistent with the observations, but one cannot conclude that
perturbative QCD is valid.

Other candidate reactions are those involving electropro-
duction of pions [25–28] or vector mesons [29–31]. Since the
number of quarks involved in vector meson scattering or pro-
duction is smaller than in proton scattering, the probability that
all of the quarks involved are localized in a small space should
be larger. In contrast to the elastic reactions p + A → p +
p + (A − 1), π + A → π + A, π + A → π + p + (A − 1),
etc., in electroproduction there are more kinematic parameters
that may be varied, namely, the virtual photon energy ν and
virtuality Q2. These quantities, as well as a combination
of them called the coherence length, lc = 2ν

Q2+m2
V

, can all

affect the observed transparency. The coherence length plays
an especially important role, since by varying its value the

transparency T will vary even in the absence of any color
transparency effects. Thus to observe an actual CT effect, one
must keep the coherence length fixed.

There have been several searches for evidence of color
transparency in electroproduction of ρ mesons in nuclei. At
Fermilab in 1995 [32], high-energy muons were scattered
from nuclei to produce ρ mesons. It was thought that
CT was observed because the transparency, for a given A,
increased as Q2 was increased. However, in this experiment
the coherence length lc (see Sec. II) was not held constant
as Q2 was increased, so it is difficult to draw conclusions
from these data. A later experiment at DESY was conducted
to explicitly measure the coherence length effect [33]. It
was observed, as expected, that the transparency decreased
as lc was increased, in ρ electroproduction in 14N. The Q2

values for this experiment were such that no CT effects
should occur; i.e., the produced object would interact with
the full ρ-nucleon cross section. Hence any dependence of the
transparency on lc was not an indication of CT. This was a
clear indication that any attempt to detect CT in vector meson
electroproduction must entail looking for effects while holding
lc constant. Another experiment at DESY [34] was performed,
where the transparency as a function of Q2 was measured for
different values of lc. There appeared to be an increase in the
transparency as Q2 increased, although the number of events
at each fixed value of lc was not large, and so better statistics
are needed. Finally, the most recent experiment to search for
CT in ρ production was at JLab [31]. In this experiment, the
coherence length varied from ∼0.5 to ∼0.85 fm. For this
range of coherence length, the qq̄ pair is produced essentially
at the location of the nucleon that it scatters from, and so
there are no initial-state interactions. The transparencies on
12C and 56Fe were measured for Q2 from 1.0 to 2.3 GeV2.
The transparencies appeared to show an increase with Q2,
although the kinematic range covered was small.

In this paper we calculate the transparency T for the proton
knockout reaction γ ∗ + A → ρ + p + (A − 1), in both the
standard Glauber model [35,36] (in which color transparency
effects are not accounted for) and in the Glauber model
modified to include CT effects. The aim is to see whether
insight can be gained by detecting the outgoing proton.

The paper is organized as follows. Section II briefly reviews
the electroproduction of a vector meson from a single nucleon,
including the coherence length and formation time. Section III
discusses the Glauber formalism for particle production which
will be used in the calculations. In this section we calculate
the production amplitude for the case where the residual
nucleus is a one-hole state of the initial nucleus, in the
shell model, for both the case of neglecting CT effects and
the case of including CT effects. The result is expressed
in terms of the missing momentum pm of the reaction. In
Sec. IV we discuss the modification to the Glauber result
which we make in order to include the effects of color
transparency. In Sec. V the transparency T (pm) is calculated
using shell-model wave functions, for pm = 0. Results are
presented for A = 12 and A = 40, for a range of Q2 and lc
values. In Sec. VI the “integrated transparency” is calculated.
This is the transparency where the numerator and denominator
of Eq. (1) are integrated over a domain of pm. This is the
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quantity of more direct experimental significance, rather than
T (pm) for a particular value of pm. The integrated transparency
was calculated for A = 12 and A = 40, for both fixed t and
varying Q2 (where t is the four-momentum transfer squared
to the proton), and also for fixed Q2 and varying t . It is shown
that the effects of CT can be seen even for small values of Q2,
if t is large enough. Section VII summarizes.

In [37] the cross section dσ
dt

for semi-inclusive electropro-
duction of ρ mesons was calculated, including effects of color
transparency, and using the Glauber model. In that paper the
decay of the ρ to pions was accounted for, using the Glauber
model. It was shown that the effects of ρ decay are small for
large photon energies; hence in this paper we neglect them.

II. ELECTROPRODUCTION OF A VECTOR
MESON ON A SINGLE NUCLEON

High-energy electroproduction of vector mesons from a
nucleon can be described in terms of quark degrees of freedom
(QCD) or hadronic degrees of freedom (e.g., vector meson
dominance [38,39]). In the two descriptions, the incident
virtual photon first fluctuates into either a virtual quark-
antiquark pair or into a virtual vector meson, respectively.
The virtual qq̄ pair or vector meson then scatters elastically
from the nucleon. The momentum transfer involved puts the
virtual qq̄ pair or vector meson on the mass shell of the final
observed vector meson. The virtual qq̄ pair or vector meson
then evolves over time (since it is not an eigenstate of the
strong force Hamiltonian) to form the final observed vector
meson. In the quark picture, the transverse size r⊥ of the qq̄
that is produced by the virtual photon goes as r⊥ � 1/Q [4],
so the larger Q is, the smaller is the size of the produced
qq̄. In the limit of Q → ∞ the size goes to zero: a pointlike
configuration. Thus for large Q2 the produced object should
have vanishing interactions with the other nucleons and the
transparency should approach 1.

In both descriptions there are two time scales (or length
scales, since the velocity of the vector meson is approximately
c) which are of relevance (Fig. 1). The first is the coherence
length lc, which is the distance that the virtual hadronic
fluctuation of the photon can travel in the laboratory frame
(target nucleon or nucleus at rest) [4]. The energy-time
uncertainty relation can be used to determine this distance.

FIG. 1. Coherence length (lc) and formation length (lh) for vector
meson electroproduction. The incoming photon dissociates into a qq̄

pair which then interact with the nucleon by exchanging gluons.

For a photon of energy ν and four-momentum squared, −Q2,
it is given by

lc = 2ν

Q2 + m2
V

, (2)

where mV is the mass of the vector meson. The other time
scale of relevance is called the “formation time.” The formation
time is the time scale over which the virtual meson or qq̄ pair
develops into the final real vector meson state, after scattering
from the nucleon. The scattering with the nucleon puts the
virtual meson or qq̄ pair onto the mass shell of the vector
meson. At the time of scattering the transverse size of the qq̄
pair is small, and as it propagates away it evolves into the final
meson state. This time can be estimated by considering the
on-mass-shell small-size qq̄ pair as a superposition of hadron
states, namely, the final real vector meson state and the next
higher mass meson state [4]. Then the energy-time uncertainty
principle in the rest frame of the outgoing meson gives �t =

1
mV ′−mV

, while in the laboratory frame this is time-dilated so
the formation time or length lh in the laboratory (with β � c
assumed) is

lh = 2 pV

m2
V ′ − m2

V

, (3)

where pV is the outgoing vector meson’s momentum.
For vector meson production in a nucleus, while the virtual

hadron or qq̄ is propagating over the distance lc it may interact
with nucleons and be absorbed, before it has a chance to
undergo the interaction which puts it on mass shell. These
initial-state interactions (ISI) therefore affect the measured
production cross section in the nucleus. In general, as lc
increases, the probability of absorption increases and so the
measured production cross section in a given nucleus should
decrease. Thus the production cross section at low energy
(small ν) should be larger than the production cross section at
high energy (large ν), for a given Q2. Conversely, for a given ν,
as Q2 is increased, lc will decrease and therefore the measured
production cross section should increase. This effect mimics
the effect of color transparency. Therefore in order to detect
effects of CT, the coherence length should be kept fixed in a
given experiment.

III. PRODUCTION AMPLITUDE IGNORING
EFFECTS OF CT

We consider the ρ meson production process

γ ∗ + A → ρ + p + (A − 1)∗, (4)

where (A − 1)∗ means the final (A − 1)-nucleon system is
allowed to be in any final state. In this section we calculate
the amplitude for this process, ignoring any effects of color
transparency. Since we are interested in large incident photon
energy, the Glauber model of high-energy hadron-nucleus
scattering [35] is applicable. The Glauber model is a multiple-
scattering model which is valid under certain conditions: 1. the
energy of the incident particle must be very large, compared
to the binding energy of the nucleons in the target nucleus;
2. the scattering angle of the projectile is small. Under these
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conditions the momentum transfer from the projectile is mostly
transverse, and so the longitudinal momentum transfer is
neglected; the energy transfer from the projectile is also small,
and so the energy transfer is neglected also. In the Glauber
model, the nucleon positions are fixed in place during the
time that the projectile traverses the nucleus (the “frozen”
approximation). The projectile is assumed to scatter at most
once from any individual nucleon. In between scattering events
the projectile travels in a straight line. The Glauber result for
the scattering amplitude is a sum of terms representing the
possible multiple scatterings of the projectile. In the case of
particle production, the Glauber model is modified [40,41]
to take into account the longitudinal momentum transfer in
the production process on a nucleon, which is necessarily
nonzero due to the difference in mass of the incident particle
(here the γ ∗) and the produced particle (the ρ). The Glauber
model does not take into account the Fermi motion of the
nucleons; for a projectile of high energy the Fermi motion
should matter little. In order to calculate the scattering cross
section in the Glauber model, only knowledge of the free-space
hadron-nucleon scattering amplitudes and the wave functions
of the target system is required.

A. Glauber formalism for particle production

For the reaction γ ∗ + A → ρ + A∗, where A∗ represents
any final state of the A-nucleon system, we define k as
the incident virtual photon three-momentum, k′ is the three-
momentum of the outgoing ρ, and q ≡ k − k′ is the three-
momentum transfer. The coordinate system is such that k
defines the positive z direction. In the Glauber theory, the
scattering amplitude, for a transition from the initial target (A
nucleon) internal state |i〉 to the final A-nucleon internal state
|f 〉, is given by

Ff i(q) = ik

2π

∫
d2b eiq·b 〈f |	tot(b, r1, . . . , rA)|i〉, (5)

where b is the impact parameter and the profile operator 	tot

is given by [40,41]

	tot(b, r1, . . . , rA) =
A∑

j=1

	γ (b − sj )eiqLzj

×
A∏

m�=j

[1 − 	(b − sm)θ (zm − zj )]. (6)

The coordinate rj is the position vector of the j th nucleon:
rj = (sj , zj ). The vector sj is the projection of rj in the plane
transverse to the z axis. The set of nucleon coordinates {rj }
are the internal coordinates of the A-nucleon system and hence
are relative coordinates. For the A-nucleon system there are
A − 1 independent coordinates. The terms “transverse” and
“longitudinal” are in relation to the z axis: “transverse” means
in the plane transverse to the z axis, while “longitudinal” means
parallel to the z axis.

In Eq. (6), qL is the longitudinal momentum transfer to the
nucleon on which the forward production of the vector meson
occurs. For the case of γ ∗ + N → ρ + N at high energy and

forward production of the ρ meson,

qL = Q2 + M2
ρ

2ν
, (7)

where Mρ is the mass of the ρ meson.
The two-body profile function 	γ is related to the vector

meson production amplitude from a single nucleon, f γV (q)
(i.e., for the process γ ∗ + N → V + N ), where q is the
transverse momentum transfer, by

f γV (q) = ik

2π

∫
d2b eiq·b 	γ (b). (8)

Thus we have

	γ (b) = 1

2πik

∫
d2q e−iq·bf γV (q), (9)

which gives 	γ in terms of f γV . The two-body profile function
	(b) is related to the scattering amplitude for elastic vector
meson-nucleon scattering, f (q), by

f (q) = ik

2π

∫
d2b eiq·b 	(b), (10)

and also

	(b) = 1

2πik

∫
d2q e−iq·bf (q). (11)

The total profile operator 	tot, Eq. (6), thus represents
production of the vector meson on a nucleon at (sj , zj ),
with longitudinal momentum transfer qL, followed by elastic
rescatterings of the produced meson on the other nucleons (up
to a maximum of A − 1 rescatterings). The factor θ (zm − zj )
ensures that any elastic scattering of the produced vector meson
on a nucleon at longitudinal position zm occurs after the meson
has been produced on the nucleon at position zj (since the
produced vector meson’s velocity is mostly in the positive z
direction). The total amplitude for production of the vector
meson from the nucleus, including the effects of rescattering
of the produced vector meson from individual nucleons, is the
two-dimensional Fourier transform of the matrix element of
the operator 	tot between the initial and final internal states
of the A-nucleon system, Eq. (5), and is a sum of terms
representing no elastic rescattering of the vector meson, one
elastic rescattering, two rescatterings, etc., up to a maximum
of A − 1 rescatterings.

B. Production amplitude

We calculate the differential cross section for the process in
which a single nucleon is knocked out of the nucleus. The final
states of the residual nucleus [the (A − 1)-nucleon system]
are one-hole states of the initial nucleus. We use shell-model
wave functions for the initial target state, in which the single-
particle wave function of the knocked-out nucleon is denoted
by φn(r1). The final A-nucleon state is taken to be one in
which the nucleon of wave function φn(r1) is replaced by the
scattering wave function χp(r1) for the proton of momentum
p. The subscript n defines a state in which a proton in the
single-particle state n is removed from the initial ground-state
wave function. We shall be concerned with states in which the
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energy and momentum transfer to the outgoing proton is high
enough so that the eikonal wave function can be used:

χp(r1) = eip·r1e− 1
2

∫ ∞
0 ds σ

pN
tot ρ(r1+sp̂) ≡ eip·r1e− 1

2 αp(r1). (12)

Here σ
pN
tot is the total cross section for proton-nucleon

scattering, and ρ(r) is the nucleon number density for the
residual nucleus. χp(r1) represents scattering of the outgoing
proton in the optical potential due to the other A − 1 nucleons,
which are in the bound state �

f
A−1. Therefore ρ in the

exponential should in principle depend on the final state f
of the residual nucleus. We will assume, however, that ρ is the
same as the nucleon density of the initial nucleus, which should
be approximately correct for final states which are one-hole
states or small excitations thereof, for large A.

We compute the scattering amplitude for the stated final
state by using the discussed initial and final states in Eq. (5). We
assume that the final-state proton is created in the production
of the ρ or is created by a ρ-proton final-state interaction. In
that case, we find

F
(n)
f i = ik

2π

∫
d2beiq·b

∫
d3r1χ

∗
p(r1)φn(r1)

(
	

γ
b1e

iqLz1g1(b)

× −	b1

∫
d3r2 ρ(r2) 	

γ
b2 eiqLz2 θ12 g2(b)

)
, (13)

in which we use the definitions 	
γ
bj ≡ 	γ (b − sj ), 	bk ≡

	(b − sk), θkj ≡ θ (zk − zj ), and

g1(b) ≡
[

1 −
∫

d2s

∫ ∞

z1

dzρ1(s, z)	(b − s)

]A−1

, (14)

g2(b) ≡
[

1 −
∫

d2s

∫ ∞

z2

dzρ1(s, z)	(b − s)

]A−2

, (15)

where ρ1 is related to the nucleon number density ρ by ρ(r) =
(A − 1)ρ1(r), with normalization

∫
d3rρ1(r) = 1.

To obtain a tractable form for the amplitude F
(n)
f i , we can

utilize the fact that the profile functions are sharply peaked as
their arguments vary while the other quantities appearing in
the expression for F

(n)
f i (i.e., ρ, g1, and g2), are relatively slowly

varying. This is because the range of the profile function is of
the order of the size of the nucleon, while the other functions
vary over the size of the nucleus. For a slowly varying function
f (r) we thus have, to good approximation,∫

d2sf (s, z)	(s − a) � f (a, z)
∫

d2s	(s − a) (16)

and similarly for 	γ (s − a).
Using this approximation in g1(b) and g2(b), we obtain, in

the large-A limit,

g1(b) � e− 1
2 σV N

tot T1(b), (17)

g2(b) � e− 1
2 σV N

tot T2(b), (18)

where Tj (b) ≡ ∫ ∞
zj

dz′ρ(b, z′) is called the “partial thickness
function.” Note that the optical theorem was used to relate the
forward elastic scattering amplitude f (0) = ik

2π

∫
d2s 	(s) to

the total vector meson-nucleon cross section σV N
tot .

(a) First term of Eq. (19)

(b) Second term of Eq. (19)

FIG. 2. Pictorial representation of the two terms in the amplitude
of Eq. (19).

Using the above approximations we find the result

F
(n)
f i =

∫
d2s1dz1e

−ipm·r1e− 1
2 αp(r1)φn(r1)

×
(

f γV (q)e− 1
2 σV N

tot T1(s1) − 2π

ik
f γV (0)

×
∫ z1

−∞
dz2 ρ(s1, z2) eiqL(z2−z1) e− 1

2 σV N
tot T2(s1)f (q)

)
.

(19)

The result for F
(n)
f i depends on the missing momentum pm:

pm ≡ p − k + k′ = p⊥ − q + (pz − qL)ẑ, (20)

where p is the momentum of the outgoing proton.
The physical interpretation of the two terms in Eq. (19) is as

follows, see Fig. 2. The first term in parentheses corresponds
to production of the vector meson on nucleon 1 at position
(s1, z1) with transverse momentum transfer q, nucleon 1
being therefore knocked out. The second term in parentheses
corresponds to forward production of the vector meson on
nucleon 2 at position (s1, z2); the produced meson then
propagates in the z direction until the point (s1, z1), where it
scatters elastically from nucleon 1 with transverse momentum
transfer q to nucleon 1, nucleon 1 being knocked out. In
both cases the vector meson suffers attenuation beginning at
the point where it is created as a physical meson through
interaction with a nucleon [either at (s1, z1) for the first term
or at (s1, z2) for the second term], while the proton suffers
attenuation beginning at the point r1 = (s1, z1) where it was
located when the vector meson struck it. The total amplitude
is the sum of these two amplitudes; hence the square of the
amplitude contains interference between the two amplitudes.

035202-5



GARY T. HOWELL AND GERALD A. MILLER PHYSICAL REVIEW C 88, 035202 (2013)

Equation (19) is the Glauber theory result for the scattering
amplitude for γ ∗ + A → ρ + p + (A − 1)∗, for the case
where the final state of the residual nucleus is a one-hole
state of the initial nucleus. To obtain the differential cross
section, summed over all one-hole states, we would square
F

(n)
f i , multiply by the appropriate phase-space and flux factors,

and then sum over n = 1 to A. For the high-energy case we
are considering, we may consider the energies of the outgoing
particles to be essentially independent of n. In that case, the
phase-space and flux factors are independent of n, and so we
may just sum |F (n)

f i |2 over n.

The result for
∑

n |F (n)
f i |2, where n is summed only over

one-hole states, is identical to the result one would obtain
if instead one summed over all final states of the residual
nucleus (the incoherent cross section) but only kept the terms
corresponding to a single rescattering of the produced vector
meson on a proton and neglected terms where the vector
meson rescatters two or more times on different nucleons.
The experimental situation, wherein the recoiling nucleus is
not detected, corresponds to summing over all final states of
the residual nucleus. However, because of the exclusive nature
of the reaction, if pm is small, then the outgoing proton’s
momentum p � q and so only a single rescattering of the ρ
can have occurred, where the entire momentum transfer q was
delivered to the detected proton. Multiple rescattering terms in
this case should be negligible, and so we need only sum |F (n)

f i |2
over one-hole final states. This implies that the transparency
T using Eq. (19) will show very little dependence on the
four-momentum transfer squared, t � −q2.

IV. INCLUSION OF COLOR TRANSPARENCY EFFECTS

Effects of color transparency can be incorporated into the
Eq. (19) result by including position-dependent cross sections
from the quantum diffusion model [9,10]. In this model, the
total cross section of interaction of the outgoing hadrons with
a nucleon in the nucleus is [9]

σ
eff
hN (z, t) = σ tot

hN

[
θ (lh − z)

[
z

lh
+ n2

〈
k2
t

〉
|t |

(
1 − z

lh

)]

+ θ (z − lh)

]
. (21)

Here z is the distance the hadron has traveled from the
point where the hard hadron-nucleon interaction (with four-
momentum-transfer squared, t) occurred (Fig. 3), σ tot

hN is the
free-space total hadron-nucleon cross section, n is the number
of valence quarks of the hadron, and 〈k2

t 〉1/2 is the average
transverse momentum of the quark in the hadron (taken to

be 〈k2
t 〉1/2 = 0.35 GeV). Thus n2〈k2

t 〉
|t | σ tot

hN is a measure of the
transverse size of the hadron at the time of collision. The
parameter lh (the formation length) is the distance the hadron
travels after the collision until it reaches its normal size. This
is estimated as lh � 1

En−Eh
� 2ph

M2
n−M2

h

, where Mn is the mass of

a typical intermediate state n of the hadron [9]. In principle the
quantity lh can be different for the meson and the proton, but

FIG. 3. (Color online) Formation length (lh) for vector meson
production. z is the distance of the outgoing hadron from the point
where the hard scattering occurred.

since the relation lh � 1
En−Eh

� 2ph

M2
n−M2

h

is only an estimate, we

take here M2
n − M2

N = M2
n − M2

ρ = 0.7 GeV2 for both lρ and
lp [42]. Arguments for the linear dependence on z for small
values have been presented by Dokshitzer et al. [43]. One can
also treat the pointlike configuration as a linear superposition
of hadrons [6,7]. If the necessary configurations are spread over
a large range of energies one could even doubt the use of the
eikonal approximation. However, the use of realistic hadronic
matrix elements for electroproduction and strong interactions
leads to a dependence much like that of Eq. (21) [11,12].

Equation (21) is used for the cross sections that appear
in the exponentials in Eq. (19). More changes are necessary
to implement the potential effects of color transparency for
the reactions of present interest. In particular, the amplitudes
f γV (q) and f γV (0) that appear in Eq. (19) are the same as
the measured free-space production amplitudes. However, the
elastic rescattering amplitude f (q) must be modified if the
effects of color transparency are present. If one assumes that
Q2 is large enough, the qq̄ pair produced at the point (s1, z2)
will be in a pointlike configuration. It will then expand as it
propagates and scatter elastically from a nucleon at z2; if z2

is close enough to z1, the scattering amplitude f (q) of the qq̄
pair on the nucleon will be smaller than that of a normal ρ
meson. Therefore the scattering amplitude f (q) in Eq. (19)
needs to be replaced as in Ref. [44]. We use

f PLC(z1 − z2, q,Q2) = f (q)
σ eff

V N (z1 − z2,Q
2)

σ tot
V N

×
GV

(
t

σ eff
V N (z1−z2,Q

2)
σ tot

V N

)
GV (t)

, (22)

where GV (t) is the ρ-meson form factor, t � −q2, and
f (q) is the measured free-space elastic ρ-nucleon scattering
amplitude. This form for f PLC is motivated by using the
optical theorem [and by assuming f (0) is pure imaginary]
together with the empirical result [44,45] that the differential
cross section for hadron-nucleon scattering satisfies

dσhN→hN

dt
∼ G2

h(t)G2
N (t) (23)

035202-6



COLOR TRANSPARENCY IN THE REACTION . . . PHYSICAL REVIEW C 88, 035202 (2013)

in terms of the form factors of the h and N . Equation (22)
differs from Eq. (4) of Ref. [44] in that the factor of ebt/2 of
the earlier reference is included in the factor f (q).

Thus the result for the scattering amplitude including color
transparency effects is

F
(n)
f i =

∫
d2s1dz1e

−ipm·r1e− 1
2 αp(r1)φn(r1)

×
(

f γV (q)e− 1
2 αV (s1,z1) − 2π

ik
f γV (0)

∫ z1

−∞
dz2 ρ(s1, z2)

× eiqL(z2−z1) e− 1
2 αV (s1,z2)f PLC(z1, z2, q,Q2)

)
, (24)

where

αp(r1) =
∫ ∞

0
σ eff

pN (s, t)ρ(r1 + s p̂)ds, (25)

αV (s1, z1) =
∫ ∞

z1

dz′σ eff
V N (z′ − z1, t)ρ(s1, z

′), (26)

αV (s1, z2) =
∫ ∞

z2

dz′σ eff
V N (z′ − z2,Q

2)ρ(s1, z
′). (27)

These expressions for αV reflect the fact that the transverse
size of the initial qq̄ (at z2) is determined by 1/Q2, while the
transverse size of the outgoing qq̄ and proton, after the hard
scatter from the proton at (s1, z1), is determined by 1/|t |.

V. TRANSPARENCY

For the proton knockout reaction, the transparency T is
defined as the ratio of the measured five-fold differential cross
section to the differential cross section calculated in the PWIA
[18–20,46]. This can be evaluated at a specific kinematic point,
i.e., a particular value of the missing momentum pm, or it can
be the ratio of the integrated cross sections, integrated over
some domain D of pm. Thus

T (pm) =
dσ

dE′d�′d�p

dσPWIA
dE′d�′d�p

, (28)

or

TD =
∫
D d3pm

dσ
dE′d�′d�p∫

D d3pm
dσPWIA

dE′d�′d�p

. (29)

We will call the latter the “integrated transparency.” At a
given value of pm, the kinematic factors in the cross sections
cancel in the ratio given in Eq. (28). We are summing the
cross sections over the one-hole final states, labeled by n,
from n = 1, . . . , A. If we neglect the dependence of F

(n)
f i on

the binding energy of the state n (which is valid for large
momentum p of the outgoing proton) then the sum of the cross
sections is proportional to

∑A
n=1 |F (n)

f i |2, and so we have

T (pm) =
∑A

n=1

∣∣F (n)
f i

∣∣2

∑A
n=1

∣∣F (n)
f i

∣∣2
PWIA

. (30)

The PWIA value of F
(n)
f i is obtained from Eq. (19) or Eq. (24)

by setting the exponential attenuation factors equal to 1 and

setting the second term in parentheses equal to zero (which
means that all rescattering of the produced vector meson is
neglected). Using Eq. (19) for F

(n)
f i in Eq. (30) gives the

Glauber theory prediction for the nuclear transparency T

(called here the “Glauber result”), while using Eq. (24) for F
(n)
f i

in Eq. (30) gives the prediction for the nuclear transparency
T including effects of color transparency (called here the
“CT result”). In both cases the denominator of Eq. (30)
is just

A∑
n=1

∣∣F (n)
f i

∣∣2
PWIA = ∣∣f γV (q)

∣∣2
A∑

n=1

∣∣∣∣
∫

d2s1dz1e
−ipm·r1φn(r1)

∣∣∣∣
2

,

(31)

which is proportional to the momentum distribution (at
momentum pm) of the nucleus.

For the wave functions φn, harmonic oscillator wave
functions were used. The oscillator length b =

√
h̄

μω
was

chosen so that the mean-square radius R̄2 as calculated using
the density ρ(r) = ∑

n |φn(r)|2 was equal to the mean-square
radius R̄2 as calculated using the Woods-Saxon form of the
nuclear number density:

ρ(r) = ρ0

1 + e
r−R

a

, (32)

where R = 1.1 A1/3 fm and a = 0.56 fm; ρ0 is determined
by normalizing

∫
d3rρ(r) to A. The values obtained were

b = 8.67 GeV−1 for 12C and b = 10.48 GeV−1 for 40Ca.
The free-space cross sections used in the calculations were
σ

pN
tot = 40 mb and σV N

tot = 25 mb [47].
The transparency T was calculated for 12C and 40Ca at pm =

0 for fixed t , and graphs of T versus Q2 are shown in Figs. 4
and 5. It is important to note that the transparency as a function
of t is calculated for fixed ν and Q2, so that the coherence
length lc is held constant. If the coherence length varied, this
could mimic color transparency because as lc gets smaller
the attenuation due the initial-state interaction of the vector
meson (before the hard scatter) decreases since the vector
meson propagates a smaller distance before undergoing the
hard scatter; this would cause the value of the transparency T to
increase as lc decreases. The production and elastic scattering
amplitudes f γV (q) and f (q) in Eq. (24) and Eq. (31) were
taken to be of the form f γV (q) = AγV e

1
2 bγV t and f γV (q) =

Ae
1
2 bt (where t = −q2) with the parameters AγV , bγV , A,

and b taken from experimental data. The t-slope b for elastic
ρ-nucleon scattering has been measured to be between 7 and
8 GeV−2 [47], while the t-slope for the production amplitude
varies with Q2. The available electroproduction data [48] are at
higher virtual photon energies than are considered in this paper,
but the values of bγV (Q2) measured in that experiment were
what were used in our calculations. Calculations were done for
b = 7 GeV−2 and for b = 8 GeV−2 with bγV depending on Q2.
For comparison, calculations were also done with the validity
of vector meson dominance (VMD) assumed, in which case
bγV = b and the transparency T (pm), Eq. (30), is independent
of the value of b since both numerator and denominator are
proportional to ebt .
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(a) VMD (b) b = 7 GeV−2

(c) b = 8 GeV−2

FIG. 4. Transparency T (pm) for pm = 0 for A = 12, t = −2 GeV2, and lc = 5 fm. The bottom curves (gray) are the Glauber result; the
top curves (black) are the CT result. The value of the elastic ρ-nucleon t-slope parameter b used in the calculation is indicated for each graph;
VMD corresponds to bγV = b.

The expected properties of the transparency are evident in
Fig. 4. For a given value of Q2, the transparency (both Glauber
and CT results) decreases with increasing A. For a given A, as
Q2 increases the transparency in the CT case increases, which
is also expected. However, for the Glauber case, the behavior
of T as Q2 varies is more sensitive to the values of b and bγV

that are used. Some of the dependence of T on Q2 is also due

to the dependence of αp(r) on kinematics through the relation
Eq. (20).

VI. INTEGRATED TRANSPARENCY

The actual experimental situation corresponds to detection
of the outgoing momentum corresponding to a range of values
of the missing momentum pm. The integrated transparency

(a) VMD (b) b = 7 GeV−2

(c) b = 8 GeV−2

FIG. 5. Transparency T (pm) for pm = 0 for A = 40, t = −2 GeV2, and lc = 5 fm. The bottom curves (gray) are the Glauber result; the
top curves (black) are the CT result. The value of the elastic ρ-nucleon t-slope parameter b used in the calculation is indicated for each graph;
VMD corresponds to bγV = b.
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is

TD =
∫
D d3pm

dσ
dE′d�′d�p∫

D d3pm
dσPWIA

dE′d�′d�p

=
∑A

n=1

∫
D d3pm|F (n)(pm)|2∑A

n=1

∫
D d3pm|F (n)(pm)|2PWIA

.

(33)

In the impulse approximation, the missing momentum pm is
equal to the negative of the momentum that the struck proton
had inside the nucleus before the collision. Therefore the
amplitude F

(n)
f i as a function of pm should be negligible for

pm > 300 MeV or so, since the momentum of the nucleons in
the nucleus cannot be much larger than this.

If we integrate over pm up to pmax � 300 MeV, we may set
p = q + pm � q in αp, since for the kinematics of interest we
have p, q � 300 MeV. Then assuming that F

(n)
f i is zero for

pm > pmax, we may extend the upper limit of integration in
Eq. (33) to infinity, pmax → ∞. For the denominator we obtain
simply (2π )3 A |f γV (q)|2. For the numerator we obtain three
terms:

(2π )3
∣∣f γV (q)

∣∣2
∫

d2s1dz1ρ(r1)e−αp(r1)[h1(r1)

+h2(r1) + h3(r1)], (34)

where

h1(r1) = e−αV (s1,z1), (35)

h2(r1) = 4π

ik

f γV (q)f γV (0)∣∣f γV (q)
∣∣2 e− 1

2 αV (s1,z1)
∫ z1

−∞
dz2ρ(s1, z2)

× e− 1
2 αV (s1,z2) cos qL(z1 − z2)f PLC(z1, z2, q), (36)

and

h3(r1) =
(2π

k

)2
∣∣f γV (0)

∣∣2∣∣f γV (q)
∣∣2

∫ z1

−∞
dz2

∫ z1

−∞
dz3ρ(s1, z2)ρ(s1, z3)

× e− 1
2 αV (s1,z2)e− 1

2 αV (s1,z3) cos qL(z2 − z3)

×f PLC(z1, z2, q)f ∗PLC(z1, z3, q). (37)

Thus we have for the integrated transparency

TD = 1

A

∫
d2s1dz1ρ(r1)e−αp(r1) [h1(r1) + h2(r1) + h3(r1)] .

(38)

This simplifies somewhat if we assume the validity of vector
meson dominance for the relation between the free-space
production amplitude f γV (q) and the free-space elastic
scattering amplitude f (q) [which appears inside f PLC ; see
Eq. (22)]. By assuming that the high-energy amplitudes are
purely imaginary, use of the optical theorem then gives

h2(r1) = − σ tot
V N

GV (t)
e− 1

2 αV (s1,z1)
∫ z1

−∞
dz2ρ(s1, z2)e− 1

2 αV (s1,z2)

× cos qL(z1 − z2)h(z1 − z2)GV (t h(z1 − z2)),

(39)

h3(r1) = 1

4

( σ tot
V N

GV (t)

)2
∫ z1

−∞
dz2

∫ z1

−∞
dz3ρ(s1, z2)ρ(s1, z3)

× e− 1
2 αV (s1,z2)e− 1

2 αV (s1,z3) cos qL(z2 − z3)h(z1 − z2)

×h(z1 − z3)GV (t h(z1 − z2))GV (t h(z1 − z3)),

(40)

(a) VMD (b) b = 7 GeV−2

(c) b = 8 GeV−2

FIG. 6. Integrated transparency T for A = 12, t = −2 GeV2, and lc = 2 fm. The bottom curves (gray) are the Glauber result; the top curves
(black) are the CT result. The value of the elastic ρ-nucleon t-slope parameter b used in the calculation is indicated for each graph; VMD
corresponds to bγV = b.
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(a) VMD (b) b = 7 GeV−2

(c) b = 8 GeV−2

FIG. 7. Integrated transparency T for A = 12, t = −2 GeV2, and lc = 5 fm. The bottom curves (gray) are the Glauber result; the top curves
(black) are the CT result. The value of the elastic ρ-nucleon t-slope parameter b used in the calculation is indicated for each graph; VMD
corresponds to bγV = b.

where

h(z) ≡ σ eff
V N (z,Q2)

σ tot
V N

=
[
θ (lh − z)

[
z

lh
+ n2

〈
k2
t

〉
Q2

(
1 − z

lh

)]

+ θ (z − lh)

]
. (41)

The form factor GV used in evaluating Eq. (38) was taken to
be the same form factor as for the pion:

GV (t) = 1

1 − t/0.59
, (42)

for t in GeV2.
The three terms of Eq. (34) or Eq. (38) are represented

pictorially by the same diagrams as in Fig. 2. The term with

(a) VMD (b) b = 7 GeV−2

(c) b = 8 GeV−2

FIG. 8. Integrated transparency T for A = 40, t = −2 GeV2, and lc = 2 fm. The bottom curves (gray) are the Glauber result; the top curves
(black) are the CT result. The value of the elastic ρ-nucleon t-slope parameter b used in the calculation is indicated for each graph; VMD
corresponds to bγV = b.
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(a) VMD (b) b = 7 GeV−2

(c) b = 8 GeV−2

FIG. 9. Integrated transparency T for A = 40, t = −2 GeV2, and lc = 5 fm. The bottom curves (gray) are the Glauber result; the top curves
(black) are the CT result. The value of the elastic ρ-nucleon t-slope parameter b used in the calculation is indicated for each graph; VMD
corresponds to bγV = b.

h1 is the square of the diagram in Fig. 2(a) and represents
incoherent production from nucleon 1; the term with h2

represents interference between the diagrams of Fig. 2(a) and
Fig. 2(b), with interference between production on nucleon
1 and nucleon 2; and the term with h3 is the square of the
diagram in Fig. 2(b), which represents interference between
production on nucleon 2 and production on a different nucleon
3, with incoherent scattering from nucleon 1.

The integrated transparency was calculated for A = 12 and
A = 40, for a range of values of t and Q2. In Figs. 6–9, the
transparency is shown for fixed t as a function of Q2, for two
different values of the coherence length. The same values of
b and bγV were used as for the T (pm = 0) calculation; VMD
corresponds to b = bγV .

The same overall features of the graphs are present as were
seen for the pm = 0 transparency. In addition, here one can see
that, for a given A and Q2, the transparency increases as the
coherence length lc decreases, which agrees with expectations.
For the whole range of Q2 from 2 to 12 GeV2, the difference
between the CT transparency and the Glauber transparency

is significant. For the higher values of Q2, the CT value is
of the order of 1.5 times as large as the Glauber transparency,
for A = 12, and 2 times as large as the Glauber transparency for
A = 40. The integrated transparency is significantly smaller
than the values for pm = 0. This is a relevant feature for
experimentalists to note.

In Fig. 10, the transparency is shown for fixed Q2 as a
function of t . In that figure, Q2 = 0.5 GeV2, which is small
enough that for the rescattering terms [Eqs. (39) and (40)] the
produced qq̄ (at either z2 or z3) is a normal ρ meson. Thus
no color transparency effects occur as it propagates from the
point where it was produced to the point where it undergoes
the hard scatter of momentum transfer q which knocks
out the nucleon. But the large-momentum-transfer scattering
at z1 causes the outgoing ρ-like configuration to be in a
small-sized configuration. Hence the outgoing ρ experiences
reduced interactions on its way out of the nucleus (and the
knocked-out proton also experiences reduced interactions).
This is a manifestation of color transparency effects for small
Q2 (but large t). The difference between the CT result and the

(a) A = 12, Q2 = 0.5 GeV2 , lc = 5 fm (b) A = 40, Q2 = 0.5 GeV2 , lc = 5 fm

FIG. 10. Integrated transparency T for fixed Q2 and lc and varying t . The bottom curves (gray) are the Glauber result; the top curves (black)
are the CT result.
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Glauber result is not as significant, however, as in the case of
large Q2.

VII. CONCLUSION

We have calculated the transparency for γ ∗ + A → ρ +
p + (A − 1)∗, both without inclusion of CT effects (Glauber
case) and with inclusion of CT effects, for several different
combinations of A and lc. The transparencies clearly ex-
hibit the coherence length effect, i.e., the decrease of the
transparency as lc is increased, which is not due to color
transparency. Thus to observe the effects of CT it is necessary
to keep lc fixed while varying ν and Q2. The quantity of
experimental interest, namely, the integrated transparency, is

smaller in general than the transparency evaluated at missing
momentum pm = 0. However, the difference between the
Glauber transparency and the CT transparency is marked,
particularly as Q2 is increased while t is fixed. However,
it should still be possible to observe the effects of CT
when Q2 is small, if t is large enough. The difference
between the CT prediction and the Glauber prediction for the
transparency in this case is not as large as it is in the case of
large Q2.
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