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Chiral soliton model at finite temperature and density
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In mean-field approximation, we study a chiral soliton of the linear sigma model with two flavors at finite
temperature and density. The stable soliton solutions are calculated with some appropriate boundary conditions.
Energy and radius of the soliton are determined in a hot medium of constituent quarks. It is found that, for
T < Tc, the energy of the soliton, E∗, is less than the energy of three free constituent quarks, 3Mq , but with
increasing temperature the difference between E∗ and 3Mq becomes smaller and smaller. Once T > Tc, there
is a sharp delocalization phase transition from hadron matter to quark matter coincident with the restoration of
chiral symmetry. In the transition region, the thermodynamic properties show large discontinuities which is an
indication for a first-order phase transition.
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I. INTRODUCTION

It is widely believed that at sufficiently high temperatures
and densities there is a quantum chromodynamics (QCD)
phase transition between normal nuclear matter and quark-
gluon plasma (QGP), where quarks and gluons are no
longer confined in hadrons [1,2]. Experimentally, the study
of the QCD phase transition is supported by the heavy-ion
collisions in laboratories at ultrarelativistic energies, such as
the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven
National Laboratory and the Large Hadron Collider (LHC) at
CERN. These conducted experiments provide us with a chance
to create hot QCD matter and elucidate its properties. In order
to explore of a wider range of the QCD phase transition up to
several times the normal nuclear matter density, the new
Facility for Antiproton and Ion Research (FAIR) at Darmstadt,
the Nuclotron-based Ion Collider Facility (NICA) at the Joint
Institute for Nuclear Research (JINR) in Dubna, and the Japan
Proton Accelerator Research Complex (J-PARC) at JAEA and
KEK, will make such extreme conditions possible through
collisions [3].

On the theoretical side, due to the property of confine-
ment, in the nonperturbative regime of large distances, or
equivalently low energies, the analytical as well as numerical
methods have not been developed enough to fulfill the solution
of low-energy nonperturbative cases, especially if baryons
are involved. Therefore the challenge to nuclear physicists
is to find models which can bridge the gap between the
fundamental theory and our wealth of knowledge about low-
energy phenomenology, and these models should be successful
in explaining empirical facts at low energies; for example, the
dynamical breaking of chiral symmetry and the confinement,
which are both intimately related to the nonperturbative
structure of the QCD vacuum.

The linear sigma model (LSM) [4] for the phenomenology
of QCD has been proposed to describe the vacuum structure
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with incorporating chiral symmetry and its spontaneous break-
ing. This model has two appealing features according to two
distinct low-energy phenomena. On the one hand, if we assume
the thermal medium is mimicked by a uniform constituent
quark medium with a dynamically generated mass, the model
can be used to describe a restoration of chiral symmetry at
finite temperature and density in satisfactory agreement with
the lattice calculations [5,6] and of the Nambu-Jona-Lasinio
(NJL) model as well [7]. On the other hand, starting from the
same Lagrangian, bound states (chiral solitons) of valence
quarks can be constructed through the interaction with σ
and π mesons [8,9], and the nucleon naturally arises as a
nontopological chiral soliton in the model. Moreover, the
model has proven to be a successful approach to the description
of nucleon static properties in vacuum [8,10–14]. Combining
these two features together by requiring a soliton embedded
in the hot soup of constituent quarks, the model seems to
provide a suitable working scheme to simultaneously study
both the restoration of chiral symmetry and the possible
dissolution of the soliton, which simulates the delocalization
(or deconfinement in some literature) transition of nuclear
matter to quark matter. Thus such a chiral soliton model
is obviously more advantageous than other nontopological
soliton models [15–17] in the description of the hadron-quark
phase transition [18,19].

Using this model, the nucleon as a B = 1 chiral soliton in a
cold quark medium has been investigated in Ref. [20]. In their
studies, the nucleon is treated as a chiral soliton of the LSM,
whereas the parameters fπ , mπ , and mσ are chosen to be the
medium-modified meson values within the NJL model. For
finite temperature, more recently, by adopting the one-loop
phenomenological mesonic potential [21] and the coherent-
pair approximation [13,14], Abu-Shady and Mansour have
studied nucleon properties at finite temperature [22]. Since
the equally one-loop contribution of the quarks in potential
is ignored, their studies cannot be applied to finite density
directly. In order to get a full picture of the hadron-quark
phase transition either at finite temperature or finite density,
in the present work, in mean-field approximation, we are
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going to investigate the nucleon properties as well as the
thermodynamics of the system at finite temperature and
density. As we know the NJL model and the LSM treat the
contribution of the Dirac sea differently: in the NJL model it
is included explicitly up to a momentum cutoff �, while in the
LSM this contribution is renormalized out. So, unlike the chiral
soliton in the NJL model [23,24], the present model has the
benefit of renormalizability. Eventually, such a model would
be investigated beyond mean field by the loop expansion,
especially by using the CJT effective potential [1,25].

The structure of the paper is as follows: In the next section
we introduce the chiral soliton model with two quark flavors;
nucleon static properties in the vacuum are briefly discussed
and parameters are fixed. Then, in mean-field approximation,
the chiral soliton solutions of the model at different temper-
atures and densities are self-consistently solved in Sec. III.
Section IV is devoted to studying static properties of the
nucleon at finite temperature and density, but we leave the
study of the hadron-quark phase transition until Sec. V. At the
end, we give discussions and summary in Sec. VI.

II. THE MODEL

The chiral effective Lagrangian of the SU(2)R × SU(2)L
symmetry linear sigma model with two quark flavors has the
form [4,26]

L = ψ[iγ μ∂μ − g(σ + iγ5 �τ · �π )]ψ

+ 1
2 (∂μσ∂μσ + ∂μ �π · ∂μ �π ) − U (σ, �π ). (1)

Here we have introduced a flavor-blind Yukawa coupling g
of the isodoublet, spin- 1

2 quark fields ψ = (u, d) to interact
with the spin-0, isosinglet σ and the isotriplet pion field �π =
(π1, π2, π3). The potential for the σ and �π is parametrized as

U (σ, �π ) = λ

4
(σ 2 + �π2 − ϑ2)2 − Hσ − m4

π

4λ
+ f 2

π m2
π , (2)

and the minimum energy occurs for chiral fields σ and �π
restricted to the chiral circle in the physical vacuum:

σ 2 + �π2 = f 2
π , (3)

where fπ = 93 MeV is the pion decay constant and mπ =
138 MeV is the pion mass. The last two constant terms in
Eq. (2) are used to guarantee that the energy of vacuum in
the absence of quarks is zero. The constant H is fixed by
the partially conserved axial vector current relation which
gives H = fπm2

π . We further assume that chiral symmetry
is spontaneously broken in the vacuum and the expectation
values of the meson fields are 〈σ 〉 = f π and 〈 �π〉 = 0; then the
dimensionless coupling constants g and λ are the only two
free parameters of the model, which are in turn conveniently
reexpressed in terms of the constituent quark mass in vacuum,
Mq = gfπ , and the sigma mass, m2

σ = m2
π + 2λf 2

π . Finally,
the quantity ϑ2 can subsequently be expressed as ϑ2 =
f 2

π − m2
π/λ.

The mass of the sigma meson is still a poorly known
number, but the most recent compilation of the Particle Data
Group considers that mσ can vary from 400 to 550 MeV with
full width 400–700 MeV [27]. The coupling constant g is

usually fixed by the constituent quark mass in vacuum within
the range of 300–500 MeV, which gives g � 3.3–5.3. In this
work we take mσ = 472 MeV and g = 4.5 as the typical values
in order to describe the properties of the nucleon in vacuum
successfully.

In vacuum, the σ and π are taken as time-independent,
classical c-number fields, which only differ from their vacuum
values in the neighborhood of the quark sources. The state of
the quarks {φn(r)} with energy {εn} and the σ (r), π (r) meson
fields satisfy the coupled set of the Euler-Lagrange equations
of motion

−i �α · �∇φn(r) − gβ[σ (r) + iγ5 �τ · �π (r)]φn(r) = εnφn(r), (4)

−∇2σ (r) + ∂U (σ, �π )

∂σ
= −g

∑
nocc

φ̄n(r)φn(r), (5)

−∇2 �π (r) + ∂U (σ, �π )

∂ �π = −g
∑
nocc

φ̄n(r)iγ5 �τφn(r), (6)

with ∫
φ†

n(r)φn(r)d3r = 1, (7)

where �α and β are the conventional Dirac matrices.
The ground state of the chiral soliton is the state where

there are N quarks in the same lowest Dirac state φ0 with
energy ε. In the following, our discussions are constrained in
the case of N = 3 for baryons. In order to obtain solutions of
minimum energy, we adopt the “hedgehog” ansatz where the
meson fields are spherically symmetric and valence quarks are
in the lowest s-wave level,

σ = σ (r), �π = r̂π (r), (8)

φ0 =
(

u(r)
i �σ · r̂v(r)

)
χ, (9)

where χ is a state in which the spin and isospin of the quark
couple to zero:

(�σ + �τ )χ = 0. (10)

Now the system is spherical symmetric and the Euler-Lagrange
equations of motion (4)–(6) transform in radial coordinates to

du(r)

dr
= −(ε + gσ (r)) v(r)

− gπ (r)u(r), (11)

dv(r)

dr
= −

(
2

r
− gπ (r)

)
v(r)

+ (ε − gσ (r)) u(r),

(12)

d2σ (r)

dr2
+ 2

r

dσ (r)

dr
− ∂U

∂σ
= Ng(u2(r) − v2(r)),

(13)

d2π (r)

dr2
+ 2

r

dπ (r)

dr
− 2π (r)

r2
− ∂U

∂π
= −2Ngu(r)v(r), (14)

and the quark functions should satisfy the normalization
condition

4π

∫
r2(u2(r) + v2(r)) dr = 1. (15)
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FIG. 1. (Color online) The total energy of the system, E, and
the energy of three free constituent quark, 3Mq , as a function of the
Yukawa coupling g. For g < gc, E is larger than 3Mq and there is no
stable bound state of quarks; however, for g � gc, the soliton solution
is stable, where gc = 4.24.

These equations are subject to the boundary conditions which
follow from the requirement of finite energy:

v(0) = 0,
dσ (0)

dr
= 0, π (0) = 0, (16)

u(∞) = 0, σ (∞) = fπ , π (∞) = 0. (17)

The asymptotic vacuum value of the soliton field has to
be determined by an additional condition that the physical
vacuum is recovered at infinity. In this “physical” vacuum the
quarks are free Dirac particles of the constituent mass gσv , and
chiral symmetry is spontaneously broken.

If we put N quarks into the lowest state with energy ε, the
total energy of the hedgehog baryon is given by

E = Nε + 4π

∫
r2

[
1

2

(
dσ

dr

)2

+ 1

2

(
dπ

dr

)2

+ U (σ, π )

]
dr.

(18)

The model has two adjustable parameters g and λ which
can be chosen to fit various baryon properties, such as masses,
charge radii, and magnetic moments. Once the solutions to the
above equations are obtained, one can calculate these physical
quantities pertaining to the three-quark system, which have
been measured experimentally.

This is unlike the Friedberg-Lee model [15] and its
descendant models [17], where the confinement of quarks is
approximated through their interaction with the phenomeno-
logical scalar field σ which is introduced to describe the
complicated nonperturbative features of the QCD vacuum. In
many of these models, at large radius r the σ field assumes
its vacuum value σv , but at small r the σ field has a value
close to the second minimum of the potential near zero. This
means that, in the physical vacuum state, the quark mass is
more than 1 GeV which makes it energetically unfavorable
for the quark to exist freely, so that the effective heavy quarks
have to be confined in hadron bags. Similar to the MIT bag
model, one needs to introduce the bag constant to make the

FIG. 2. (Color online) The quark fields in relative units and the σ ,
π fields scaled with fπ as functions of the radius r for the parameters
mσ = 472 MeV and g = 4.5.

baryon state stable. However, for the chiral soliton model,
the interaction between the meson fields and the quarks is
essential for the formation of a stable soliton; the state could
be bound only when the total energy of system is lower than the
energy of three free constituent quarks in the system. Hence
the coupling constant g or Mq is the significant parameter in
the present model. In Fig. 1 it is numerically shown that the
critical value of the coupling constant for mσ = 472 MeV
is gc = 4.24; below that there is no stable bound state of
quarks.

Here, after taking the set of parameters mσ = 472 MeV
and g = 4.5, we plot the σ , π , and quark fields profiles
in arbitrary units as functions of radius r in Fig. 2 and
calculate the properties of the nucleon, such as E = 1170 MeV,
R = 0.877 fm, μp = 0.319 e fm, and gA/gV = 1.24. For
comparison we adopt experimental values for the proton
as follows [27]: E = (Mp + M�)/2 = 1085 MeV, Rp =
0.877 fm, μp = 0.294 e fm, and gA/gV = 1.25. Therefore
it is proven that this set of parameters can describe the
properties of the nucleon at zero temperature in a reasonable
way.

III. MEAN-FIELD APPROXIMATION

A convenient framework of studying phase transitions is
the thermal field theory. Within this framework, the finite-
temperature effective potential is an important and useful the-
oretical tool. In this section, in order to investigate the
temperature and the chemical potential dependence of the
chiral soliton, let us consider a spatially uniform system in
thermodynamical equilibrium at temperature T and quark
chemical potential μ. In general, the grand partition function
reads

Z = Tr exp[−(Ĥ − μN̂ )/T ]

=
∫ ∏

a

Dσ Dπa

∫
Dψ Dψ̄ exp

[∫
x

(L + μψ̄γ 0ψ)

]
,

(19)

035201-3



HONG MAO, TIANZHEN WEI, AND JINSHUANG JIN PHYSICAL REVIEW C 88, 035201 (2013)

where
∫
x

≡ i
∫ 1/T

0 dt
∫
V

d3x, V is the volume of the system,
and μ = μB/3 for the homogeneous background field.

We evaluate the partition function in the mean-field ap-
proximation similar to the work of [26]. Thus we replace the
meson fields by their expectation values in the action. In other
words, we neglect both quantum and thermal fluctuations of
the meson fields. The quarks and antiquarks are retained as
quantum fields. The integration over the fermions yields a
determinant which can be calculated by standard methods [28].
This generates an effective potential for the mesons. Finally,
we obtain the thermodynamical potential density as

�(T ,μ) = −T lnZ
V

= U (σ, �π ) + �ψ̄ψ, (20)

with the quarks and antiquarks contribution

�ψ̄ψ = −νqT

∫
d3 �p

(2π )3
{ln[1 + e−(Eq−μ)/T ]

+ ln[1 + e−(Eq+μ)/T ]}. (21)

Here, νq = 2Nf Nc = 12 and Eq =
√

�p2 + M2
q is the valence

quark and antiquark energy for u and d quarks, and the
minus sign is the consequence of Fermi-Dirac statistics. The
constituent quark (antiquark) mass Mq is defined as

M2
q = g2(σ 2 + �π2) = g2σ 2

v , (22)

where σv ≡ √
σ 2 + �π2 is a temperature and density-dependent

chiral parameter, which is introduced to characterize the
chiral symmetry breaking during the QCD phase transition.
Traditionally, σ and �π fields in the above equation are
independent of space and time. In the physical vacuum, the
expectation value of the pion field is set to zero, �π = 0, and
thus M2

q = g2σ 2 = g2σ 2
v . Then the value of σv and thereby

the quark mass in thermal background are determined by
minimizing the thermodynamical potential in Eq. (20) with
respect to these spacetime-independent meson fields σ and π
in the physical vacuum. Through such a standard procedure, we
can generate a uniform constituent quark thermal medium with
a universal dynamical-generated mass Mq where the soliton is
going to be inserted.

On the chiral soliton background, however, the above well
developed formula in mean-field approximation cannot be
directly applied yet, since in the calculation of this effective
potential the plane-wave valence quark states have been used,
whereas, in fact, the bounded quarks should be confined in
the finite-size solitonic configuration. In consequence, the
thermodynamical potential obtained in Eq. (20) is independent
of the space and does not contain any information about the
soliton solution. Thus, the thermodynamical potential should
be appropriately modified beforehand in order to allow the
effect of thermal background with temperature T and density
μ to be included in the set of equations of motion under some
proper requirements.

As mentioned in the above discussion, as long as the
coupling constant g is large enough, the minimum energy
in a vacuum occurs for chiral fields restricted to the chiral
circle in the physical vacuum. Such a constraint can be
generalized to a more general case in the presence of the

temperature and density by just replacing the fπ in Eq. (3)
with a chiral parameter σv in the physical vacuum. By defining
ϕ(r) ≡

√
σ 2(r) + �π2(r), the general constraint is

ϕ(r) =
√

σ 2(r) + �π2(r) → σv for r → ∞. (23)

From this new constraint, the constraint in vacuum can be
naturally recovered as σv = fπ for T = μ = 0. Moreover,
similar to the results shown in Fig. 2, the ϕ(r) can be taken as a
constant σv for large r . Only when r is around the soliton radius
R does the ϕ(r) start to slightly deviate from this constant.
For a good approximation, we can assume the valence quark
(antiquark) almost possesses with the same constituent mass in
the whole space. This makes our discussions more reasonable
than previous studies in the Friedberg-Lee model in vacuum
or in thermal medium [19], where the free quark carries the
current mass inside the soliton bag, whereas outside the soliton
bag the confined quark has an unphysical large mass.

Equipped with the new constraint in Eq. (23), the modified
thermodynamical potential �′(T ,μ) can be constructed by
assuming a physical picture in which the valence quarks
bearing a hedgehog configuration in the presence of the
temperature and density are simulated by these valence quarks
facing the modified meson fields in thermal medium [20].
Thus, the �′(T ,μ) can be characterized as

�′(T ,μ) = U (σ, �π ) − νqT

∫
d3 �p

(2π )3
{ln[1 + e−(E′

q−μ)/T ]

+ ln[1 + e−(E′
q+μ)/T ]}, (24)

with E′
q =

√
�p2 + M ′2

q and M ′2
q = g2ϕ2(r) = g2(σ 2(r) +

�π2(r)). Furthermore, if we approximately treat a hot and
dense thermal medium as a uniform constituent quark medium
with solitons embedded in it, a new set of coupled equations
of motion for the chiral soliton could be derived by simply
replacing the relevant classical potential U (σ, �π ) with the
appropriately modified thermal effective potential �′(T ,μ).
Accordingly, a set of coupled equations for mesons can be
described as [18,29,30]

d2σ (r)

dr2
+ 2

r

dσ (r)

dr
− ∂�′

∂σ
= Ng(u2(r) − v2(r)),

(25)

d2π (r)

dr2
+ 2

r

dπ (r)

dr
− 2π (r)

r2
− ∂�′

∂π
= −2Ngu(r)v(r),

(26)

where
∂�′

∂σ
= λ(σ 2(r) + π2(r) − ϑ2) σ (r) − H + gρs(r), (27)

∂�′

∂π
= λ(σ 2(r) + π2(r) − ϑ2) π (r) + gρps(r). (28)

The scalar and pseudoscalar densities of valence quarks and
antiquarks can be expressed as

ρs(r) = gσ (r)νq

∫
d3 �p

(2π )3

1

E′
q

×
[

1

1 + e(E′
q−μ)/T

+ 1

1 + e(E′
q+μ)/T

]
, (29)
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ρps(r) = gπ (r)νq

∫
d3 �p

(2π )3

1

E′
q

×
[

1

1 + e(E′
q−μ)/T

+ 1

1 + e(E′
q+μ)/T

]
. (30)

From Eqs. (25) and (26), for large r , if we require σ (r)
to asymptotically approach the expectation value σv in the
physical vacuum while setting other fields to zero, we
can rediscover the well known gap equations presented in
Ref. [26], which should stand for the boundary conditions
in the physical vacuum. In contrast, for a small r , now that
the chiral fields need not necessarily be restricted to the
chiral circle as the situation in physical vacuum, the bounded
constituent quarks could develop various dynamical-generated
masses at different radii. By combining the equations of motion
for the quarks, (11) and (12), we will finally obtain a set of
coupled Euler-Lagrange equations of motion in the presence
of the temperature and density for the chiral soliton. Moreover,
these equations are automatically satisfied by the requirement
that the physical vacuum state must be realized when r is
infinite.

Now for μ = 0, the set of Eqs. (11), (12), (25), and (26) with
the normalization condition equation (15) can be solved for
the soliton fields as functions of radius at finite temperature T
under some appropriate boundary conditions, and the solutions
of these coupled equations determine the behavior of the chiral
order parameter σv as a function of T . Therefore, the properties
of a soliton embedded in a thermal medium can be investigated
with given temperature T .

However, the situation becomes more complicated when
we consider the soliton embedded in a thermal medium with
finite chemical potential μ. In such a case, besides the bounded
constituent quarks bearing the solitonic configurations, the
unbound constituent quarks treated as the homogeneous
background thermal fields with T and μ will bring an
additional contribution to the total baryon density as long
as they are allowed to penetrate into the soliton by the
requirement of the equations of motion of the soliton.
Since these constituent quarks are unbounded and have a
uniform constituent quark masses Mq , by using the standard
thermodynamic relationship, the net baryon density of this
additional contribution is given by

ρm
B = −1

3

∂�

∂μ
= νq

3

∫
d3 �p

(2π )3

×
[

1

1 + e(Eq−μ)/T
− 1

1 + e(Eq+μ)/T

]
. (31)

Here, the ρm
B also represents a homogeneous medium density

with respect to the unique chemical potential μ. As a result, the
soliton baryon density is split into valence and medium parts,

ρB =
∑
nocc

φn(r)†φn(r) + ρm
B . (32)

In order to ensure the solitonic baryon number is exactly 1,
the normalization condition Eq. (15) should be modified as

4π

∫
r2(u2(r) + v2(r)) dr = 1 − Bm, (33)

with Bm = 4π
∫
V

ρm
B r2dr and V being the volume of the

soliton. At last, the properties of a soliton embedded in a
thermal medium can be investigated in cases of both zero
and finite chemical potential by solving the set of Eqs. (11),
(12), (25), and (26). Moreover, from Eq. (33) we can naturally
recover the result in vacuum or μ = 0 but finite T . This method
is somewhat similar to the method presented in Ref. [23]
by introducing a different chemical potential for the soliton,
since the effects of the first term in Eq. (32) can be totally
absorbed to the second term by redefining the chemical
potential μs = μ + δμ. But this leads to some difficulties if
the different chemical potential μs is included. For example,
if we take μs as a homogeneous chemical potential in space, a
finite fraction of the baryon number is homogeneously spread
outside the soliton, and such a soliton is spatially unlimited.
In contrast, if we take μs as a space-dependent chemical
potential, the standard way to derive the thermodynamical
potential presented above is going to break down. Therefore,
in this work, we prefer to choose the scheme by fixing the
baryon number of the soliton to 1 through the modification of
the normalization condition equation.

IV. NUCLEON STATIC PROPERTIES AT FINITE
TEMPERATURE AND DENSITY

In order to gain the chiral soliton solutions and study
nucleon static properties at finite temperature and density, the
appropriate boundary conditions for the equations of motion in
thermal medium need to be defined. As in the case of vacuum,
the σ and π are taken to be time-independent, classical
c-number fields; also we require they can only differ from their
expectation values in the neighborhood of the quark sources.
Therefore, in the absence of the quark source term for large r ,
Eqs. (25) and (26) reduce to the gap equations [31]

λ(σ 2(r) + π2(r) − ϑ2) σ (r) − H + gρs(r) = 0, (34)

λ(σ 2(r) + π2(r) − ϑ2) π (r) + gρps(r) = 0, (35)

with spontaneously broken symmetry, σ (r) = σv , and π (r) =
0. After self-consistently solving these gap equations (34)
and (35) with the constituent quark (antiquark) mass Mq in
Eq. (22), we can get the value of the chiral order parameter σv

for certain T and μ, to which the thermodynamical potential
�(T ,μ) has an absolute minimum. Now for the hedgehog
baryon we can safely define the boundary conditions for the
coupled nonlinear equations of motion above as

v(0) = 0,
dσ (0)

dr
= 0, π (0) = 0, (36)

u(∞) = 0, σ (∞) = σv, π (∞) = 0. (37)

These boundary conditions are indeed satisfied by the require-
ment of finite energy of the system; this in turn allow us to
define the mass of the nucleon (the total energy of the system)
in thermal medium properly.

In sequence, according to the boundary conditions Eqs. (36)
and (37), the set of equations of motion has been solved
self-consistently by following the procedure as follows. For a
given value of temperature T and density μ, the gap equations
(34) and (35) can be numerically solved to obtain a constant
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FIG. 3. (Color online) (a) The quark fields in relative unit and the σ , π fields scaled with fπ as function of the radius r at μ = 0 MeV,
where the solid curves are for T = 0 MeV, the dashed curves are for T = 100 MeV and the dash-dotted curves are for T = 116 MeV. (b) The
quark fields in relative unit and the σ , π fields scaled with fπ as function of the radius r at μ = 200 MeV, where the solid curves are for T = 0
MeV, the dashed curves are for T = 70 MeV and the dash-dotted curves are for T = 80 MeV. The parameters are taken as mσ = 472 MeV
and g = 4.5

chiral order parameter σv which acts as the asymptotic value
for σ or a mass of the constituent quarks Mq . According to
this particularly homogeneous solution σv , the above coupled
differential equations (11), (12), (25), and (26) can be solved
by the same method used in vacuum but with the normalization
condition Eq. (33). After that we get the σ , π , u, and v field
configurations as a function of distance radius r for certain T
and μ. In the end, by using these solutions, modifications of
nucleon properties in thermal medium and the thermodynam-
ics of the system could be examined and investigated in detail.

We first investigate soliton solutions at finite temperature
and density. In Fig. 3, we plot the u(r), v(r), u(r), and v(r)
fields at zero and finite chemical potential (μ = 200 MeV) for
different temperatures. It is shown that all the fields are moving
towards to the trivial values with increasing temperature. When
T is lager than some critical temperature Tc, there exist only
the trivial solutions for the coupled equations of motion, and
solitons are melted away. Furthermore, these trivial solutions
indicate the restoration of chiral symmetry in full space.
The lack of solitonic solutions are taken as a signal for the
delocalization of the baryonic phase. Sometimes, it is tempting
to identify this with deconfinement, but such a conclusion
seems to be out of the scope of the model itself, since the
linear sigma model only incorporates chiral symmetry, and
according to the present model picture the nucleon is treated
as bound state rather than the absolute confinement object.

Base on the above analysis, as T is lower than Tc, there
really exists the baryonic phase, but the stability of this phase
should be checked carefully by comparing the total energy of
the system in thermal medium with the energy of three free
constituent quarks. By subtracting the homogeneous medium
contribution [23], the total energy of the system, E∗, is given
by the sum of the energy of the valence quarks and the kinetic
energies of σ and π :

E∗ = Nε + 4π

∫
r2

[
1

2

(
dσ

dr

)2

+ 1

2

(
dπ

dr

)2]
dr. (38)

Here, since we take the σv as a constant for all r , the
meson interaction energy is discarded. This energy E∗ can
be considered as an effective mass of the nucleon in thermal
medium.

In Fig. 4, the total energy of system E∗ is plotted as a
function of the temperature for μ = 0 and 200 MeV. One
can see that the total energy E∗ monotonically decreases with
increasing temperature T from zero to higher values. As the
temperature approaches the critical temperature Tc, E∗ starts to
deviate from the ones in vacuum significantly; when T > Tc,
E∗ jumps to zero quickly, which indicates the delocalization
phase transition from nucleon matter to quark matter. The
energy of three free constituent quark, 3Mq (or σv), shows
behavior similar to E∗. The critical temperatures are 116 and

FIG. 4. (Color online) The total energy of system, E∗, and the
energy of three free constituent quarks, 3Mq , as function of the
temperature T for the parameters mσ = 472 MeV and g = 4.5. Here
one set is for μ = 0 MeV, another set is for μ = 200 MeV, and
the meson interaction energy is not included both in vacuum and in
thermal medium.
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FIG. 5. (Color online) The proton charge r.m.s. radius of a stable
chiral soliton as a function of temperature T at μ = 0 and 200 MeV
for the parameters mσ = 472 MeV and g = 4.5. The solid curve is
for μ = 0 MeV while the dash-dotted curve is for μ = 200 MeV.

80 MeV for μ = 0 and 200 MeV, respectively. These results
are very close to previous studies in the Friedberg-Lee model
[19,32,33] or the improved quark mass density-dependent
model (IQMDD) [18], where a first-order phase transition
is predicted and the critical temperature at zero chemical
potential is around 100 MeV. As discussed in Ref. [26],
the critical temperature and the order of phase transition are
strongly dependent on the coupling constant g. If g gets
smaller, then Tc for the chiral phase transition will increase;
at some critical value of g the order of chiral phase transition
would change from first order to crossover. The qualitative
behaviors of the soliton energy and the constituent quark mass
changing with the temperature and density are also found in
Refs. [20,23,24], where they have used the NJL model instead
of the LSM to study chiral solitons [34,35]. In contrast, our
results are different from the work of Abu-Shady and Mansour.
By using a different scheme they have obtained the nucleon
mass monotonically increasing with temperature, reaching a
very large value, then slightly decreasing when they took the
critical temperature to be around 161 MeV. This different result
arises from the different treatment of the homogeneous thermal
medium contribution; in the present discussion, it is subtracted
in order to study the stability of the single soliton by comparing
with the energy of the three free constituent quarks. However,
this contribution should be included if we want to investigate
the overall thermodynamics properties of the soliton system,
i.e., the internal energy, the entropy, and free energy as in
Ref. [24].

Comparing the two energies in Fig. 4, we can show
that for T < Tc the nucleon bound state is stable and
3Eq is larger than E∗, but the difference decreases with
increasing temperature, and the two energies start to cross
over at the critical temperature Tc. After Tc, because chiral
symmetry is restored, there is no soliton solution anymore.
Hence it is concluded that a chiral phase transition together
with a delocalization phase transition from hadron matter

to quark matter is going to take place at same critical
temperature.

The proton charge r.m.s. radii R of a stable chiral soliton
as a function of temperature for μ = 0 and 200 MeV are
illustrated in Fig. 5. It gives a signal of a swelling of the
nucleon when temperature and density increase. In both
cases, at low temperature R increases slightly with increasing
temperature; as T approaches Tc, R will sharply grow and
disappear. Another interesting result displayed in Fig. 5 is
that the maximal radii R at various densities are almost same
when T is near Tc; this hints that solitons get to overlap
each other with similar expansion rates at Tc for different
densities.

V. HADRON-QUARK PHASE TRANSITIONS

In a previous section we obtained the effective nucleon
mass at finite temperature and density; for convenience, we set
MN = E∗ in the following discussions. In this section we will
simply discuss how to calculate the thermodynamical variables
of the system from hadron phase to quark phase in the chiral
soliton model.

The hadron and quark phases can be distinguished by
empirical facts and phenomena at low energy. At low tem-
perature and low baryon density, the hadronic phase exhibits a
dynamical breaking of chiral symmetry and the confinement,
and the baryon and meson act as the active degrees of freedom
here. However, at very high temperature or baryon density,
quarks and gluons will be set free to play the dominant roles
in QGP. Based on the chiral soliton model, in the hadron
phase the free quarks are not the ground state of strongly
interacting matter, whereas three valence quarks will form
the bound state of the nucleon; so in the hadron phase we
only have baryons and mesons. In contrast, when T > Tc

the solitons are going to dissolve, and the hadronic phase
will eventually evolve to the quark phase. In the mean
time, when incorporated with the Polyakov loop, the model
can be used to describe thermodynamic properties of QGP
satisfactorily [36–38].

Since there is no nucleon in the quark phase, all information
of the system is contained in the grand canonical potential
which is given by � in Eq. (20) with the restoration of chiral
symmetry, and the pressure of system is directly given by
PQP = −�min(T ,μ). However, in the hadronic phase, the sit-
uation becomes a little complicated because the system should
be considered as a collection of nuclear matter (solitons)
interacting through the self-consistent exchange of σ , ω, and
ρ mesons. Moreover, in the spirit of the relativistic mean-field
(RMF) theory [39] or the quark meson coupling (QMC)
model [40,41], one can investigate the medium modifications
of nucleon properties in nuclear matter and finite nuclei
extensively [42–44]. This is out of the scope of our topic
and left for future study. In the following, we merely give an
idealistic analysis on this topic by taking the hadronic phase as
a noninteracting hadron gas composed of nucleons and π , σ
mesons with the effective masses MN , Mπ , and Mσ in thermal
medium. Under this scenario, it is straightforward to write
down the pressure of the system in terms of nucleons and
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mesons for the hadronic phase [2,28]:

PHP = νNT

∫
d3 �p

(2π )3
{ln[1 + e−(EN −μB )/T ]

+ ln[1 + e−(EN +μB )/T ]}
− νπT

∫
d3 �p

(2π )3
{ln[1 − e−Eπ /T ]}

− νσ T

∫
d3 �p

(2π )3
{ln[1 − e−Eσ /T ]} − B∗(MN ), (39)

where νN = 4 for the nucleon, νπ = 3 for the pion, and νσ = 1
for the sigma meson. The last term B∗(MN ) is introduced
in order to recover the thermodynamical consistency of the
system, since the nucleons are treated as chiral solitons with
temperature-dependent masses [45]. The explicit expression
of this term can be evaluated by the additional constraint
(∂PHP /∂MN )T = 0, which gives

B∗(MN (T )) = B∗(MN (0)) − νN

∫ T

0
dT ′ dMN (T ′)

dT ′ MN (T ′)

×
∫

d3 �p
(2π )3

1

E′
N

[
1

e(E′
N −μB )/T ′ + 1

+ 1

e(E′
N +μB )/T ′ + 1

]
, (40)

with E′
N =

√
�p2 + MN (T ′)2.

The energies in Eq. (39), EN =
√

�p2 + MN (T )2, Eπ =√
�p2 + Mπ (T )2, and Eσ =

√
�p2 + Mσ (T )2 correspond to

nucleon, pion, and sigma mesons, respectively. MN is obtained
as the energy of the soliton, whereas the σ and π masses are
determined by the curvature of �(T ,μ) in Eq. (20) at the
global minimum:

M2
σ = ∂2�

∂σ 2
, M2

π = ∂2�

∂π2
. (41)

The sigma and pion masses for various T and μ are shown
in Fig. 6. From this figure, the sigma mass first decreases

FIG. 6. (Color online) The sigma mass (solid line) and pion mass
(dash-dotted line) as a function of temperature for μ = 0 MeV (right
pair) and for μ = 200 MeV (left pair).

FIG. 7. (Color online) The pressures as a function of temperature
for different chemical potentials. The solid curve is for μB = 0 MeV
while the dash-dotted curve is for μB = 600 MeV.

smoothly and then rebounds and grows again at high temper-
ature. The pion mass does not change much at temperatures
below Tc but then increases rapidly, approaching the sigma
mass and signaling the restoration of chiral symmetry. At
high temperature, the masses grow linearly with increasing
temperature. The sudden jump in Fig. 6 shows there is a
first-order phase transition.

With the hadron masses for various temperature and
densities, in Fig. 7 we plot the pressures as a function of the
temperature from hadron phase to quark phase at μB = 0 and
600 MeV. From the figure, all curves show rapidly changed
discontinuities at the critical temperature from hadron matter
to quark matter. This indicates a first-order phase transition
for both the chiral phase transition and the delocalization
transition, and signals a drastic structural changes in the
system. Besides this discovery, we can find that the PHP ’s
in the hadronic phase are quite small when compared with
those of the quark phase, especially for the case of higher
baryon densities. The results can be reflected by the qualitative
behaviors of the hadron masses changing with temperature
at various chemical potentials. From Fig. 4, it is shown
that the effective nucleon mass MN slightly deviates from
its vacuum value with increasing temperature, only at the
critical temperature Tc, MN experiences a sharp jump to
zero. Consequently, the contribution of nucleons to the total
pressure in Eq. (39) is very small in the hadron phase as
long as the chemical potential is small: As an estimate, it
only gives a 5.2% contribution to PHP when T is around
Tc ≈ 116 MeV and μB is zero. However, with the increase
of the chemical potential μB , the contribution of nucleons to
the total pressure PHP will become more and more important.
The legend can be explained by following two major facts.
One is that, from Eq. (39), the absolute values of the first and
second terms in Eq. (39) will be enhanced if we increase
the chemical potential, as will the absolute values of the
pressures contributed from nucleons. The other is that, from
Fig. 6, since the minimum masses of the sigma meson become
larger and larger as μB increases, the absolute values of the
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pressure contributed from mesons will decrease accordingly.
For illustration, the calculated ratio of the pressure contributed
from nucleons to the total rises up to 29.4% when μB = 600 as
T is around Tc ≈ 80 MeV, though, in the mean time, the total
pressure is less than that of the zero chemical potential case.
The situation in the case of baryons can also be applied for the
last term B∗(MN ) in Eq. (39). For zero and very small chemical
potential μB , the contribution of B∗(MN ) to the total pressure
PHP only occupied a small part of the total pressure; e.g., at
temperatures around Tc for μB = 0, the calculated ratio of the
pressure contributed from B∗(MN ) to the total pressure is only
about 3.6% as B∗(MN ) = 0.27 MeV/fm3. But with the increae
of the chemical potential μB , B∗(MN ) would give a dominant
contribution to the total pressure PHP . For example, when the
temperature is around Tc ≈ 80 MeV for μB = 600 MeV, the
calculated ratio of the pressure contributed from B∗(MN ) to
the total pressure is up to 43.5% as B∗(MN ) = 1.70 MeV/fm3.

As a whole, the numerically calculated pressures found by
treating the hadronic phase as a noninteracting hadron gas in
the hadronic phase are very different from that of the RMF
theory at finite temperature and density [46,47], where the
interactions between hadrons can further reduce the effective
masses of nucleons in the medium to less than half of their
values in free space. In order to confront the results in RMF
theory in the hadron phase, the model needs to be improved
accordingly by including the interactions of nucleons and
mesons with medium-modified coupling constants at the
hadron level [41,48], or more practically by considering the
possible overlap of nucleons. We believe that these effects will
modify the pressures contributed from nucleons and B∗(MN )
dramatically. In the present work, however, we simply take
this as a shortcoming of the simple model in the description of
nuclear matter.

VI. SUMMARY AND DISCUSSION

We have studied the modification of nucleon properties
due to the restoration of chiral symmetry at finite temperature
and density within the linear sigma model with two flavors.
The nucleon appears as a chiral soliton in the model, which
is embedded in a thermal medium of constituent quarks with
self-consistently determined effective mass. The chiral soliton
solutions are solved in the mean-field approximation with the
restriction to hedgehog configurations. The T and μ dependent
energy of the single soliton is obtained. The only two free
parameters g and mσ are fixed in order to describe the prop-
erties of the nucleon in vacuum successfully. The stabilities
of the soliton solutions are analyzed in thermal medium by

comparing the effective mass of the nucleon with the energy
of three free constituent quarks. Our results show that the
chiral phase transition and the delocalization phase transition
from nucleon matter to quark matter take place simultaneously.
For T < Tc, the free constituent quarks are not the ground
state of strongly interacting matter; the quarks will develop
to form lower-energy bound states carrying the hedgehog
configuration. However, as soon as the temperature T crosses
over Tc, such bound states cannot live anymore, and the system
experiences a first-order hadron-quark phase transition to the
chirally symmetric phase.

In this work, we predict Tc is about 116 MeV for μ =
0 MeV, but 80 MeV for μ = 200 MeV. It is much lower than
the lattice predictions in the range of 150–200 MeV. These
relatively lower critical temperatures are due to the choice of
a relatively larger coupling constant g which has the functions
of making the soliton stable as well as best fitting the proton
charge r.m.s. radius to 0.877 fm within the empirical parameter
space of mσ . To overcome this flaw, we can introduce the gluon
interaction in the model at the quark level; for example, the
Polyakov-loop extension of the model [36]. For a rough and
qualitative estimate, assuming the Polyakov loop variable �(r)
and its Hermitian conjugate �̄(r) approach their expectation
values as r → ∞, we can solve the coupled equations of
motion again to get the updated behaviors of σv as a function
T and μ. By taking the Polyakov loop potential in Ref. [36]
with T0 = 190 MeV, the critical temperature at zero chemical
potential now would be about 160 MeV; it is then quite rational
to confront the constraint of the lattice data.

It has turned out that the description of the hadron phase
as a noninteracting hadron gas of nucleons and mesons with
medium-modified masses has underestimated the important
effects of their interactions at hadron level, and these inter-
actions should be introduced to further reduce the effective
masses of nucleons in nuclear matter significantly. Otherwise,
such a simple model cannot be used to describe the properties
of nuclear matter and finite nuclei. Therefore, it is of interest to
improve this model to make it suitable for the complete study
of the hadron-quark phase transition in the whole region. All
these works are in progress.
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