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Volume fluctuations and higher-order cumulants of the net baryon number
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We consider the effect of volume fluctuations on cumulants of the net baryon number. Based on a general
formalism, we derive universal expressions for the net baryon number cumulants in the presence of volume
fluctuations with an arbitrary probability distribution. The relevance of these fluctuations for the baryon-number
cumulants and in particular for the ratios of cumulants is assessed in the Polyakov loop extended quark-meson
model within the functional renormalization group. We show that the baryon number cumulants are generally
enhanced by volume fluctuations and that the critical behavior of higher-order cumulants may be modified

significantly.
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I. INTRODUCTION

One of the goals of the experiments with ultrarelativistic
heavy ion collisions at Super Proton Synchrotron (SPS),
Relativistic Heavy Ion Collider (RHIC), and Large Hadron
Collider (LHC) energies is to probe the phase structure of
strongly interacting matter and, in particular, to identify the
deconfinement and chiral symmetry restoration transitions. In
this context, the fluctuations of conserved charges may serve
as a pertinent probe.

Fluctuations of the net baryon number and electric charge
may provide an experimental signature for the hypothetical
chiral critical endpoint [1,2]. Moreover, as recently noted
[3-11], such fluctuations are also of interest at small baryon
densities, since they reflect the critical dynamics of the
underlying O(4) transition, expected in QCD in the limit of
massless light quarks [12,13]. Indeed, it was demonstrated that
higher-order cumulants change sign in the crossover region of
the QCD phase diagram [2,8,9]. Thus, the observation of a
strong suppression the higher-order cumulants may be used to
identify the chiral crossover transition in experiments.

The first measurements of fluctuations of the net baryon
number, more precisely of the net proton number, ' in heavy ion
collisions at RHIC were obtained by the STAR Collaboration
[15]. The analysis of cumulants of the fluctuations and of the
probability distributions confirmed that the hadron resonance
gas (HRG) model, which yields a quantitative description of
particle yields in heavy ion collisions [16], provides a useful
reference for the noncritical background contribution to the
charge fluctuations [4]. Thus, critical fluctuations related to
the dynamics of the chiral transition should be reflected in
deviations of the measured net charge fluctuations from the
HRG baseline. In this context, higher-order cumulants are of
particular interest [8,10].
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' As shown recently in Ref. [14], the net nucleon number cumulants
can, to a good approximation, be deduced from the measured net
proton cumulants.
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A detailed analysis of experimental data on moments of net
proton number fluctuations and their probability distributions
indeed exhibit deviations from the HRG. To verify the origin
of these deviations, one must identify and assess effects,
unrelated to the critical dynamics, which can influence the
charge fluctuations. For instance, it was recently argued that
constraints, owing to the conservation of the total baryon
number in nucleus-nucleus collisions [17] or experimental
acceptances in terms of kinematic variables [18], might
modify the noncritical background contributions to higher-
order cumulants of the net proton number fluctuations.

In this paper we study volume fluctuations as a further
possible source of noncritical fluctuations, not accounted for
in the HRG model results. We first present a transparent
derivation of the cumulants of net baryon number, including
the effect of volume fluctuations. The resulting cumulants are
expressed in terms of cumulants of the net baryon number
distribution at fixed volume and cumulants of the probability
distribution for volume fluctuations.

We also provide a more formal derivation, making use of the
cumulant generating functions. We stress that the final expres-
sions are general, independent of the probability distributions
for net baryon number and volume. The only assumption made
is that the two sources of fluctuations are independent and that
fluctuations of other thermodynamic parameters are negligible.
This assumption is most likely justified for high-/energy heavy
ion collisions, where the baryon chemical potential is close
to zero. There, the thermalization? results in a freeze-out
temperature independent of the initial conditions, while the
volume fluctuations are determined by the collision geometry.
At lower energies, fluctuations of the initial temperature and
chemical potential may take the system to different freeze-out
points, along the freeze-out curve. Therefore, at lower energies,
the fluctuations of temperature, chemical potential, and volume
are presumably correlated. Additional complications arise if
the system passes close to a possible critical endpoint. In

2Thermalization is supported by the success of hydrodynamic and
statistical models.
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this case, owing to the large correlation length, the volume
fluctuations in the final state may be correlated with other
thermodynamic variables.

With the limitations discussed above, we focus on the
effect of volume fluctuations on the fluctuations of the net
baryon number in the vicinity of the chiral crossover transition
at vanishing chemical potential. We employ the functional
renormalization group within the Polyakov loop extended
quark-meson model, to properly account for the critical
properties near the chiral phase transition.

The paper is organized as follows: In the next section
we obtain the corrections due to volume fluctuations to the
first four moments of the net baryon number fluctuations.
In Sec. III we derive a general expression for the corrected
cumulants, valid to any order, obtained using the cumulant
generating functions. In Sec. IV we illustrate the role of volume
fluctuations with a numerical study, and finally in Sec. V we
state our conclusions.

II. HEURISTIC APPROACH

Consider a fixed volume V, where the net baryon number B
fluctuates with the probability distribution P(B, V). The nth
order moments of the net baryon number are then defined by

(B")y = > B"P(B.V). (1)

B=—o0

It is convenient to introduce reduced cumulants, corresponding
to the net baryon number fluctuations per unit volume. The first
four reduced cumulants are

1 1

(T, p) = (Blv, T p = V((53)2>v,
1

i3(T, 1) = 7((53)3>V, )
1

iea(T, o) = V[<(SB>4>V —-3(6B)y].

where 8B = B — B and B = (B)y. The cumulants «; are, to
leading order, independent of the volume V. In the following
we neglect subleading surface effects, which could lead to a
residual volume dependence of the cumulants.

The volume dependence of the moments follows from (2)
and reads

(B)y =1V, (BY)y =1V +«iV?,
(B’)y = k3V + 3k V2 + &7 V7, 3)
(BY)v = k4V + (dksk1 + 363) V> + 6ok V2 + i V.

The coefficients in Eq. (3) are those of the Bell polynomials.

As an illustrative example, we consider the hadron res-
onance gas. In this model, the net baryon number fluctu-
ations are given by the Skellam distribution [5,6] and the
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SO = S =B, O =SB B, @
Vv Vv

where B; = (B,) is the mean number of baryons and B_; =
(B_1) that of antibaryons in V. The corresponding moments
are obtained by inserting the cumulants (4) in (3).

‘We now allow for fluctuations of the volume. To this end,
we introduce the volume probability distribution P(V), the
corresponding moments

(vm :/V”P(V)dV, 5)

and the reduced cumulants of the volume fluctuations, v,,. The
latter are defined as in Eq. (2) with the replacements V. — (V)
and B — V. Thus,e.g.,v; = land v, = ((V?) — (V)?2)/(V).

In the presence of volume fluctuations the moments of the
net baryon number are given by

(B") =/dVP(V) > B"P(B.V)

B=—00
_ /dV P(V)(B")y. ©)

It is now straightforward to compute the reduced cumulants,
including the effect of volume fluctuations. Using Egs. (2),
(3), and (6), we find the general relations

2
C1 =K1, Cy=Ky+K{Vy,

3 = k3 + 3Kk 03 + K303, (7

C4 = k4 + (4/(3/(1 + 3/{22)1)2 + 6K2K12v3 + Kfv4,

which are valid for arbitrary probability distributions, provided
the fluctuations in baryon number and volume are independent.
We note that the form of (7) is determined by the volume
dependence of the moments (3). Hence, the coefficients in (7)
are also given by the Bell polynomials.

III. GENERAL DERIVATION

In the previous section, we explored the effect of volume
fluctuations on the fluctuations of the net baryon number for the
first few cumulants, where explicit calculations are tractable. In
the following we derive a general expression for the cumulants,
under the assumption that the fluctuations of baryon number
and volume are independent.

A. Formalism

In general, the probability distributions introduced in
Sec. II are characterized by the corresponding cumulant

3The normalization of the generalized susceptibilities given in [6]
differs from the cumulants used here by a factor 7.
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generating functions*

x®(t)=1In )" P(B)exp(B1), (8)
B=—00

xV(s) = 1n/oodv7>(V)exp(Vs). )
0

The cumulants are obtained by expanding x2 and x" in
a series about the origin. The additivity of cumulants and
thermodynamic principles imply that

X0 =vete, (10)

where ¢ % is a volume-independent function. In fact, 8 is
the generating function for the reduced cumulants, defined in

Egs. (2):
dl'l

B
0]

an

Kn

t=0

Similarly, we find for the reduced cumulants of volume
fluctuations
1 d

_ Vv
U=y dsn S (s)

12)

s=0

Our aim is to compute cumulants of the net baryon number
including the effects of volume fluctuations. These cumulants
are obtained from the cumulant generating function

dB(t) = ln/dV P(V)Z P(B, V)eb". (13)
B

Using Eq. (10) we find
Y P(B. V)P = eV, (14)
B

and consequently

() = 1n/dV7>(V)eV“(’>. (15)

A comparison with the definition of the cumulant generat-
ing function (9), yields

o® ) = x"1¢2 @) (16)

This is the general form of the cumulant generating function
for fluctuations of the net baryon number, including the effect
of volume fluctuations. The corresponding reduced cumulants
are given by a Taylor expansion of ¢2(¢) about r = 0,

_ L4 Bt (17
=y am? o

“We assume that the integrals in (8) and (9) converge for ¢ and
s in an interval around the origin, so that the cumulant generating
functions exist [19].

3The additivity of cumulants is valid only when there are no long
range correlations in a system. This is the case near the chiral
crossover transtion; however, it is not applicable in the vicinity of
a possible critical point.
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We note that since ¢ #(t = 0) = 0, no further normalization is
needed in the calculation of the cumulants.

Using Faa di Bruno’s formula [20], we obtain a closed form
expression for the cumulants,

n
Cn =Y Up Builkr, K2, o Knig1), (18)
i=1

where B, ; are Bell polynomials. This equation confirms and
extends our previous results for the first four cuamulants, given
in Eq. (7). Thus, for an arbitrary probability distribution for the
fluctuations of net baryon number as well as for the fluctuations
of the volume, Eq. (18) yields cumulants that can be confronted
with experiment. Conversely, given a model for the volume
fluctuations, Eq. (18) can be used to extract cumulants of the
net baryon number in a fixed volume.

B. Vanishing chemical potential and symmetric
volume fluctuations

In the particular case of vanishing chemical potential, all
odd cumulants of net baryon number fluctuations vanish,
kon+1 = 0. For the sake of simplicity, we also assume that
the fluctuations of the volume are symmetric, i.e., vy, = 0
for n > 1. In this case the first three nonvanishing cumulants
are given by

¢ = K2, (19)
¢S = Ky + 3132, (20)
cg = ke + 15k2K40;. 20

Thus, the cumulants ¢} for n <8 depend only on the
second-order cumulant of the volume fluctuations, v,. In other
words, these cumulants are independent of the details of the
probability distribution.

In the next section we use the above form to explore the
effect of volume fluctuations on the cumulants of net baryon
number.

IV. NUMERICAL RESULTS IN THE PQM MODEL

We illustrate the influence of volume fluctuations on net
baryon number fluctuations, within a model calculation. Of
particular interest is the modification of higher order moments
near the chiral crossover transition. We adopt the Polyakov
loop extended quark-meson model (PQM) and compute
the cumulants in a nonperturbative scheme, the functional
renormalisation group. Details on the calculations and on the
derivation of the net baryon number fluctuations can be found
in Ref. [9]. In this exploratory calculation, we consider only the
case of symmetric volume fluctuations and vanishing baryon
chemical potential.

In Ref. [8] it was shown that near the chiral crossover
transition, higher cumulants of the net baryon number (n > 4)
differ considerably from the predictions of the HRG model. In
particular, it was suggested that negative values of ¢ and
kg could be used to map out the chiral phase boundary.
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FIG. 1. (Color online) The ratios R4, and Rg, [defined in
Eqgs. (24) and (25)] compared to x4/x, and xe/x> [see Eq. (23)]
as functions of temperature, computed in the PQM model at
vanishing chemical potential. The probability distribution for volume
fluctuations is assumed to be symmetric, with the variance v, TP3C =1;
see the text for details.

This potential signal for the QCD phase transition may be
affected by volume fluctuations. Indeed, the second term in
Eq. (21) yields a positive contribution to cg. The strength of this
contribution is directly proportional to the second cumulant v,
of volume fluctuations and may thus change the sign of cg.

To proceed with the calculations in the PQM model, we
relate the cumulants «,, to the generalized susceptibilities yx,,
defined by

a(p/T* ,,
L= I -
up/TY T
It is useful to consider the ratios of cumulants,
Cn
Rmm = (23)
Cm

since many uncertainties cancel between the numerator and
denominator. Using (20) and (21) we thus find

Rir =X 430,730, 24)
X2

Re» = % 15 T3vs. 25)
2

Figure 1 shows the effect of volume fluctuations on the
R4, and Rg, ratios, obtained in the PQM model at fixed
T3v, = 1. The contribution of the volume fluctuations to both
ratios are positive, and grows with temperature. This effect is
also illustrated in Fig. 2, where the ratios R, ,, at the crossover
transition temperature are shown as functions of v, Tp3c.

The above results indicate that volume fluctuations tend
to suppress the signature of the chiral transition in the
cumulants of net baryon number. Here, the ratio Re, seems
to be particularly sensitive. Consequently, the usefulness of
fluctuations of conserved charges as a probe of criticality in
heavy ion collisions, depends crucially on the possibility to
control volume fluctuations.

In general, volume fluctuations are difficult to assess. In
heavy ion collisions they depend on the centrality of the
collision, on the definition used to fix the number of partici-
pants, and on the kinematic window, where the fluctuations are
measured. Thus, v, is specific to a given experimental setup.
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FIG. 2. (Color online) The ratios, Rs» and Rg, at the chiral
crossover temperature 7, obtained in the PQM model, as functions
of the dimensionless variance of the volume fluctuations, v, Tp3c.

In order to explore the dependence of v, on the collision
geometry, we performed a Glauber—Monte Carlo simulation,
using the standard parameters for Au-Au collisions [21].
We assume that the volume is proportional to number of
participants Ny, times a volume factor Vo, which we fix to be
equal to the volume of the proton, V, = 2.83 fm>. We compute
the fluctuations in Np, for a fixed number of charged particles
N¢h. A similar procedure is adopted by the STAR Collaboration
in their data analysis Ref. [15]. Since we adopted a small
value for Vj, we expect that the resulting estimate of v, is
effectively a lower limit. In Fig. 3, we show the dependence
of v, on the number of charged particles, N.,. We find that the
reduced variance, v, is approximately constant except for very
central collisions, where the volume fluctuations are strongly
suppressed.

To assess the expected centrality dependence of the baryon
number fluctuations, we use the Glauber result for v, and
assume that the freeze-out temperature Tj, = Tp,c and that it
depends only weakly on centrality. The resulting ratios R4 >
and Rg > are shown in Fig. 4 as functions of Ncy and (Npar).

Recently, preliminary data on R4, and Rg,, obtained by
the STAR Collaboration, were reported in Refs. [22,23]. It
is found that both ratios are essentially independent of the
number of participants in collisions ranging from (Npa) = 2
to 350. As shown in Fig. 4, our model also yields a weak
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FIG. 3. The reduced variance of the volume fluctuations, v,, as a
function of the number of charged particles, N.
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FIG. 4. (Color online) Ratios of cumulants, R4, and Rg,, as
functions of the number of charges particles in Au-Au collisions,
based on the PQM model (see text for details). The freeze-out
temperature is assumed to be equal to Tj..

dependence of R4, and Rs, on the number of participants,
except for very central collisions where volume fluctuations
are suppressed. We stress, however, that this schematic model
is not expected to yield a quantitative description of the
experimental data.

V. CONCLUSIONS

We have studied the influence of volume fluctuations on the
properties of cumulants of net charge distributions in heavy ion
collisions. In particular, we have computed the contribution of
volume fluctuations to ratios of net-baryon-number cumulants.
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In a heuristic approach we showed explicitly how the
corrections due to volume fluctuations arise. The resulting
expressions, which hold for arbitrary probability distributions,
were confirmed and extended in a general formalism, where
we employed cumulant generating functions to obtain a
closed form for the cumulants, including the effect of volume
fluctuations.

We assessed the effect of volume fluctuations on the kurtosis
R4 as well as on ratios involving higher-order cumulants,
viz., R¢ 2, in the Polyakov loop extended quark-meson model.
A non-perturbative treatment of fluctuations was obtained by
employing the functional renormalization group. We focused
on the structure of ratios of cumulants near the chiral crossover
transition, assuming that the probability distribution of volume
fluctuations is approximately symmetric.

Finally, we showed that phenomenologically relevant ratios
of cumulants of the net baryon number are enhanced by volume
fluctuations. Consequently, the structure of these ratios, may
be significantly modified by volume fluctuations. Therefore,
we conclude that fluctuations of conserved charges in heavy
ion collisions can provide robust probes of the chiral phase
boundary if a good control of volume fluctuations can be
achieved.
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