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Likelihood ratio tests are performed for the hypothesis that charged particle multiplicities measured in Au-
Au and Cu-Cu collisions at

√
sNN = 62.4 and 200 GeV are distributed according to the negative binomial

form. Results suggest that the hypothesis should be rejected in all classes of collision systems and centralities
of Pioneering High-Energy Nuclear Interaction Experiment Relativistic Heavy Ion Collider measurements.
However, the application of the least-squares test statistic with systematic errors included shows that for the
collision system Au-Au at

√
sNN = 62.4 GeV the hypothesis could not be rejected in general.

DOI: 10.1103/PhysRevC.88.034910 PACS number(s): 25.75.Ag, 13.85.Hd, 25.75.Gz, 29.85.Fj

I. INTRODUCTION

The analysis of charged hadron multiplicities in Au-Au and
Cu-Cu collisions at

√
sNN = 62.4 and 200 GeV was done by

the Pioneering High-Energy Nuclear Interaction Experiment
(PHENIX) Collaboration in [1]. It was also claimed there
that these multiplicities are distributed according to the
negative binomial form. The UA5 Collaboration noticed for
the first time that charged particle multiplicity distributions
measured in high-energy proton-(anti)proton collisions in
limited intervals of pseudorapidity have this form [2,3].

The negative binomial distribution (NBD) is defined as

P (n; p, k) = k(k + 1)(k + 2) . . . (k + n − 1)

n!
(1 − p)npk,

(1)

where n = 0, 1, 2, . . . , 0 � p � 1, and k is a positive real
number. In the application to high-energy physics n has the
meaning of the number of charged particles detected in an
event. The expected value n̄ and variance1V (n) are expressed
as

n̄ = k(1 − p)

p
, V (n) = k(1 − p)

p2
. (2)

Multiplicity fluctuations are expressed in terms of the scaled
variance:

ω =
〈
N2

ch

〉 − 〈Nch〉2

〈Nch〉 = V (n)

n̄
, (3)

where Nch is the charged particle multiplicity and the last
equality is valid only for the whole population (the set of all
possible outcomes if the experiment is repeated infinitely many
times), assuming that the hypothesis about the NBD is true.

In application to the high-energy physics, the parameters
k, n̄ instead of k, p are used usually and

1

p
= 1 + n̄

k
= ω, (4)

which is the scaled variance, Eq. (3). But because the centrality
bins have the nonzero width, fluctuations defined by Eq. (3)

1Here, these quantities are distinguished from the experimen-
tally measured average charged particle multiplicity 〈Nch〉 and the
variance σ 2.

also include a nondynamical component. This component is
the result of the fluctuations of the geometry of the collisions
within a given centrality bin. The geometrical fluctuations
were evaluated by the PHENIX Collaboration in [1]. It turned
out that those fluctuations can be expressed by a correction
factor, fgeo, which is independent of centrality but varies
with the collision type. Then the pure scaled variance now
representing only dynamical fluctuations, i.e., after subtraction
of the geometrical component, can be calculated from the
following equation [1]:

ωdyn − 1 = fgeo(ω − 1). (5)

Also, parameter k changes to kdyn accordingly:

k−1
dyn = fgeok

−1. (6)

In this analysis the hypothesis that the charged particle
multiplicities measured in ultrarelativistic heavy-ion collisions
are distributed according to the NBD is verified with the use of
the maximum likelihood method (ML) and the likelihood ratio
test. More details of this approach can be found in Refs. [4–6].

There are two crucial reasons for this approach:

(i) The fitted quantity is a probability distribution function
(PDF), so the most natural way is to use the ML method,
where the likelihood function is constructed directly from
the tested PDF. In fact, what is fitted are parameters of the
distribution. The fitted values are the estimators of these
parameters. It is well known in mathematical statistics that
an ML estimator is consistent, asymptotically unbiased, and
efficient [4,5,7], but even more important is that because of
Wilks’s theorem (see Appendix C) one can easily define
a statistic, the distribution of which converges to a χ2

distribution as the number of measurements goes to infinity.
Thus for the large sample the goodness of fit can be
expressed as a P value computed with the corresponding
χ2 distribution.

(ii) The most commonly used method, the least-squares (LS)
method (called also the χ2 minimization), has the disad-
vantage of providing only the qualitative measure of the
significance of the fit, in general. Only if observables are
represented by Gaussian random variables with known vari-
ances, the conclusion about the goodness of fit equivalent to
that mentioned in point (i) can be derived (see Appendix B).
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TABLE I. Results of fitting multiplicity distributions measured by the PHENIX Collaboration in Au-Au collisions at
√

sNN = 200 GeV,
fgeo = 0.37 ± 0.027 [1]. Fitting ranges are limited to the bins with ni > 5, where ni is the number of events in the ith bin.

χ 2
λ/nd

Centrality N k̂ ˆ̄n 1/k̂dyn ωdyn χ 2
λ P value χ 2

PHEN/nd P value
(%) (nd ) (%) χ 2

PHEN (%)

0–5 653 145 270.0 61.85 1.37 × 10−3 1.08 23.73 0 0.98 0
±2.5 ±0.01 ±0.10 × 10−3 ±0.01 1756.0 72.36

(74)

5–10 657 944 163.4 53.91 2.26 × 10−3 1.12 9.12 0 0.69 0
±1.2 ±0.01 ±0.17 × 10−3 ±0.01 592.7 44.95

(65)

10–15 658 739 112.5 46.50 3.29 × 10−3 1.15 11.5 0 0.66 0
±0.7 ±0.01 ±0.24 × 10−3 ±0.01 795.5 45.43

(69)

15–20 659 607 85.1 39.72 4.35 × 10−3 1.17 8.9 0 0.52 0
±0.5 ±0.01 ±0.32 × 10−3 ±0.01 585.8 34.20

(66)

20–25 658 785 67.6 33.56 5.48 × 10−3 1.18 13.5 0 0.46 0
±0.4 ±0.01 ±0.40 × 10−3 ±0.01 848.8 29.01

(63)

25–30 659 632 56.7 28.01 6.52 × 10−3 1.18 10.9 0 0.37 0
±0.3 ±0.01 ±0.48 × 10−3 ±0.01 640.6 22.10

(59)

30–35 659 303 47.4 23.02 7.81 × 10−3 1.18 7.9 0 0.31 0
±0.3 ±0.01 ±0.57 × 10−3 ±0.01 429.9 16.72

(54)

35–40 661 174 40.5 18.64 9.13 × 10−3 1.17 8.5 0 0.37 0
±0.2 ±0.01 ±0.67 × 10−3 ±0.01 389.7 17.21

(46)

40–45 661 599 34.0 14.84 1.09 × 10−2 1.16 7.3 0 0.35 0
±0.2 ±0.01 ±0.80 × 10−3 ±0.01 301.0 14.34

(41)

45–50 661 765 27.3 11.57 1.35 × 10−2 1.16 10.5 0 0.92 0
±0.2 ±0.005 ±0.99 × 10−3 ±0.01 390.2 34.19

(37)

50–55 662 114 21.3 8.82 1.74 × 10−2 1.15 38.8 0 12.06 0
±0.1 ±0.004 ±0.13 × 10−2 ±0.01 1436.4 446.2

(37)

It is worth noting that the ML method with binned data
and Poisson fluctuations within a bin was already applied to
fitting multiplicity distributions to the NBD but at much lower
energies (E-802 Collaboration [8]).

II. LIKELIHOOD RATIO TEST

The number of charged particles Nch is assumed to be a
random variable with the PDF given by Eq. (1). Each event is
treated as an independent observation of Nch and a set of a given
class of events is a sample. For N events in the class there are
N measurements of Nch, for example, X = {X1, X2, . . . , XN }.
Some of these measurements can be equal; i.e., Xi = Xj

for i �= j can happen. The whole population consists of all

possible events with the measurements of 0, 1, 2, . . . charged
particles and by definition is infinite.2

Let us divide the sample into m bins characterized by
Yi—the number of measured charged particles3—and ni—the
number of entries in the ith bin, N = ∑m

i=1 ni (details of
the theoretical framework of this section can be found in
Refs. [4–6]). Then the expectation value of the number of
events in the ith bin can be written as

νi(νtot, p, k) = νtotP (Yi ; p, k), (7)

2Precisely, because of the energy conservation the number of
produced charged particles is limited but the number of collisions
is not.

3Now Yi �= Yj for i �= j and i, j = 1, 2, . . . , m.
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where νtot is the expected number of all events in the sample,
νtot = ∑m

i=1 νi . This is because one can treat the number of
events in the sample N also as a random variable with its own
distribution—a Poisson one. Generally, the whole histogram
can be treated as one measurement of m-dimensional random
vector n = (n1, . . . , nm) which has a multinomial distribution,
so the joint PDF for the measurement of N and n can be
converted to the form [4,6]

f (n; ν1, . . . , νm) =
m∏

i=1

ν
ni

i

ni!
exp (−νi). (8)

Since now f (n; ν1, . . . , νm) is the PDF for one measurement,
f is also the likelihood function:

L(n|ν1, . . . , νm) = f (n; ν1, . . . , νm). (9)

With the use of Eq. (7) the corresponding likelihood function
can be written as

L(n|νtot, p, k) = L(n|ν1(νtot, p, k), . . . , νm(νtot, p, k)). (10)

Then the likelihood ratio is defined as

λ = L(n|ν̂tot, p̂, k̂)

L(n|ν̆1, . . . , ν̆m)
= L(n|ν̂tot, p̂, k̂)

L(n|n1, . . . , nm)
, (11)

where ν̂tot, p̂, and k̂ are the ML estimates of νtot, p, and
k, respectively, with the likelihood function given by Eq.
(10); and ν̆i = ni , i = 1, 2, . . . m are the ML estimates of νi

treated as free parameters. Note that since the denominator
in Eq. (11) does not depend on parameters the log ratio

TABLE II. Results of fitting multiplicity distributions measured by the PHENIX Collaboration in Au-Au collisions at
√

sNN = 200 GeV,
fgeo = 0.37 ± 0.027 [1]. Fitting ranges are limited to the bins with ni > 60, where ni is the number of events in the ith bin.

χ 2
λ/nd

Centrality N k̂ ˆ̄n 1/k̂dyn ωdyn χ 2
λ P value χ 2

PHEN/nd P value
(%) (nd ) (%) χ 2

PHEN (%)

0–5 652 579 289.0 61.86 1.28 × 10−3 1.08 20.0 0 0.57 0
±2.9 ±0.01 ±0.94 × 10−4 ±0.01 1160.2 32.86

(58)

5–10 657 571 168.1 53.91 2.20 × 10−3 1.12 20.56 0 0.61 0
±1.2 ±0.01 ±0.16 × 10−3 ±0.01 1151.6 34.41

(56)

10–15 658 258 116.4 46.50 3.18 × 10−3 1.15 18.4 0 0.53 0
±0.7 ±0.01 ±0.23 × 10−3 ±0.01 991.7 28.81

(54)

15–20 659 302 86.9 39.72 4.26 × 10−3 1.17 12.6 0 0.43 0
±0.5 ±0.01 ±0.31 × 10−3 ±0.01 667.5 22.97

(53)

20–25 658 461 69.1 33.56 5.36 × 10−3 1.18 12.3 0 0.34 0
±0.4 ±0.01 ±0.39 × 10−3 ±0.01 604.7 16.46

(49)

25–30 659 337 57.9 28.0 6.39 × 10−3 1.18 10.4 0 0.28 6.7×10−8

±0.3 ±0.01 ±0.47 × 10−3 ±0.01 469.1 12.80
(45)

30–35 659 021 48.3 23.02 7.66 × 10−3 1.18 8.6 0 0.16 0.76
±0.3 ±0.01 ±0.56 × 10−3 ±0.01 351.02 6.62

(41)

35–40 660 937 41.3 18.64 8.96 × 10−3 1.17 7.6 0 0.19 0.12
±0.2 ±0.01 ±0.66 × 10−3 ±0.01 280.3 6.85

(37)

40–45 661 422 34.6 14.84 1.07 × 10−2 1.16 7.9 0 0.21 0.015
±0.2 ±0.01 ±0.78 × 10−3 ±0.01 260.3 7.06

(33)

45–50 661 577 27.9 11.56 1.33 × 10−2 1.15 10.0 0 0.23 0.011
±0.2 ±0.005 ±0.97 × 10−3 ±0.01 279.9 6.44

(28)

50–55 661 877 21.9 8.81 1.69 × 10−2 1.15 40.0 0 0.30 7.8 × 10−5

±0.1 ±0.004 ±0.12 × 10−2 ±0.01 959.2 7.29
(24)
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defined as

ln λ(νtot, p, k) = ln
L(n|νtot, p, k)

L(n|n1, . . . , nm)

= −
m∑

i=1

(
ni ln

ni

νi

+ νi − ni

)

= −νtot + N −
m∑

i=1

ni ln
ni

νi

, (12)

where νi are expressed by Eq. (7), can be used to find the ML
estimates of νtot, p, and k. The values ν̂tot, p̂, and k̂ for which
λ(νtot, p, k) has its maximum are the maximum likelihood
estimates of parameters νtot, p, and k. Then one can define the
test statistic called “likelihood χ2” [6]:

χ2
λ = −2 ln λ(νtot, p, k) = 2

m∑
i=1

(
νi − ni + ni ln

ni

νi

)
.

(13)

Note that the maximum of ln λ is the minimum of χ2
λ , so the

estimates from the condition of the minimum of χ2
λ are the ML

estimates. Further, the statistic given by

χ2
λ,min = −2 ln λ(ν̂tot, p̂, k̂) = 2

m∑
i=1

(
ni ln

ni

ν̂i

+ ν̂i − ni

)

(14)

approaches a χ2 distribution asymptotically, i.e., as the number
of measurements, here the number of events N , goes to infinity
(the consequence of the Wilks’s theorem, see Appendix C).
The values ν̂i are the estimates of νi given by

ν̂i = ν̂totP (Yi ; p̂, k̂), (15)

and if one assumes that νtot does not depend on p and k then
ν̂tot = N . For such a case

m∑
i=1

ν̂i =
m∑

i=1

ni, (16)

TABLE III. Results of fitting multiplicity distributions measured by the PHENIX Collaboration in Au-Au collisions at
√

sNN = 62.4 GeV,
fgeo = 0.33 ± 0.031 [1]. Fitting ranges are limited to the bins with ni > 5, where ni is the number of events in the ith bin.

χ 2
λ/nd

Centrality N k̂ ˆ̄n 1/k̂dyn ωdyn χ 2
λ P value χ 2

PHEN/nd P value
(%) (nd ) (%) χ 2

PHEN (%)

0–5 607 155 225.2 44.67 1.47 × 10−3 1.07 2.37 1.7 × 10−8 0.18 0.015
±2.5 ±0.01 ±0.14 × 10−3 ±0.01 139.6 10.65

(59)

5–10 752 392 142.3 37.96 2.32 × 10−3 1.09 2.44 1.9 × 10−8 0.11 29.3
±1.1 ±0.01 ±0.22 × 10−3 ±0.01 131.9 5.91

(54)

10–15 752 837 115.2 31.53 2.87 × 10−3 1.09 2.06 1.1 × 10−5 0.13 6.0
±0.9 ±0.01 ±0.27 × 10−3 ±0.01 107.1 6.88

(52)

15–20 752 553 88.0 26.07 3.75 × 10−3 1.10 1.86 3.2 × 10−4 0.13 9.9
±0.6 ±0.01 ±0.35 × 10−3 ±0.01 87.3 5.98

(47)

20–25 752 296 68.5 21.35 4.82 × 10−3 1.10 2.63 3.1 × 10−8 0.21 2.7 × 10−3

±0.5 ±0.01 ±0.45 × 10−3 ±0.01 113.2 9.10
(43)

25–30 752 183 53.2 17.30 6.21 × 10−3 1.11 2.75 2.7 × 10−8 0.23 1.2 × 10−3

±0.4 ±0.01 ±0.59 × 10−3 ±0.01 107.3 8.81
(39)

30–35 751 375 40.1 13.84 8.22 × 10−3 1.11 2.97 9.6 × 10−9 0.25 3.0 × 10−4

±0.3 ±0.005 ±0.77 × 10−3 ±0.01 103.9 8.65
(35)

35–40 751 661 31.7 10.89 1.04 × 10−2 1.11 6.72 0 0.16 2.7
±0.2 ±0.004 ±0.98 × 10−3 ±0.01 194.9 4.54

(29)

40–45 750 884 25.1 8.42 1.31 × 10−2 1.11 37.5 0 40.36 0
±0.2 ±0.004 ±0.12 × 10−2 ±0.01 937.4 1009.1

(25)

45–50 751 421 21.8 6.41 1.51 × 10−2 1.10 209.0 0 285.9 0
±0.2 ±0.003 ±0.14 × 10−2 ±0.01 4806.8 6576.7

(23)
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and Eq. (14) becomes

χ2
λ,min(p̂, k̂) = 2

m∑
i=1

ni ln
ni

ν̂i

. (17)

Also, then one can write νtot = N and Eq. (12) can be rewritten
as

ln λ(p, k) = N ln N −
m∑

i=1

ni ln ni +
m∑

i=1

ni ln P (Yi ; p, k)

= −
m∑

i=1

ni ln
ni

N
+ N

m∑
i=1

ni

N
ln P (Yi ; p, k)

= −N

m∑
i=1

P ex
i ln P ex

i + N

m∑
i=1

P ex
i ln P (Yi ; p, k),

(18)

where P ex
i = ni/N . Thus, with the help of Eqs. (14) and (18)

one arrives at

χ2
λ,min = 2 N

m∑
i=1

P ex
i ln

P ex
i

P (Yi ; p̂, k̂)
. (19)

It can be proven that one of the necessary conditions for the
existence of the maximum is (see Appendix A for details)

n̄ = 〈Nch〉, (20)

i.e., the distribution average has to be equal to the experimental
average. This is very good because 〈Nch〉 is what is called in
statistics a sample mean. The sample mean is an estimator
for the expectation value of the random variable, which is
consistent and unbiased [4]. In other words the ML estimator
of n̄ is 〈Nch〉 ( ˆ̄n = 〈Nch〉).

TABLE IV. Results of fitting multiplicity distributions measured by the PHENIX Collaboration in Au-Au collisions at
√

sNN = 62.4 GeV,
fgeo = 0.33 ± 0.031 [1]. Fitting ranges are limited to the bins with ni > 40, where ni is the number of events in the ith bin.

χ 2
λ/nd

Centrality N k̂ ˆ̄n 1/k̂dyn ωdyn χ 2
λ P value χ 2

PHEN/nd P value
(%) (nd ) (%) χ 2

PHEN (%)

0–5 607 075 227.9 44.67 1.45 × 10−3 1.06 5.55 0 0.19 5.6 × 10−3

±2.5 ±0.01 ±0.14 × 10−3 ±0.01 294.3 10.2
(53)

5–10 752 263 143.9 37.96 2.29 × 10−3 1.09 7.80 0 0.12 14.4
±1.1 ±0.01 ±0.22 × 10−3 ±0.01 382.4 5.95

(49)

10–15 752 739 116.2 31.53 2.84 × 10−3 1.09 5.67 0 0.13 7.0
±0.9 ±0.01 ±0.27 × 10−3 ±0.01 260.8 6.08

(46)

15–20 752 492 88.5 26.07 3.73 × 10−3 1.10 5.97 0 0.11 30.9
±0.6 ±0.01 ±0.35 × 10−3 ±0.01 250.9 4.60

(42)

20–25 752 182 69.2 21.35 4.77 × 10−3 1.10 10.2 0 0.22 2.4 × 10−3

±0.5 ±0.01 ±0.45 × 10−3 ±0.01 377.2 8.27
(37)

25–30 752 095 53.6 17.30 6.16 × 10−3 1.11 8.2 0 0.23 1.8 × 10−3

±0.4 ±0.01 ±0.58 × 10−3 ±0.01 279.2 7.92
(34)

30–35 751 324 40.3 13.84 8.19 × 10−3 1.11 7.40 0 0.26 4.3 × 10−4

±0.3 ±0.005 ±0.77 × 10−3 ±0.01 229.3 7.92
(31)

35–40 751 639 31.8 10.89 1.04 × 10−2 1.11 9.43 0 0.15 3.5
±0.2 ±0.004 ±0.98 × 10−3 ±0.01 254.7 4.17

(27)

40–45 750 852 25.2 8.42 1.31 × 10−2 1.11 50.7 0 0.22 0.062
±0.2 ±0.004 ±0.12 × 10−2 ±0.01 1166.3 5.13

(23)

45–50 751 348 22.0 6.41 1.50 × 10−2 1.10 259.8 0 343.1 0
±0.2 ±0.003 ±0.14 × 10−2 ±0.01 4936.4 6519.1

(19)
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TABLE V. Results of fitting multiplicity distributions measured by the PHENIX Collaboration in Cu-Cu collisions at
√

sNN = 200 GeV,
fgeo = 0.40 ± 0.047 [1]. Fitting ranges are limited to the bins with ni > 5, where ni is the number of events in the ith bin.

χ 2
λ/nd

Centrality N k̂ ˆ̄n 1/k̂dyn ωdyn χ 2
λ P value χ 2

PHEN/nd P value
(%) (nd ) (%) χ 2

PHEN (%)

0–5 368 510 59.6 19.80 6.72 × 10−3 1.13 94.8 0 2.1 0
±0.6 ±0.01 ±0.79 × 10−3 ±0.02 3887.0 87.1

(41)

5–10 369 206 49.6 16.74 8.06 × 10−3 1.13 16.5 0 0.66 0
±0.5 ±0.01 ±0.95 × 10−3 ±0.02 628.5 25.3

(38)

10–15 369 945 41.5 14.05 9.64 × 10−3 1.14 6.8 0 0.38 0
±0.4 ±0.01 ±0.11 × 10−2 ±0.02 225.5 12.6

(33)

15–20 370 066 34.5 11.78 1.16 × 10−2 1.14 3.0 5.8 × 10−8 0.24 1.5 × 10−3

±0.3 ±0.01 ±0.14 × 10−2 ±0.02 92.0 7.53
(31)

20–25 371 877 29.2 9.81 1.37 × 10−2 1.13 6.6 0 3.4 0
±0.3 ±0.01 ±0.16 × 10−2 ±0.02 186.0 93.9

(28)

25–30 368 876 24.9 8.14 1.60 × 10−2 1.13 19.3 0 11.5 0
±0.2 ±0.01 ±0.19 × 10−2 ±0.02 502.4 298.9

(26)

30–35 368 072 21.9 6.72 1.83 × 10−2 1.12 65.6 0 42.3 0
±0.2 ±0.005 ±0.22 × 10−2 ±0.01 1704.8 1098.5

(26)

TABLE VI. Results of fitting multiplicity distributions measured by the PHENIX Collaboration in Cu-Cu collisions at
√

sNN = 200 GeV,
fgeo = 0.40 ± 0.047 [1]. Fitting ranges are limited to the bins with ni > 80, where ni is the number of events in the ith bin.

χ 2
λ/nd

Centrality N k̂ ˆ̄n 1/k̂dyn ωdyn χ 2
λ P value χ 2

PHEN/nd P value
(%) (nd ) (%) χ 2

PHEN (%)

0–5 368 271 61.5 19.79 6.50 × 10−3 1.13 122.2 0 2.3 0
±0.6 ±0.01 ±0.77 × 10−3 ±0.02 4398.3 82.7

(36)

5–10 368 869 52.0 16.74 7.69 × 10−3 1.13 20.5 0 0.39 0
±0.5 ±0.01 ±0.91 × 10−3 ±0.02 613.9 11.7

(30)

10–15 369 825 42.3 14.05 9.46 × 10−3 1.13 16.2 0 0.43 0
±0.4 ±0.01 ±0.11 × 10−2 ±0.02 470.9 12.6

(29)

15–20 369 964 35.1 11.77 1.14 × 10−2 1.13 11.4 0 0.24 5.4 × 10−3

±0.3 ±0.01 ±0.13 × 10−2 ±0.02 296.8 6.36
(26)

20–25 371 752 29.8 9.80 1.34 × 10−2 1.13 16.1 0 0.20 0.38
±0.3 ±0.01 ±0.16 × 10−2 ±0.02 370.4 4.51

(23)

25–30 368 708 25.6 8.14 1.56 × 10−2 1.13 42.7 0 0.21 0.23
±0.3 ±0.01 ±0.18 × 10−2 ±0.01 853.2 4.27

(20)

30–35 367 869 22.6 6.72 1.77 × 10−2 1.12 126.4 0 0.62 0
±0.2 ±0.005 ±0.21 × 10−2 ±0.01 2274.4 11.1

(18)
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TABLE VII. Results of fitting multiplicity distributions measured by the PHENIX Collaboration in Cu-Cu collisions at
√

sNN = 62.4 GeV,
fgeo = 0.32 ± 0.063 [1]. Fitting ranges are limited to the bins with ni > 5, where ni is the number of events in the ith bin.

χ 2
λ/nd

Centrality N k̂ ˆ̄n 1/k̂dyn ωdyn χ 2
λ P value χ 2

PHEN/nd P value
(%) (nd ) (%) χ 2

PHEN (%)

0–5 298 182 41.6 13.35 7.69 × 10−3 1.10 9.3 0 0.65 0
±0.4 ±0.01 ±0.15 × 10−2 ±0.02 279.9 19.4

(30)

5–10 307 150 26.5 11.67 1.21 × 10−2 1.14 9.7 0 0.78 0
±0.2 ±0.01 ±0.24 × 10−2 ±0.03 290.7 23.3

(30)

10–15 309 874 20.5 9.90 1.56 × 10−2 1.15 9.3 0 4.4 0
±0.2 ±0.01 ±0.31 × 10−2 ±0.03 261.1 122.5

(28)

15–20 312 530 17.8 8.27 1.80 × 10−2 1.15 26.0 0 31.6 0
±0.1 ±0.01 ±0.36 × 10−2 ±0.03 677.1 821.7

(26)

20–25 312 884 16.0 6.89 1.99 × 10−2 1.14 75.8 0 80.9 0
±0.1 ±0.01 ±0.39 × 10−2 ±0.03 1744.0 1861.4

(23)

III. RESULTS AND DISCUSSION

The method described in Sec. II requires that all bins in a
given data set have widths equal to 1, so that the experimental
probability P ex

i to measure a signal in the ith bin was equivalent
to the probability of the measurement of (i − 1) charged
particles if the first bin is the bin of zero charged particles
detected. This is fulfilled for all bins of the considered data
sets.

Since the test statistic χ2
λ,min has a χ2 distribution approxi-

mately in the large sample limit, it can be used as a test of the

goodness of fit. The result of the test is given by the so-called
P value, which is the probability of obtaining the value of
the statistic, Eq. (14), equal to or greater than the value just
obtained for the present data set, when repeating the whole
experiment many times (see Appendix B):

P = P
(
χ2 � χ2

λ,min; nd

) =
∫ ∞

χ2
λ,min

f (z; nd )dz, (21)

where f (z; nd ) is the χ2 PDF and nd is the number of degrees
of freedom, nd = m − 2 here.

TABLE VIII. Results of fitting multiplicity distributions measured by the PHENIX Collaboration in Cu-Cu collisions at
√

sNN = 62.4 GeV,
fgeo = 0.32 ± 0.063 [1]. Fitting ranges are limited to the bins with ni > 60, where ni is the number of events in the ith bin.

χ 2
λ/nd

Centrality N k̂ ˆ̄n 1/k̂dyn ωdyn χ 2
λ P value χ 2

PHEN/nd P value
(%) (nd ) (%) χ 2

PHEN (%)

0–5 298 131 42.0 13.35 7.62 × 10−3 1.10 14.7 0 0.67 0
±0.5 ±0.01 ±0.15 × 10−2 ±0.02 411.9 18.9

(28)

5–10 307 061 26.8 11.66 1.19 × 10−2 1.14 19.7 0 0.86 0
±0.2 ±0.01 ±0.24 × 10−2 ±0.03 512.5 22.5

(26)

10–15 309 798 20.7 9.90 1.54 × 10−2 1.15 19.4 0 0.38 1.1 × 10−7

±0.2 ±0.01 ±0.30 × 10−2 ±0.03 465.5 9.08
(24)

15–20 312 434 18.0 8.27 1.78 × 10−2 1.15 46.5 0 0.40 1.9 × 10−7

±0.1 ±0.01 ±0.35 × 10−2 ±0.03 976.4 8.37
(21)

20–25 312 758 16.3 6.89 1.96 × 10−2 1.14 118.1 0 0.63 0
±0.1 ±0.01 ±0.39 × 10−2 ±0.03 2243.4 12.05

(19)
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FIG. 1. Uncorrected multiplicity distributions of charged hadrons for 200-GeV Au-Au collisions [1] within ranges limited to the bins with
ni > 5. The lines are fits to the NBD. The data are scaled by the amounts in the legend. Errors represent the statistical and systematic errors
added in quadrature.

The results of the analysis are presented in Tables I–VIII
and illustrated with Figs. 1–6. In fact, the whole analysis was
done for the two kinds of histograms: (i) bins with the number
of entries ni � 5 excluded (Tables I, III, V, and VII) and (ii)
bins with the number of entries ni � 40 (Table IV), ni � 60
(Tables II and VIII), or ni � 80 (Table VI) excluded. In
practice this corresponds to cutting off (i) less or (ii) more
the tails of the full measured histograms. The tails break the
visual agreement between the data and the NBD (cf. Figs. 1
and 2). The condition that only bins with ni > 5 are taken into
account is the minimal condition imposed on a histogram to
do any statistical inference without Monte Carlo simulations
[4]. Condition (ii) corresponds roughly to the choice made
originally by the PHENIX Collaboration in their analysis [1].
It has turned out that the results of this analysis are qualitatively
the same for both choices.

As one can see, the hypothesis in question should be
rejected in all considered cases, but it was claimed that charged
particle multiplicities measured in Au-Au and Cu-Cu colli-
sions at

√
sNN = 62.4 and 200 GeV are distributed according

to the NBD [1]. However, that conclusion was the result of
the application of the LS method. Therefore, it seems to be
reasonable to check what are the values of the LS test statistic
at the ML estimators listed in the third and fourth columns
of Tables I–VIII. For the sample described in Sec. II one can
define the LS test statistic (commonly called the χ2 function) as

χ2
LS(n; n̄, k) =

m∑
i=1

(ni − νi(n̄, k))2

err2
ni

=
m∑

i=1

(
P ex

i − P (Yi ; n̄, k)
)2

err2
i

, (22)

FIG. 2. Uncorrected multiplicity distributions of charged hadrons for 200-GeV Au-Au collisions [1] within ranges limited to the bins with
ni > 60. The lines are fits to the NBD. The data are scaled by the amounts in the legend. Errors represent the statistical and systematic errors
added in quadrature.
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FIG. 3. Uncorrected multiplicity distributions of charged hadrons for 62.4-GeV Au-Au collisions [1] within ranges limited to the bins with
ni > 5. The lines are fits to the NBD. The data are scaled by the amounts in the legend. Errors represent the statistical and systematic errors
added in quadrature.

where νi(n̄, k) is given by Eq. (7) with νtot = N and errni

(erri = errni
/N ) is the uncertainty on ni (P ex

i , respectively).
Note that for err2

ni
= νi the above equation is Pearson’s χ2

test statistic, whereas for err2
ni

= ni this is Neyman’s χ2 test
statistic (also called the modified chi-square or modified least-
squares method), both well known in mathematical statistics
[4–6,10]. The advantage of the use of these statistics is that
both follow a χ2 distribution asymptotically. The errors given
by

√
νi or

√
ni are interpreted as theoretical or experimental

statistical errors, respectively (for the discussion of the pros
and cons of both see [4,9]). It should be stressed that when errni

includes also a systematic error (e.g., by adding in quadrature
to a statistical one) then the statement about the asymptotic
form of the distribution of the test statistic is no longer valid.

In the present analysis χ2
LS function, Eq. (22), is not

minimized with respect to n̄ and k (or p and k) as in the LS
method but is calculated at ML estimates of n̄ and k. Generally,
this is allowed in statistics and is equivalent to test a single point

in the parameter space. Then the tested point might not be the
best estimate of the true value but the hypothesis in question
becomes the hypothesis only about a particular distribution (a
simple hypothesis). At first sight, χ2

LS/nd values of the ninth
column of Tables I–VIII seem to be significant for almost all
centrality classes, which agrees with the results of Ref. [1], but
this contradicts the results of the likelihood ratio test, which
are expressed by χ2

λ/nd and P values listed in the seventh
and eight columns of Tables I–VIII. The crucial question
is now why the conclusions from χ2

λ and χ2
LS test statistics

are entirely opposite for PHENIX measurements. The main
difference between both statistics is that χ2

λ does not depend
on the actual errors but χ2

LS does. Additionally, χ2
λ depends

explicitly on the number of events whereas χ2
LS does not [cf.

Eqs. (19) and (22)]. In principle, one can conclude that χ2
λ

statistic implicitly assumes errors of the type
√

ni because the
statistic originated from the likelihood function, Eqs. (8) and
(9), which is the product of Poisson distributions, but there is no

FIG. 4. Uncorrected multiplicity distributions of charged hadrons for 62.4-GeV Au-Au Collisions [1] within ranges limited to the bins with
ni > 40. The lines are fits to the NBD. The data are scaled by the amounts in the legend. Errors represent the statistical and systematic errors
added in quadrature.
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FIG. 5. Uncorrected multiplicity distributions of charged hadrons for 200-GeV Cu-Cu collisions [1] within ranges limited to the bins with
ni > 5 (left) and ni > 80 (right). The lines are fits to the NBD. The data are scaled by the amounts in the legend. Errors represent the statistical
and systematic errors added in quadrature.

place to insert actual experimental errors into the χ2
λ statistic,

Eqs. (13) and (14); this test statistic by definition does not take
the experimental errors into account. Finally, the distribution
of χ2

λ,min is known asymptotically, whereas the distribution of
χ2

LS at the minimum, when systematic errors are included, is
not known, even asymptotically.

In the PHENIX analysis [1], errors errni
(erri) in Eq. (22)

are represented by the quadrature sum of the statistical and
systematic components, and the statistical error on the number
of entries ni is equal to

√
ni exactly [11] (the statistical error

on P ex
i is

√
ni/N then). The systematic errors were mostly

caused by time-dependent variation of results. Data sets were
taken over spans of several days to several weeks, during
which the total acceptance and efficiency were changing,
mainly because of degradation of the tracking detectors [1,12].
To estimate these systematic errors, the entire data set was
divided into ten subsets of approximately equal sizes. Then
plots from these subsets were overlaid with each other, from
which bin-by-bin systematic errors were estimated as 3.0 times
the statistical errors, the same for all data sets and centralities
[11,12].4 This leads to the relation err2

ni
= σ 2

stat,ni
+ 9σ 2

stat,ni
=

10σ 2
stat,ni

= 10ni (errni
= √

10 × σstat,ni
≈ 3.0σstat,ni

), where
σstat,ni

= √
ni is the statistical error of the ith measurement.

Hence, if statistical errors only were taken into account the
values of χ2

LS/nd would be ten times greater than those listed
in Tables I–VIII, so it seems that the acceptance of the NBD
hypothesis by χ2

LS test is entirely due to the magnitude of
systematic errors, but in fact this is the result of confused
inference, as will be shown further.

If one inserts explicit values of PHENIX errors, err2
ni

=
10ni , into Eq. (22), then the χ2

LS test statistic takes the form

4This detailed information is from Ref. [12], but there is a short
note in Ref. [11] below the data for Fig. 2(c): “On average, the
systematic + statistical errors are a factor of 3 larger than the statistical
errors.”

called χ2
PHEN from now on (the author strongly advises the

reader to read Appendix B first, before going further):

χ2
PHEN(n; n̄, k) =

m∑
i=1

(ni − νi(n̄, k))2

10ni

= 1

10

m∑
i=1

(ni − νi(n̄, k))2

ni

= 1

10
χ2

N (n; n̄, k).

(23)

However, this is exactly Neyman’s χ2 test statistic, χ2
N , mul-

tiplied by 0.1. Therefore, the PHENIX test statistic estimators
of parameters n̄ and k are Neyman’s χ2 estimators, ˆ̄nN and
k̂N , respectively. Further, the distribution of Neyman’s χ2 test
statistic tN (n) ≡ χ2

N (n; ˆ̄nN, k̂N ) asymptotically approaches a
χ2 distribution with nd = m − 2 [6,13,15]. Now, the more
rigorous justification for inserting ML estimates into χ2

LS,
Eq. (22), can be given. The likelihood χ2, Pearson’s χ2, and
Neyman’s χ2 test statistics are asymptotically equivalent; i.e.,
their estimators are consistent, asymptotically normal, with the
same minimum variance ( [5], p. 192; [10], Sec. 18.58; [13],
pp. 457 and 458). Moreover, “So far as the χ2’s considered for
tests of significance are concerned, any can be used with any
of the estimates” ( [14], p. 464; also see p. 444). This means
that, e.g., ML estimates could be put into Neyman’s χ2 test
statistic and still the distribution of such a test statistic would
approach a χ2 distribution asymptotically. Since PHENIX
samples are very large (see the second column in Tables
I–VIII) one can reasonably approximate the distribution of
tN (n) by the corresponding χ2 distribution, but what is
the distribution of the PHENIX test statistic tPHEN(n) =
χ2

PHEN,min(n) ≡ χ2
PHEN(n; ˆ̄nN, k̂N ) = 0.1tN (n) then? The solu-

tion to this question can be easily found with the use of the
general rule of finding the distribution g(t) of a function t(z)
of a random variable z with the known PDF f (z) ([4], p. 14):

g(t) = f (z(t))

∣∣∣∣dz

dt

∣∣∣∣ , (24)
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FIG. 6. Uncorrected multiplicity distributions of charged hadrons for 62.4-GeV Cu-Cu collisions [1] within ranges limited to the bins with
ni > 5 (left) and ni > 60 (right). The lines are fits to the NBD. The data are scaled by the amounts in the legend. Errors represent the statistical
and systematic errors added in quadrature.

if t(z) has a unique inverse. In the present case t(z) =
0.1z and f (z) = f (z; nd ), so z(t) = 10t and g(t ; nd ) =
10f (10t ; nd ) is the distribution in question. The expec-
tation value of the PHENIX test statistic is E[tPHEN] =
E[0.1tN ] = 0.1 · E[tN ] = 0.1nd . Thus, E[tPHEN/nd ] = 0.1
or, rewriting it in a more familiar way, E[χ2

PHEN/nd ] = 0.1,
not 1. Therefore, if the (PHENIX) experiment is “rea-
sonable” and the hypothesis is true, one should ex-
pect to obtain χ2

PHEN/nd ≈ 0.1—values of χ2
PHEN/nd much

greater than 0.1 suggest that the hypothesis (of the NBD)
should be rejected. In the language of Appendix B, the
decision boundary for the PHENIX test statistic χ2

PHEN
should be placed at 0.1nd , not nd. In the case of the
χ2

PHEN statistic the P value for the hypothesis is given by

P =
∫ ∞

tPHEN

g(t ; nd )dt =
∫ ∞

10χ2
PHEN,min

f (t ; nd )dt, (25)

where f (z; nd ) is the χ2 PDF with nd degrees of freedom.
The corresponding values are given in the tenth column of

Tables I–VIII. Altogether there are 33 classes of collision
systems and centralities of the PHENIX measurements [1]
considered here. They are doubled because of two possi-
bilities of cutting tails in full histograms. The assessment
of the quality of fits presented in Tables I–VIII depends
on the assumed significance level. Following the choice
made by the UA5 Collaboration [3], the 0.1% level is fixed
here. There are eight cases in which the PHENIX test is
significant at the 0.1% level at least for one of the two
histograms corresponding to the same class. It is interesting
that half of them belong to the case of Au-Au collisions
at

√
sNN = 62.4 GeV and are significant for both kinds of

histograms with P values greater than 1% (see Tables III
and IV). The next two happen for Au-Au collisions at

√
sNN =

200 GeV (Table II), and the last two happen for Cu-Cu
collisions at

√
sNN = 200 GeV (Table VI), but only in the case

of narrower histograms and with P values smaller than 1%. In
contrast, the case of Cu-Cu collisions at

√
sNN = 62.4 GeV has

no any significant fit at all (see Tables VII and VIII). Thus, one

FIG. 7. Scaled variance for 200-GeV (a) and 62.4-GeV (b) Au-Au collisions. PHENIX estimates are from [1]. Estimates from this work
are for the cases listed in Tables II and IV.
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FIG. 8. Scaled variance for 200-GeV (a) and 62.4-GeV (b) Cu-Cu collisions. PHENIX estimates are from [1]. Estimates from this work
are for the cases listed in Tables VI and VIII.

can conclude that only for the PHENIX collision system Au-
Au at

√
sNN = 62.4 GeV the hypothesis of the NBD could not

be rejected. For other systems the hypothesis of the NBD seems
to be very unlikely. What distinguishes the case of Au-Au
collisions at

√
sNN = 62.4 GeV from others? The only thing

which can be noticed from Tables I–VIII is that the number of
events is substantially greater (about 14%) in this case.

In principle, the accuracy with which experimental distri-
butions approximate the NBD should increase with the sample
size because if the hypothesis is true the postulated form of
distribution is exact for the whole population. So with the
growing number of events the experimental distribution should
be closer to the postulated one. This is also seen in the form of
χ2

λ,min, Eq. (19), where the linear dependence on N is explicit.
To keep χ2

λ,min at least constant when N (the sample size)
is growing the relative differences between P (Yi) and P ex

i

have to decrease. The PHENIX test statistic χ2
PHEN, Eq. (23),

reveals the same feature because relative errors behave like√
ni/N . So the results of fits for the collision system Au-Au

at
√

sNN = 62.4 GeV are even more valuable.
Another surprising point is the comparison of the values

of the PHENIX test statistic χ2
PHEN divided by nd , the ninth

column of Tables I–VIII, with the corresponding values of
Ref. [1]. For choice ii (Tables II, IV, VI, and VIII), the
χ2

PHEN/nd values obtained here are lower than the corre-
sponding ones in Ref. [1]. Values of the parameters k̂, ˆ̄n are
also different from those in Ref. [1], which has resulted in
slightly different (1–3% lower) values of the scaled variance
ωdyn (see Figs. 7 and 8). To make the comparison easier,
also values of k̂−1

dyn are presented in the fifth column of
Tables I–VIII. Generally, ˆ̄n is greater but the difference does
not exceed 10% and decreases with the centrality. k̂−1

dyn is
smaller, especially for case ii, and the difference also decreases
with the centrality—from about 20–30% for the least central
classes to about 5–10% for the most central ones.

IV. CONCLUSIONS

Results of the likelihood ratio test (likelihood χ2) suggest
that the hypothesis of the NBD of charged particle multiplic-

ities measured by the PHENIX Collaboration in Au-Au and
Cu-Cu collisions at

√
sNN = 62.4 and 200 GeV should be

rejected for all centrality classes. However, it must be stressed
that the maximum likelihood method and the likelihood ratio
test do not take actual experimental errors into account. This
could be seen as a drawback but, in fact, only the LS test
statistic takes actual experimental errors into account. Thus,
the problem with the size of errors might occur when the LS
method is used not only to fit parameters of a theoretical model
but also to assess how confident the rejection or acceptance of a
hypothesis is. This is because too big or too small errors cause
a false inference in this case. But the judgment whether errors
are too big already or still adequate is subjective. When errors
are large enough it is likely that a false hypothesis would be
accepted (this situation is called “error of the second kind” in
statistics [4,5,7]). Also, one can encounter serious difficulties
when one tries to express somehow the goodness of fit when
the LS method is applied, as explained in Appendix B.

The goodness of fit expressed by the P value is necessary to
assess the quality of fit. Here is an example: let χ2/nd = 1.5
for a test which is χ2 distributed. Is this fit good or bad?
It depends on nd . But how does one find any quantitative
measure to decide? This measure is the P value. For nd = 10,
P = 0.13, so the fit should be accepted at the significance
level 0.1%, but, for nd = 100, P = 0.0009, so the fit should
be rejected at the same significance level ([4], p. 62). However,
to calculate the P value one has to know the distribution of
the test statistic at the parameter estimates. In the general
case of the LS test statistic this distribution is unknown,
unless very specific assumptions are fulfilled, as shown in
Appendix B. Certainly, assumptions 1 and 3 are not fulfilled
when the NBD hypothesis is tested and systematic errors
are added in quadrature to statistical ones. Thus, at the
beginning of the investigations the situation is the following:
the likelihood χ2 does not take the errors into account, but
its distribution is known asymptotically; the LS test statistic
takes errors (including systematic ones) into account but its
distribution is not known, even asymptotically. In the PHENIX
case and with their estimations of systematic errors, these
problems have been resolved naturally; i.e., both goals have
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been achieved—statistical and systematic errors are taken into
account and the test statistic distribution is known.

The LS method, as the PHENIX Collaboration applied
it, i.e., with their systematic errors included, has revealed
a few very interesting things. First, it has turned out that
the corresponding LS test statistic (the PHENIX test statistic
χ2

PHEN) equals Neyman’s χ2 test statistic multiplied by 0.1.
This enables to use the well-known asymptotic properties
of Neyman’s χ2 to find the asymptotic distribution of the
PHENIX test statistic, so the goodness of fit can be now
calculated because sample sizes are very large here. Addi-
tionally, PHENIX test statistic estimators of NBD parameters
are Neyman’s χ2 estimators, but likelihood χ2 and Neyman’s
χ2 test statistics are asymptotically equivalent, so for a very
large sample their estimators (and estimates) should coincide.
Therefore, determination of NBD parameters with the use of
the ML method and then insertion of them into the PHENIX
test statistic is reasonable. Note that this method of the determi-
nation of NBD parameters has turned out to be much simpler
than with the use of the LS method, e.g., the optimal n̄ equals
〈Nch〉 (see Appendix A). Finally, because the likelihood χ2

converges faster to efficiency than Neyman’s χ2, this method
should be preferable when estimation of parameters and errors
on estimates are considered ([5], p. 193; [10], Sec. 18.59).

The correct inference from the results of the PHENIX
test statistic χ2

PHEN, i.e., the test statistic which in contrast
to the likelihood χ2 takes the systematic errors into account,
shows that the hypothesis of the NBD of charged particle
multiplicities measured in Au-Au and Cu-Cu collisions at√

sNN = 62.4 and 200 GeV should be accepted roughly in
one fourth of PHENIX classes of the collision system and
centrality. In particular, for the PHENIX collision system
Au-Au at

√
sNN = 62.4 GeV as a whole the hypothesis of

the NBD could not be rejected, whereas for the Cu-Cu system
at the same energy it should be rejected. For two other systems
(both at

√
sNN = 200 GeV) the hypothesis of the NBD seems

to be very unlikely.
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APPENDIX A: ML ESTIMATES OF NBD PARAMETERS

Dropping terms not depending on the parameters in
Eq. (18), one obtains the following form for the log-likelihood
function under consideration:

ln L(Y|p, k) = N

m∑
i=1

P ex
i ln P (Yi ; p, k). (A1)

Since the logarithm of the NBD is given by

ln P (n; p, k) =
n∑

j=1

ln (k + j − 1)

+ n ln (1 − p) + k ln p − ln (n!), (A2)

the necessary conditions for the existence of the maximum
have the following form:

∂

∂p
ln L(Y|p, k)

= N

m∑
i=1

P ex
i

[
− Yi

1

1 − p
+ k

p

]

= N

[
− 1

1 − p

m∑
i=1

P ex
i Yi + k

p

m∑
i=1

P ex
i

]

= N

[
− 1

1 − p
〈Nch〉 + k

p

]
= 0, (A3)

∂

∂k
ln L(Y|p, k)

= N

m∑
i=1

P ex
i

⎡
⎣ Yi∑

j=1

1

k + j − 1
+ ln p

⎤
⎦

= N

⎡
⎣ m∑

i=1

P ex
i

Yi∑
j=1

1

k + j − 1
+ ln p

⎤
⎦ = 0, (A4)

where the sum over j is 0 if Yi = 0.
From Eqs. (A3) and (2) one can obtain

〈Nch〉 = k(1 − p)

p
= n̄. (A5)

Expressing p as a function of k and 〈Nch〉,
1

p
= 〈Nch〉

k
+ 1, (A6)

and substituting it into Eq. (A4) the equation which determines
k̂ is obtained:

∂

∂k
ln L(Y|p, k)

= N

⎡
⎣ m∑

i=1

P ex
i

Yi∑
j=1

1

k + j − 1
− ln

(
1 + 〈Nch〉

k

)⎤
⎦ = 0.

(A7)

The above equation can be solved numerically. Having
obtained k̂ and substituting it into Eq. (A6), p̂ is derived.

APPENDIX B: STATISTICAL INFERENCE IN A CAPSULE

Let {Y1, Y2, . . . , YN } be a set of repeated observations of a
random variable Y or a single observation of N -dimensional
random variable 	Y = (Y1, Y2, . . . , YN ) (this Appendix is a
brief summary based on Refs. [4,5]). The null hypothesis,
H0, specifies a PDF of Y or a joint PDF of 	Y . The test statistic
t is a function of the observations (a function of N random
variables equivalently): t = t(Y1, Y2, . . . , YN ). For simplicity
let us assume that t is a scalar function. Let g(t |H0) be a
given PDF for the statistic t if H0 is true. The qualitative
assessment about the compatibility of H0 with the data is
expressed as a decision to accept or reject the null hypothesis.
This is done by choosing a value tcut, called the cut or decision
boundary. Then, for given observations {Y1, Y2, . . . , YN } tO =
t(Y1, Y2, . . . , YN ) and if tO > tcut the hypothesis is rejected; if
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tO � tcut, H0 is accepted. Usually tcut is chosen in such a way
that one obtains the assumed probability α to reject H0 if H0

is true—this is called the significance level:

α =
∫ ∞

tcut

g(t |H0)dt. (B1)

Now, let 	Y be an N -dimensional Gaussian random variable
with known covariance matrix V but not known expectation
values. 	Y is related to another variable 	X in such a way that
there is a true value function (≡ a hypothesis) 	 = 	(X; 	θ ),
which depends on unknown parameters 	θ = (θ1, . . . , θm) and
an expectation value of Yi , E[Yi] = 	(Xi ; 	θ ). Then one defines
the least-squares (LS) statistic as

χ2
LS( 	Y ; 	θ ) =

N∑
i,j=1

(Yi − 	(Xi ; 	θ ))[V −1]ij (Yj − 	(Xj ; 	θ )).

(B2)

Instead, if one has N independent Gaussian random variables
with different unknown means but known variances σ 2

i and
the true value function 	 = 	(X; 	θ ), then the LS statistic,
Eq. (B2), becomes

χ2
LS( 	Y ; 	θ ) =

N∑
i=1

(Yi − 	(Xi ; 	θ ))2

σ 2
i

. (B3)

Let 	Y be a single measurement of the N -dimensional random
variable (or a set of independent measurements of N random
variables). Having replaced the variables by their measured
values in Eq. (B2) [or Eq. (B3)] one converts the LS
statistic χ2

LS( 	Y ; 	θ ) into the function of 	θ only. The next step
is to minimize this function with respect to 	θ . Values of
parameters at the minimum are called the LS estimators,
(θ̂1, . . . , θ̂m). When one has replaced parameters 	θ (treated
as free until now) by their estimators in Eq. (B2) [or Eq. (B3)],
then a test statistic tχ2 = tχ2 (Y1, Y2, . . . , YN ) ≡ χ2

LS,min( 	Y ) =
χ2

LS( 	Y ; θ̂1, . . . , θ̂m) is obtained. What is the decision boundary
tχ2,cut for this test statistic? The choice of the proper tχ2,cut is
the consequence of the following theorem ([4], pp. 95–96, 104;
[16], Sec. 10.4.3). If (1) (Y1, Y2, . . . , YN ) is an N -dimensional
Gaussian random variable with known covariance matrix V or
(Y1, Y2, . . . , YN ) are independent Gaussian random variables
with known variances σ 2

i ; (2) variables (X1, X2, . . . , XN ) are
measured with infinite precision, i.e., without any errors; (3)
the hypothesis 	(X; θ1, . . . , θm) is linear in the parameters θi ;
and (4) the hypothesis is correct, then the test statistic χ2

LS,min

is distributed according to a χ2 distribution with nd = N − m
degrees of freedom. If the hypothesis 	(X; θ1, . . . , θm) is
nonlinear in the parameters, the exact distribution of χ2

LS,min
is not known. However, asymptotically (when N −→ ∞)
the distribution of χ2

LS,min approaches a χ2 distribution as
well ([16], p. 287; [17], p. 147). Thus, when assumptions
1, 2, and 4 at least are fulfilled and the sample size is large
one can consider the χ2

LS,min test statistic as χ2 distributed.
The expectation value of a random variable Z distributed
according to the χ2 distribution with nd degrees of freedom
is E[Z] = nd and the variance V [Z] = 2nd . As a result “one
expects in a ‘reasonable’ experiment to obtain χ2

LS,min ≈ nd”

([18], p. 15). Therefore, for the test statistic tχ2 = χ2
LS,min

the decision boundary tχ2,cut = E[χ2
LS,min] = nd is chosen.

Usually the so-called “reduced χ2” is reported, which equals
χ2

LS,min/nd . Thus, for χ2
LS,min/nd the decision boundary is just

one. It must be stressed here that this choice is the consequence
of the fact that the χ2

LS,min test statistic is χ2 distributed. If
the distribution of χ2

LS,min is not known at all (e.g., one of
the assumptions 1, 2, or 4 is not fulfilled or the sample size
is small), this choice is arbitrary—based on common belief
rather than on any justification.

The comparison of the actually obtained value of the test
statistic tO = t(Y1, Y2, . . . , YN ) with the decision boundary
tcut gives only qualitative information about the validity of the
hypothesis H0. If one wants to express quantitatively how the
null hypothesis agrees with the data a test of goodness of fit is
necessary [4,5]. The value of this test shows the level of the
compatibility of the observed data with the predictions of H0.
This value is given by the probability P , under the assumption
that H0 is true and the experiment would be repeated many
times under the same circumstances, of obtaining results as
compatible or less with H0 than the result just observed. This
probability is called the P value of the test and can be expressed
as ([5], p. 300)

P =
∫

	Y :t�tO

f ( 	Y |H0), (B4)

where f ( 	Y |H0) is the PDF of the N -dimensional
random variable 	Y under the null hypothesis H0. In general
the above integral could be very difficult to calculate unless
the PDF g(t |H0) of the test statistic t is known somehow; then
one obtains ([18], p. 13)

P =
∫ ∞

tO

g(t |H0)dt. (B5)

Note that this is not the same as Eq. (B1) because that
expression is the equation for tcut given the significance level
α and should be solved before the measurement, whereas
Eq. (B5) is calculated after the measurement and reflects the
obtained (dis)agreement of the observation with the hypothesis
H0. The criterion for the rejection or acceptance of H0 can be
now formulated with the use of P and α instead of tO and tcut:
if P � α then the hypothesis should be rejected; otherwise it
should be accepted.

However, the most interesting class of test statistics is
that in which their distributions are known independently
of H0. The most important class consists of so-called “χ2

statistics,” i.e., test statistics which are distributed (at least
asymptotically) in the χ2 distribution [5,6]. Note that χ2

LS,
defined earlier, when the assumptions of the theorem are
fulfilled, belongs to this class. The likelihood χ2, Eq. (14),
Pearson’s χ2, and Neyman’s χ2 mentioned in Sec. III do as
well. Then the P value is given by

P =
∫ ∞

tO

f (z; nd )dz, (B6)
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where f (z; nd ) is the χ2 PDF and nd is the number of degrees
of freedom.

APPENDIX C: WILKS’S THEOREM

Let X be a random variable with PDF f (X, θ ), which
depends on parameters θ = {θ1, θ2, . . . , θd} ∈ �, where a
parameter space � is an open set in Rd . For the set of N
independent observations of X, X = {X1, X2, . . . , XN }, one
can define the likelihood function:

L(X|θ ) =
N∏

j=1

f (Xj ; θ ). (C1)

Now consider H0, a k-dimensional subset of �, k <
d. Then the maximum likelihood ratio can be defined

as

λ = maxθ∈H0 L(X|θ )

maxθ∈� L(X|θ )
. (C2)

This is a statistic because it does not depend on parameters
θ anymore; in the numerator and the denominator there are
likelihood function values at the ML estimators of parameters
θ with respect to sets H0 and �, respectively.

Wilks’s theorem says that under certain regularity condi-
tions if the hypothesis H0 is true (i.e., it is true that θ ∈ H0)
then the distribution of the statistic −2 ln λ converges to a χ2

distribution with d − k degrees of freedom as N −→ ∞ [5,7].
The proof can be found in Ref. [19]. Note that k = 0 is possible,
so one point in the parameter space (one value of the parameter)
can be tested as well.
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