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Di-hadron angular correlation function in event-by-event ideal hydrodynamics

R. P. G. Andrade* and J. Noronha†
Instituto de Fı́sica, Universidade de São Paulo, Caixa Postal 66318, 05315-970 São Paulo, São Paulo, Brazil

(Received 21 May 2013; published 27 September 2013)

The di-hadron angular correlation function is computed within boost-invariant, ideal hydrodynamics for
Au + Au collisions at

√
sNN = 200 GeV using Monte Carlo Glauber fluctuating initial conditions. When 0 <

pT < 3 GeV, the intensity of the flow components and their phases, {vn, �n} (n = 2, 3), are found to be correlated
on an event-by-event basis to the initial condition geometrical parameters {ε2,n, �2,n}, respectively. Moreover, the
fluctuation of the relative phase between trigger and associated particles, �n = �t

n − �a
n , is found to affect the

di-hadron angular correlation function when different intervals of transverse momentum are used to define
the trigger and the associated hadrons.
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I. INTRODUCTION

The nontrivial structures in di-hadron angular correlation
measurements with respect to a single charged (or neutral)
high-pT trigger observed in heavy ion collisions [1–4] are
among the most important probes of the hot and dense
matter created in these reactions. In fact, angular correlations
measured in Au + Au collisions at the BNL Relativistic
Heavy Ion Collider (RHIC) with the center-of-mass energy
per nucleon pair

√
sNN = 200 GeV are significantly different

than those observed in pp or d + Au collisions (this difference,
however, seems to disappear for the higher energy collisions
performed at the CERN Large Hadron Collider (LHC) [5,6]).
In the longitudinal direction, the di-hadron correlation function
is characterized by a long-range structure in the relative
pseudorapidity coordinate denominated “ridge” [3] while in
the azimuthal direction one finds three prominent peaks: the
near side peak �φ = 0 aligned with the trigger hadron and
two other away side peaks that are symmetrically positioned
with respect to �φ = π . This azimuthal profile indicates the
existence of a considerable fraction of higher order harmonic
flows, mainly triangular and quadrangular flows, in addition
to the well-known direct and elliptic flows.

These angular correlations have been studied in the past
in the context of the energy deposited by jets in a smooth
hydrodynamic medium [7–16]. In Refs. [17–19] it was
suggested that the higher order harmonic flows are connected
to the fluctuations in the initial conditions for hydrodynamics.
In Ref. [19], it was shown that the fluctuations in the initial con-
ditions, characterized by longitudinal tubelike structures, can
in fact produce after hydrodynamic expansion the structures
observed in the data.

Considerable effort has since been made towards under-
standing how harmonic flow components evolve from the
initial geometry of the fluctuating initial conditions [20–26]
to the final spectrum of observed particles. In other words,
the elliptic flow, v2, would be mostly created by the so-called
participant eccentricity [27], ε2, and the triangular flow, v3,
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would be mostly created by the participant triangularity [20],
ε3, and so on.

It has been observed for Monte Carlo Glauber initial
conditions that the Fourier coefficients v2 and v3 show a strong
linear dependence with the respective eccentricities ε2 and
ε3 [28,29]. However, similar results are not generally observed
for higher Fourier coefficients such as, for instance, v4 and
v5 [26,30]. It is important to mention that hydrodynamics,
which is widely used to connect the initial conditions to the
final spectrum of particles, does not guarantee such a linear
response to the initial geometry due to intrinsic nonlinearities
present in the hydrodynamic equations.

The aim of this article is to improve the current understand-
ing of the role played by the higher order flow components
in the determination of the azimuthal profile of the di-hadron
correlation function in heavy ion collisions. The azimuthal
component of this function can be parametrized in terms of the
Fourier coefficients of the azimuthal distribution of particles;
i.e., it can be described in terms of the pair {vn,�n} where the
first parameter is related to the intensity of the flow component
and the second one is an angle that fixes the orientation of the
respective harmonic. In particular, we are interested in the
situation where the set of triggers is not identical to the set of
associated particles, because it occurs when the triggers and
the associated particles are defined within different ranges of
transverse momentum. In this situation, as we are going to
show in Sec. II, the di-hadron correlation function becomes
particularly sensitive to not only the vn coefficients but also
the �n angles. More precisely, it depends on the relative phase
�n = �t

n − �a
n , where the first angle is computed using the

triggers and the second using the associated particles. Recently,
the fluctuation of this relative phase has been studied in 3 + 1
ideal hydrodynamics by the NexSPheRIO Collaboration [31]
and also in 2 + 1 viscous hydrodynamics in Refs. [32,33].
In particular, in this article we try to understand the width
of the �n distribution in terms of the geometry of the initial
conditions. More precisely, we compute the distribution of the
difference δn = �n − �2,n (in three ranges of pT ) to quantify
the fluctuation of the flow component phase with respect to the
geometrical orientation angle �2,n, obtained from the initial
energy density distribution (in Sec. III the definition of the
geometric parameters from the initial conditions is discussed).
For instance, for Au + Au collisions at

√
sNN = 200 GeV, it
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was shown in Ref. [34] that the δn distribution, for integrated
pT , is quite narrow (when n > 1). Here, as we show, the study
of this distribution for triggers and associated particles can be
used to understand the behavior of the �n distribution. To com-
plete the analysis involving flow and initial geometry, we also
compute the correlation between the eccentricities ε2,n and the
flow parameters vn for different bins of transverse momentum.

This paper is organized as follows. In Sec. II we describe the
parametrization of the di-hadron angular correlation function
in terms of the Fourier coefficients of the azimuthal distribution
of hadrons. In Sec. III we discuss the definition of the
eccentricities used in this paper. In Sec. IV we give the details
about our hydrodynamic model including the modeling of
the fluctuating initial conditions, the equation of state, and
the decoupling mechanism. We discuss our results in Sec. V
and we finish in Sec. VI with our conclusions. We use a
mostly minus metric signature (+,−,−,−) and natural units
h̄ = kB = c = 1.

II. FOURIER DECOMPOSITION OF THE DI-HADRON
ANGULAR CORRELATION FUNCTION

The azimuthal component of the di-hadron correlation
function, C(�φ), can be defined as follows

C(�φ) = 〈∫ ga(φt + �φ)gt (φt )dφt 〉
〈∫ gt (φt )dφt 〉 , (1)

where the functions gt and ga are the azimuthal distributions of
triggers and the associated particles in each event, respectively.
Each function is associated with an interval of transverse
momentum pT . The brackets indicate the average over events
(an arithmetic mean). The denominator, naturally, is the
average number of triggers.

The decomposition of Eq. (1) in terms of the Fourier
coefficients of the azimuthal distribution of hadrons can be
obtained using the following expansions:

ga(φt + �φ) = va
0 +

∑
n

2va
0va

n cos
[
n
(
φt + �φ − �a

n

)]

(2)

and

gt (φt ) = vt
0 +

∑
m

2vt
0v

t
m cos

[
m

(
φt − �t

m

)]
. (3)

Observe that the values of the parameters {vn,�n}, for both
triggers and associated particles, vary from event to event.

Inserting the expansions (2) and (3) into Eq. (1), a
straightforward calculation leads to the following general
formula for the di-hadron correlation function in the azimuthal
direction:

C(�φ) = c0 +
∑

n

cn cos(n�φ) +
∑

n

c̃n sin(n�φ), (4)

where

c0 =
〈
va

0vt
0

〉
〈
vt

0

〉 , (5)

cn = 2〈
vt

0

〉 〈va
0vt

0v
a
nv

t
n cos

[
n
(
�t

n − �a
n

)]〉
, (6)

and

c̃n = 2〈
vt

0

〉 〈va
0vt

0v
a
nv

t
n sin

[
n
(
�a

n − �t
n

)]〉
. (7)

Considering the simplest case in which the ranges of
transverse momentum for both triggers and associated particles
are the same, i.e., the case in which �t

n = �a
n , these equations

tell us that the profile of the di-hadron correlation function
depends only on the vn coefficients, while the odd coefficients,
c̃n, are identically null.

On the other hand, when the ranges of transverse mo-
mentum for triggers and associated particles are different,
�t

n �= �a
n , the following questions can be posed:

(i) What is the profile of the distribution of the relative
phase (�t

n − �a
n ) as a function of the transverse

momentum and centrality?
(ii) Is the relative phase independent of the vn coefficients?

In other words, can we consider

cn ≈ cf
n = 2〈

vt
0

〉 〈va
0vt

0v
a
nv

t
n

〉〈
cos

[
n
(
�t

n − �a
n

)]〉
(8)

when the number of events is sufficiently large (and
similarly for the c̃n coefficients)? The index f in Eq. (8)
indicates the factorization of the cn coefficient. Note
that, even when this factorization is valid, the average
over the cosine still needs to be determined.

It must be mentioned that in the well-known event plane
method [35] �t

n = �a
n = �EP

n regardless of the pT bin chosen
for the trigger and associated hadrons, which means that the
relative phase in this case is identically zero and, consequently,
the di-hadron correlation function is necessarily an even
function of �φ. However, in the case where the triggers and
associated particles are defined within different pT bins, there
is no reason to assume that �t

n and �a
n are aligned in every

single event. On the contrary, it is more natural to suppose
that the relative phase fluctuates from event to event. In this
scenario, considering that the relative phase distribution shows
a peak at the origin �n = 0 with some width, the main question
becomes how far from the unit the absolute value of the factor
cos[n(�t

n − �a
n )] is. As one can see in Eq. (6), this factor can

change the di-hadron angular correlation profile.
When the number of events is sufficiently large one expects

that factorization can be used in Eqs. (6) and (7), and
the resulting factor 〈sin[n(�a

n − �t
n)]〉, related with the odd

coefficient, is expected to average to zero. This means that the
relative phase distribution becomes an even function in this
limit and, thus, the parity of the di-hadron correlation function
C(�φ) is restored.

III. ECCENTRICITY DEFINITION

To quantify the anisotropy of the initial conditions event
by event, in this article we use the following definition for the
eccentricities:

εm,n = {rm cos[n(φ − �m,n)]}
{rm} , (9)
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FIG. 1. (Color online) Initial energy density distribution in the
transverse plane at the midrapidity for a randomly chosen Au + Au
collision at 200 GeV in the 0–5% centrality class, computed using
an implementation of the Monte Carlo Glauber model developed in
Refs. [40,41].

where {· · · } indicates the average weighted by the energy
density profile ε(�r) (see Fig. 1) in the transverse plane. The
corresponding orientation angle is given by

�m,n = 1

n
tan−1

( {rm sin(nφ)}
{rm cos(nφ)}

)
. (10)

Finally, rm = (x2 + y2)
m
2 and φ = tan−1(y/x).

The index m can be conveniently chosen to improve the
prediction of the respective flow component. For instance,
in Ref. [26], in the context of the NexSPheRIO code [36],
it was shown that the triangular flow, v3, is better predicted
using m = 3. However, in this article we follow the original
proposal in Ref. [20] and fix m = 2. We choose the solution of
Eq. (10) that makes the eccentricity ε2,n a positive quantity. For
instance, the phase �2,2 corresponds to the major axis of the
ellipse. It is easy to verify that ε2,2 is the well-known participant
eccentricity [27] in a coordinate system where {x} = {y} = 0.
Thus,

ε2,2 =
√(

σ 2
x − σ 2

y

)2 + 4σ 2
xy

σ 2
x + σ 2

y

, (11)

where σ 2
x = {x2}, σ 2

y = {y2}, and σ 2
xy = {xy}2.

A motivation for definition (9) can be found in Ref. [24]
where it was shown that the eccentricities defined above
are related to the irreducible components of the cumulant
expansion of the initial energy density distribution.

Given the eccentricities and their respective orientation
angles, some interesting questions can be posed:

(i) Do the Fourier coefficients, vn, show a linear depen-
dence on the respective eccentricity, ε2,n, independently
on the transverse momentum range and centrality?

(ii) Are the angles �2,n and �n aligned?

As was mentioned in the previous section, Eqs. (6) and
(7) show that the vn coefficients alone (or, equivalently, the
eccentricities alone) do not provide enough information to
produce the azimuthal structures observed in the di-hadron

correlation function [2] in the case where the pT bins of the
triggers and associated hadrons are different. For instance, in
an extreme case in which the relative phases are randomly
distributed, the di-hadron correlation function would not show
any structure independently on the value of the vn coefficients.
In this context, a partial alignment between the orientation
angle �2,n and the phase �a

n (see, for instance, Ref. [34]),
as well as a partial alignment between �2,n and �t

n, would
indicate a partial alignment between the angles �a

n and �t
n.

IV. DETAILS OF THE HYDRODYNAMIC MODELING

In this work, we use a (2 + 1) (i.e., boost-invariant [37])
ideal relativistic fluid to study the connection between the
initial conditions and final flow observables relevant to the
description of the di-hadron angular correlation function. We
are focusing on the transverse expansion near midrapidity. In
practice, we consider only a thin transverse slice of matter, so
that |y| < 0.12, where y is the rapidity. To solve the ideal
hydrodynamic equations, we apply the relativistic version
of the so-called smoothed particles hydrodynamics (SPH)
approach originally developed in Ref. [38], which is a suitable
tool to deal with irregular distributions of matter (details about
the SPH method and a discussion of how the ideal fluid
nonlinear partial differential equations are solved within this
approach are given in Appendix A). We assume that the baryon
chemical potential is zero. Moreover, the initial transverse
velocity is set to zero. Our code matches the previous tests
made using the NexSPheRIO code [36] and, in Appendix B,
we show that our code is able to perfectly match the exact
solution of 2 + 1 ideal hydrodynamics obtained in Ref. [39]
(also known as Gubser flow).

To get an idea of the type of energy density profiles
obtained in event-by-event simulations, we show in Fig. 1
the initial energy density distribution in the transverse plane
at the midrapidity for a randomly chosen central Au + Au
collision at 200 GeV, computed using an implementation of
the Monte Carlo Glauber model developed in Refs. [40,41] and
used throughout this work. Note that this distribution is quite
irregular, showing several regions where the energy is con-
siderably concentrated (the so-called hot spots). Because the
initial anisotropy in this model arises basely from the random
position of the incident nucleons, the regions where the energy
is concentrated correspond to the regions where the nucleon
density is large. There is a normalization factor associated
with the initial energy density distribution, which is chosen
through a comparison to data. We set this factor so that the
maximum of the average temperature distribution, in the 0–5%
centrality window, coincides with the temperature of 0.31 GeV
(similar values can be found in the literature; see, for instance,
Ref. [42]). Once fixed by the central collisions, this overall
factor is kept the same for the peripheral collisions studied in
this work.

We use equation of state (EOS) S95n-v1 [43] in our model,
which combines results from lattice QCD at high temperatures
and the hadron resonance gas equation at low temperatures.
The decoupling mechanism is based on the Cooper-Frye
prescription [44]. In this approach, the particles become
free after crossing a hypersurface of constant temperature,
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FIG. 2. (Color online) Correlation between the initial eccentricity, ε2,n (n = 2, 3, 4), and the respective harmonic coefficient, vn, in the
0–5% centrality window with 1000 events. Three ranges of transverse momentum are presented. The parameters kn and bn are obtained from
the linear fit: vn = knε2,n + bn. The parameter λn is the linear correlation coefficient [see Eq. (12)].

denominated freeze-out temperature Tfo (the details about the
Cooper-Frye prescription in the SPH approach are discussed in
Appendix C). In our hydrodynamic code, we have not imple-
mented the decay of particles yet. All the results presented in
this article correspond then to direct positively charged pions.

Because the goal of this article is not to make a rigorous
comparison between our numerical results and the data but
rather to understand how the flow components create the
structures observed in the di-hadron correlation function,
the role of the freeze-out temperature here is just to determine
the expansion time of the fluid. By using Tfo = 0.14 GeV,
which is a typical value in the literature (see, for instance,
Ref. [42]), the total expansion time in the 0–5% centrality
window is around 15 fm. Proportionally, in the 20–30%
centrality window, the expansion time is shorter, ∼10 fm. In
both centrality windows studied in this article, the expansion
time is sufficiently long to induce the hydrodynamic effects in
the final spectrum of hadrons.

The initial time at which we begin the hydrodynamic
evolution is τ0 = 1 fm. In this work, the smoothing SPH
parameter is chosen to be h = 0.3 fm (see the discussion in
Appendix A), which allows for relatively quick computation
times while still preserving the important structure present in
the initial conditions.

Summarizing, the procedure to compute an observable in a
single event is the following: (i) Monte Carlo Glauber initial
conditions are used to obtain the initial energy density in the
transverse plane; (ii) the hydrodynamic evolution is calculated
using the SPH method [38], and (iii) the final spectra is
computed using the Cooper-Frye prescription [44]. At the end

of the simulation, the average value of a given observable
is calculated over an ensemble of events. All the results
presented in this article correspond to Au + Au collisions at√

sNN = 200 GeV and 1000 events were computed.

V. RESULTS

In Fig. 2 we show the correlation between the initial eccen-
tricity, ε2,n (n = 2, 3, 4), and the respective flow coefficient,
vn, in the 0–5% centrality window (central). Three ranges
of transverse momentum are presented. A similar graph is
shown in Fig. 3, in the 20–30% centrality window (peripheral).
The parameters kn and bn are obtained from the linear fit:
vn = knε2,n + bn. Moreover,

λn = 〈(ε2,n − 〈ε2,n〉)(vn − 〈vn〉)〉√〈(ε2,n − 〈ε2,n〉)2〉〈(vn − 〈vn〉)2〉 (12)

is the linear correlation coefficient. The closer to the unit |λn|
is, the stronger the linear correlation between the variables ε2,n

and vn becomes. In fact, when λ ∼ 1 (λ ∼ −1) both variables
show a strong linear correlation (anticorrelation).

One can see that the coefficients v2 and v3 are considerably
correlated (linear correlation) with respect to the eccentricities
ε2,2 and ε2,3, respectively. This behavior is observed in almost
all cases—for high transverse momentum particles (2 < pt <
3 GeV), in the 0–5% centrality window, the parameter λ2

is smaller in comparison to the other cases (λ2 = 0.612).
In particular, λ2 obtained in the 20–30% centrality window
is closer to the unit in comparison to the same parameter
obtained in the 0–5% centrality window, due to the almondlike
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FIG. 3. (Color online) Correlation between the initial eccentricity, ε2,n (n = 2, 3, 4), and the respective harmonic coefficient, vn, in the
20–30% centrality window with 1000 events. Three ranges of transverse momentum are presented. The parameters kn and bn are obtained from
the linear fit: vn = knε2,n + bn. The parameter λn is the linear correlation coefficient [see Eq. (12)].

transverse shape of the initial conditions in the peripheral
window, which produces stronger elliptic flow.

On the other hand, λ3 is less sensitive to centrality, which
supports the idea that ε2,3 is driven by fluctuations. This shows
that the almond shape of the initial conditions in the 20–30%
centrality window does not interfere with the correlation
between ε2,3 and v3. Finally, the linear correlation between
ε2,4 and v4 is weaker, especially for peripheral collisions.
These results are compatible with those obtained in Ref. [29]
where the linear correlation between the pT integrated flow
coefficients and the eccentricities was investigated (within
viscous hydrodynamics).

In Fig. 4 we show the distribution of the angular difference
δn = �n − �2,n (n = 2, 3, 4) in the 0–5% centrality window.
Note that �n is rotated by π/n to achieve the smallest angular
difference with respect to �2,n. Four ranges of transverse
momentum are presented. A similar graph is shown in Fig. 5
for the 20–30% centrality window. All distributions are
normalized to 1. The vertical dashed line indicates the maximal
difference for each harmonic, i.e., δmax

n = π/n. These results
show that there is a partial alignment between the initial
reference angle �2,n and the flow angle �n in almost all
of cases. For high transverse momentum particles (2 < pt <
5 GeV), in the 0–5% centrality window, the difference δ2 is
broader in comparison to the remaining cases.

Note that the almondlike transverse shape of the initial
conditions in the 20–30% centrality window produces a
stronger elliptic flow that reduces the fluctuation of the
angle �2 with respect to the reference angle �2,2, making
the distribution of the difference δ2 narrower. On the other

hand, this mechanism does not influence the partial alignment
between �3 and �2,3, which is quantified by the width of
the distribution of the difference δ3, i.e., in both centrality
windows δ3 is narrow. With respect to the forth harmonic, �4

and �2,4 show a partial alignment as well (event though the
linear correlation between v4 and ε2,4 is weak).

Now we come to the study of the phase difference between
triggers and associated hadrons. In Fig. 6 the distribution of the
relative phase �n = �t

n − �a
n (n = 2, 3, 4) is shown for the 0–

5% centrality window. Three ranges of transverse momentum
for associated particles are presented. A similar graph is shown
in Fig. 7 for the 20–30% centrality window. All distributions
are normalized to 1. The vertical dashed line indicates the
maximal difference for each harmonic, i.e., �max

n = π/n. The
range of transverse momentum for the triggers is defined as 3 <

p
trigg
t < 5 GeV. In Ref. [45] a similar observable was employed

to investigate the granularity of the initial conditions.
These results show that there is also a partial alignment

between the angles �t
n and �a

n . Starting from the left and
going to the right side in these plots, the distribution of the
difference �n tends to be narrower once the kinematic region
of the associated particles gets close to the kinematic region
of the triggers. However, when both kinematic regions are
far from each other, for instance, by choosing the associated
particles with low transverse momentum (0 < pa

t < 1 GeV),
this distribution can become considerably broad. This is the
case for the �2 distribution computed in the 0–5% centrality
window. As we shall show below, this behavior makes the
factor cos[2(�t

2 − �a
2 )] deviate significantly from the unit.

In contrast, the same distribution is narrow in the 20–30%
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centrality window. This behavior can be understood in terms
of the geometry of the initial conditions. For instance, in Fig. 4
one can see that the difference δ2 for the triggers is broad while
the same distribution for the associated particles is narrow,

which means that �a
2 and �t

2 are not always aligned. For the
remaining cases (with 0 < pa

t < 1 GeV), the relative phase
distribution is narrower because both angles are better aligned
with the reference angle.
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ranges of transverse momentum are presented. All distributions are normalized to 1. The vertical dashed line indicates the maximal difference
for each harmonic, i.e., δmax

n = π/n.
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FIG. 6. (Color online) Distribution of the phase difference �n = �t
n − �a

n (n = 2, 3, 4) in the 0–5% centrality window after 1000 events.
Three ranges of transverse momentum, for associated particles, are presented. All distributions are normalized to 1. The vertical dashed
line indicates the maximal difference for each harmonic, i.e., �max

n = π/n. The range in transverse momentum for the triggers is defined as
3 < p

trigg
t < 5 GeV.
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FIG. 7. (Color online) Distribution of the phase difference �n = �t
n − �a

n (n = 2, 3, 4) in the 20–30% centrality window after 100 events.
Three ranges of transverse momentum, for associated particles, are presented. All distributions are normalized to 1. The vertical dashed
line indicates the maximal difference for each harmonic, i.e., �max

n = π/n. The range in transverse momentum for the triggers is defined as
3 < p

trigg
t < 5 GeV.
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TABLE I. Average of the factors cos(n�n) and sin(n�n) for three
ranges of transverse momentum of the associated particles in the
0–5% centrality window after 1000 events. The range in transverse
momentum for the triggers is defined as 3 < p

trigg
t < 5 GeV. The first

seven harmonics are shown.

〈cos(n�n)〉 0 < pa
t < 1 1 < pa

t < 2 2 < pa
t < 3

n = 1 −0.741 0.809 0.969
n = 2 0.456 0.578 0.848
n = 3 0.766 0.842 0.932
n = 4 0.766 0.857 0.955
n = 5 0.759 0.836 0.956
n = 6 0.811 0.861 0.952
n = 7 0.842 0.875 0.957

〈sin(n�n)〉 0 < pa
t < 1 1 < pa

t < 2 2 < pa
t < 3

n = 1 −0.020 0.002 0.005
n = 2 −0.004 0.011 0.004
n = 3 −0.004 −0.007 −0.009
n = 4 0.012 0.020 0.012
n = 5 0.010 0.012 0.005
n = 6 0.004 0.001 0.003
n = 7 −0.016 −0.009 −0.001

We show in Table I the average of the factors 〈cos(n�n)〉 and
〈sin(n�n)〉 for the first seven harmonics, within three ranges
of transverse momentum of the associated particles, in the
0–5% centrality window. Table II shows the same quantities
for the 20–30% centrality window. The values in both tables
are related to the width of the distributions that are shown in
Figs. 6 and 7, respectively.

As one can see from the tables, the sine factors average
to zero, as expected. This means that both the relative
phase distribution and the di-hadron correlation function
are even functions. With respect to the cosine factors, the
absolute values are smaller than the unit as a consequence

TABLE II. Average of the factors cos(n�n) and sin(n�n) for three
ranges of transverse momentum of the associated particles in the
20–30% centrality window after 1000 events. The range in transverse
momentum for the triggers is defined as 3 < p

trigg
t < 5 GeV. The first

seven harmonics are shown.

〈cos(n�n)〉 0 < pa
t < 1 1 < pa

t < 2 2 < pa
t < 3

n = 1 −0.721 0.709 0.940
n = 2 0.931 0.946 0.977
n = 3 0.747 0.850 0.954
n = 4 0.823 0.889 0.964
n = 5 0.860 0.906 0.971
n = 6 0.877 0.907 0.969
n = 7 0.899 0.921 0.967

〈sin(n�n)〉 0 < pa
t < 1 1 < pa

t < 2 2 < pa
t < 3

n = 1 −0.031 0.027 0.013
n = 2 −0.011 −0.008 −0.006
n = 3 0.022 0.023 0.013
n = 4 −0.003 0.000 0.005
n = 5 −0.014 −0.010 −0.006
n = 6 −0.013 −0.011 −0.004
n = 7 0.005 0.003 0.002

of the fluctuations. The remarkable case occurs for associated
particles with low transverse momentum (0 < pa

t < 1 GeV) in
the 0–5% centrality window where 〈cos(2�2)〉 = 0.456. The
negative signal that appears associated with the first harmonic
is a consequence of the conservation of the momentum in
the transverse plane—if the associated particles move in one
direction, the triggers must move in the opposite direction to
conserve momentum.

In Fig. 8 we show the total di-hadron correlation function
C(�φ) and the corresponding background-subtracted function
R(�φ) for three ranges of transverse momentum of the
associated particles. The range in transverse momentum for

0

0.06

0.12

C
(  

  

0 2 4
0

0.04

0.08

R
(  

  

0 2 4
Δφ

0 2 4

Δ
Δ

φ)
φ)

(x 2) (x 20)

0 < p  < 1 1 < p  < 2 2 < p  < 3
t t t

[GeV](0-5)% a a a

c cn n
f cn

*

FIG. 8. (Color online) Total di-hadron correlation function C(�φ) (upper panels) and the corresponding background-subtracted correlation
function R(�φ) (lower panels) for three ranges of transverse momentum of the associated particles in the 0–5% centrality window after 1000
events. The range in transverse momentum for the triggers is defined as 3 < p

trigg
t < 5 GeV. The solid lines correspond to the formulas in

Eqs. (6) and (7) (cn); the lines with circles correspond to the factorized formula (8) (cf
n ), and analogously for the sine terms; and the dashed

lines correspond to formulas (6) and (7) without the cosine and sine factors, respectively, (c∗
n).
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FIG. 9. (Color online) Total di-hadron correlation function C(�φ) (upper panels) and the corresponding background-subtracted correlation
function R(�φ) (lower panels) for three ranges of transverse momentum of the associated particles in the 20–30% centrality window after
1000 events. The range in transverse momentum for the triggers is defined as 3 < p

trigg
t < 5 GeV. The solid lines correspond to the formulas

in Eqs. (6) and (7) (cn); the lines with circles correspond to the factorized formula (8) (cf
n ), and analogously for the sine terms; and the dashed

lines correspond to formulas (6) and (7) without the cosine and sine factors, respectively, (c∗
n).

the triggers is kept the same as before. A similar plot is shown
in Fig. 9 for the (20–30)% centrality window. The solid lines
correspond to the formulas in Eqs. (6) and (7) (cn); the lines
with circles correspond to the factorized formula (8) (cf

n ), and
analogously for the sine terms; and the dashed lines correspond
to formulas (6) and (7) without the cosine and sine factors,
respectively, (c∗

n).
The method that we used to remove the background and

define the function R(�φ) is a variation of the widely known
mixed event method (this was also used in Ref. [19]). In this
method, the associated particles and the triggers are chosen in
different events, producing a mixed correlation. This is usually
used to remove the longitudinal correlation that arises from
the shape of the longitudinal distribution of particles. In our
version of this method, the events, which will be mixed, are
aligned according to the direction of the event plane �EP

2 . This
procedure creates a background of the form cmix

2 cos(2�φ).
One can see from Figs. 8 and 9 that the fluctuation of

the relative phases can change the shape of the di-hadron
correlation function and the effect becomes more significant
when the associated particles are chosen with low transverse
momentum in comparison to the triggers. Observe that the
factorized formula is already a reasonable approximation of
the original formulas, Eqs. (6) and (7), after 1000 events.

VI. CONCLUSIONS

In this paper, we studied the di-hadron angular correlation
function within boost-invariant, ideal hydrodynamics for Au +
Au collisions at

√
sNN = 200 GeV using Monte Carlo Glauber

fluctuating initial conditions. We observed, when 0 < pT <
3 GeV, that the intensity of the flow components and their
phases, {vn,�n} (n = 2, 3), are found to be correlated on
an event-by-event basis with the initial condition geometrical
parameters {ε2,n,�2,n}, respectively. More precisely, we have

found that there is a considerable linear correlation between vn

and ε2,n (n = 2, 3), for three different pT bins, both in central
and peripheral collisions. In addition, we have shown that
the phase that defines each flow component, �n, is partially
aligned with the respective reference angle �2,n, for three
different pT bins (when 0 < pT < 3 GeV), both in central
and peripheral collisions. We found that �4 remains generally
aligned to �2,4 even though v4 and ε2,4 are not strongly linearly
correlated. These results show that, considering low and
moderate pT , the nonlinear hydrodynamic evolution indeed
preserves the global geometric parameters that characterize the
initial conditions event by event. In the case of high transverse
momentum (3 < pT < 5 GeV), the δ2 distribution computed
in the 0–5% centrality window is considerably broad.

The phase difference between trigger and associated
hadrons, �n = �t

n − �a
n , which is, in principle, nonzero when

both angles are defined using different pT bins, can affect
the di-hadron angular correlation function. The remarkable
case occurs in the 0–5% centrality window when the triggers
are taken in the interval 3 < pT < 5 GeV and the associated
particles are taken in the interval 0 < pT < 1 GeV. Once the
associated particles are aligned with the reference angle �2,n

and the triggers are not, the factor 〈cos(2�2)〉 is rather smaller
than the unit (∼0.456). Consequently, according to the Eq. (6),
this result reduces the contribution of the second harmonic to
the di-hadron correlation function. Moreover, we have found
(after 1000 events) that the final angular correlation function,
C(�φ), and its background-subtracted version, R(�φ), are
even functions of �φ. This is a consequence of the parity
property of the relative phase distributions �n.
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APPENDIX A: THE SPH METHOD

The SPH formulation of relativistic inviscid hydrodynamics
can be done in terms of the variational principle [38,46]. For
the sake of completeness, we review this formulation below.
We start with the Lagrangian formulation of the relativistic
hydrodynamics, in the approximation of an ideal fluid, for
vanishing baryon chemical potential. Such a formulation is
done by the action

I = −
∫

ε[s(�x, x0)]
√−gd4x, (A1)

under the constraints

(suν);ν = 1√−g
∂ν(

√−gsuν) = 0 (A2)

and

uμuμ = 1, (A3)

where ε and s are the energy density and the entropy density of
the fluid, respectively (in the local frame), x = (x0, x1, x2, x3)
is the generalized coordinate, g is the determinant of the metric
tensor, gμν , and

√−g is the Jacobian determinant. We consider
only metrics of the following form

(gμν) =
[

g00 0

0 −g

]
, (A4)

where g is the spatial part of the metric tensor (a 3 × 3 matrix).
By using formulas (A3) and (A4), one finds that

γ = 1√
g00 − [�v]Tg�v

(A5)

where vi = ui/u0.
Having depicted the Lagrangian formalism for the ideal

relativistic hydrodynamics, let us introduce the concepts of the
SPH method. The basic idea of this method is to parametrize
the density of the extensive thermodynamic quantities, each
density associated with a conserved charge, in the following
way:

a∗(�x, x0) =
N∑

j=1

νjW (�x − �xj (x0); h), (A6)

where the density a∗ is associated with an extensive quantity
A and is measured in a space-fixed (calculational) frame. The
weights νj are defined by the initial conditions and their values
are kept constant during the hydrodynamic expansion. W is
a positive-definite function called the kernel function defined
using a length scale h called the SPH smoothing parameter

and this function has the following properties:

W (�x − �xj (x0); h) = W (�xj (x0) − �x; h), (A7)∫
W (�x − �xj (x0); h)d3 �x = 1, (A8)

and

lim
h→0

W (�x − �xj (x0); h) = δ3(�x − �xj (x0)). (A9)

Usually, the coordinates �xj , which explicitly depend on the
“time” x0, are called SPH Lagrangian coordinates or simply
SPH particles. Each one carries a portion νj of the extensive
quantity A.

Considering that

a∗ → s∗ = √−gγ s (A10)

and

�v(�x, x0) ≡ 1

s∗

N∑
j=1

νj

d �x
dx0

W (�x − �xj (x0); h), (A11)

it is not difficult to realize that the parametrization (A6)
satisfies the constraints (A2) and (A3), independently on the
motion of the SPH particles. This is one of the advantages of
this method: the entropy is automatically conserved throughout
the whole time evolution. Thus, the equation of motion for each
one of the SPH particles is obtained from the condition δI = 0.

It is convenient at this point to define the following notation:

s∗
i = (

√−g)iγisi . (A12)

The subscript index indicates that the physical quantity
must be computed at the position of the ith SPH particle,
i.e., �x = �xi . Keeping this notation in mind, the energy density
profile can be parameterized as follows:

ε(�x, x0) =
N∑

j=1

εj

(
νj

s∗
j

)
W (�x − �xj (x0); h). (A13)

The quantity V ∗ = ( νj

s∗
j
) is usually called the SPH particle

volume. Observe that the extensive thermodynamic quantity
used to define the SPH particle volume cannot vanish. This
makes the entropy a convenient choice in the case of an ideal
fluid. In the case where viscous effects are included and, hence,
there is entropy production, a different conserved quantity is
chosen to define the SPH particle volume [47,48].

Introducing the parametrization (A13) in the action (A1)
one finds that

I → ISPH = −
N∑

j=1

∫
Ej

γj

dτ, (A14)

where Ej = εjVj and Vj = ( νj

sj
) is the proper volume of the

SPH particle.
Taking into account that δEj = −pjδVj , where pj is

the pressure of the fluid, the condition δISPH = 0 leads to
the following set of ordinary differential equations in the
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hyperbolic coordinate system:

d

dτ

( �πT

�πη

)
i

= −
N∑

j=1

νiνj

τ

(
pi

(γisi)2
+ pj

(γj sj )2

)(∇T

∂η

)
i

Wij , (A15)

where

(�πT )i = νiγi

(
εi + pi

si

)
(�vT )i , (A16)

(�πη)i = τ 2νiγi

(
εi + pi

si

)
(vη)i , (A17)

γi = (
1 − (�vT )2

i − τ 2(vη)2
i

)− 1
2 , (A18)

(∇T )i = (∂x, ∂y)i , (A19)

and

Wij = W ((�rT )i − (�rT )j , ηi − ηj ; h). (A20)

In Eqs. (A15)–(A20): (�vT )i = (d�rT /dτ )i , (vη)i =
(dη/dτ )i , τ = √

t2 − z2, η = 0.5 ln[(t + z)/(t − z)], and
�rT = (x, y).

Thus, one can see that a feature of the SPH approach is
that the dynamics of the relativistic fluid is described by a
set of ordinary differential equations whose solutions can be
obtained by simple numerical methods.

In the boost-invariant ansatz, it is not difficult to realize that
the longitudinal equation is trivially satisfied, once vη = 0 and
the pressure gradient vanishes along the η direction. Moreover,
in this solution

W ((�rT )i − (�rT )j , ηi − ηj ; h) → W ((�rT )i − (�rT )j ; h),

(A21)

because the transverse flow is identical in any transverse plane.

1. Numerical parameters

In the SPH method there are three basic parameters that
determine the dynamics of each SPH particle: the width of
the W function, h; the total number of SPH particles, N ; and
the size of the time step dτ used in the numerical solution
of the ordinary differential equations (A15). The parameter h
fixes the resolution of the interpolation formula (A6); i.e., the
smaller is h, the more detailed the profile of the density a∗ is.
The parameter N , taking into account the fact that the SPH
particles move together with the fluid, must be large enough
to guarantee a minimal number of SPH particles inside an
arbitrary area δA ≈ πh2 (in the case of a three-dimensional
calculation, an arbitrary volume should be considered). In
other words: for a fixed h, the hydrodynamic solution should
not depend on the parameter N . In general, for a given h one
increases N until the quantities computed become insensitive
to further changes in this parameter.

In this work, h = 0.3 fm, N ∼ 70 000, and dτ = 0.1 fm are
used. This choice for h preserves all the interesting structure
present in the initial conditions and this value of N is large
enough to guarantee convergence of the results computed in
this paper. By using these parameters, the relative error in the

total energy conservation, comparing the energy at beginning
of the simulation with the energy at the end, is smaller than
0.1%. For two consecutive steps, the relative error is smaller
than 0.001%.

APPENDIX B: GUBSER FLOW

The analytical solution obtained by Gubser for the trans-
verse flow (azimuthally symmetric) of a boost-invariant, ideal
and conformal (ε = 3p) fluid is the following [39]:

ε(τ, r) = ε0(2q)
8
3

τ
4
3 [1 + 2q2(τ 2 + r2) + q4(τ 2 − r2)2]

4
3

(B1)

and

vT (τ, r) = tanh[κ(τ, r)] = 2q2τr

1 + q2τ 2 + q2r2
, (B2)

where vT is the transverse velocity; q is an arbitrary parameter
(with dimension fm−1), which is related to the transverse
distribution of matter; and ε0 is a dimensionless normalization
factor.

In Fig. 10 we show the comparison between the exact
solution and our numerical computation for the energy density
distribution and transverse four-velocity (uT = sinh κ), both
quantities as functions of the transverse radius coordinate r .
For the sake of simplicity, ε0 = 1 and q = 1 fm−1 are used. As
one can see, the code reproduces the exact solution with great
accuracy.

APPENDIX C: COOPER-FRYE PRESCRIPTION
IN THE SPH APPROACH

In the Cooper-Frye prescription [44] the invariant momen-
tum distribution is given by

E
dN

d3 �p = g

(2π )3

∫
�

f (Tfo, p
νuν)pμdσμ, (C1)

where f is the particle distribution as a function of the mo-
mentum �p. We have assumed zero baryon chemical potential.
The integral is done on the hypersurface �, characterized by
a constant temperature (the freeze-out temperature Tfo). In the
case of ideal hydrodynamics, f is the thermal equilibrium
distribution.

In the SPH representation (see Appendix A), the Cooper-
Frye formula (C1) becomes [49]

E
dN

d3 �p =
N∑

j=1

pν(qν)j fj , (C2)

where

(qν)j = g

(2π )3

(nν)j
|(nμ)j (uμ)j |

νj

sj

, (C3)

and

fj = 1

exp[pν(uν)j /Tfo] ± 1
. (C4)
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FIG. 10. (Color online) Energy density distribution and trans-
verse four-velocity (uT = sinh κ) defined as a function of the
transverse radius r . The dots represent the exact solution and the solid
lines the numerical computation. We used ε0 = 1 and q = 1 fm−1.

In formula (C2), the summation is over all SPH particles.
The quantities with the index j must be computed at the
position of the j th SPH particle when it achieves the freeze-out
hypersurface �. The quantity (nν)j is the normal to this
hypersurface.

Formula (C2) in the hyperbolic coordinate system can be
put in the following form

dN

dpxdpydpη
=

N∑
j=1

fj

[
τ (qτ )j − τ

�pT · (�qT )j
pτ

]
, (C5)

where

fj = 1

�j exp[pτ (uτ )j /Tfo] ± 1
, (C6)

�pT = (px, py), and �j = e− �pT ·(�uT )j /Tfo . In Eq. (C5), we used
η = 0 (the computation is done at the midrapidity) and (qη)j =
0 (in the boost invariant solution the normal to the hypersurface
� does not have a longitudinal component). In Eq. (C6), we
used uη = 0 (longitudinal boost-invariant flow).

The distribution of particles as a function of the transverse
momentum can be obtained by the integration of Eq. (C5)
with respect to the longitudinal momentum pη. In this kind of
calculation, the SPH particles are placed only in one transverse
plane: the midrapidity transverse plane, once the transverse
hydrodynamic evolution is boost invariant. This integration
takes into account this symmetry. Thus,

dN

dpxdpy
=

N∑
j=1

[(qτ )jmT (I±
2 )j − �pT · (�qT )j (I±

1 )j ], (C7)

where

(I±
1 )j =

∫ ∞

−∞

(1 + x2)−
1
2

�j exp[σj

√
1 + x2] ± 1

dx, (C8)

(I±
2 )j =

∫ ∞

−∞

1

�j exp[σj

√
1 + x2] ± 1

dx, (C9)

(�qT )j = (qx, qy)j , mT =
√

�pT · �pT + m2 is the transverse
mass, and σj = mT (uτ )j /Tfo .

By using the integral form of the modified Bessel functions
Kν , the integrals (C8) and (C9) can be written as

(I+
1 )j =

∞∑
n=1

(−1)n+1 2

(�j )n
K0(nσj ), (C10)

(I−
1 )j =

∞∑
n=1

2

(�j )n
K0(nσj ), (C11)

(I+
2 )j =

∞∑
n=1

(−1)n+1 2

(�j )n
K1(nσj ), (C12)

and

(I−
2 )j =

∞∑
n=1

2

(�j )n
K1(nσj ). (C13)

Finally, it is important to mention that in this approach
there is an interval around midrapidity that is implicitly defined
when the entropy portion νj is assigned to the SPH particles
at the beginning of the simulation [see Eqs. (A6) and (A10)].
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