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Microscopic analysis of 11Li elastic scattering on protons and breakup processes
within the 9Li + 2n cluster model
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In the paper, the results of analysis of elastic scattering and breakup processes in interactions of the 11Li
nucleus with protons are presented. The hybrid model of the microscopic optical potential (OP) is applied. This
OP includes the single-folding real part, while its imaginary part is derived within the high-energy approximation
theory. For 11Li + p elastic scattering, the microscopic large-scale shell model (LSSM) density of 11Li is used.
The depths of the real and imaginary parts of the OP are fitted to the elastic scattering data at 62, 68.4, and
75 MeV/nucleon, being simultaneously adjusted to reproduce the true energy dependence of the corresponding
volume integrals. The role of the spin-orbit potential is studied and predictions for the total reaction cross sections
are made. Also, the cluster model, in which 11Li consists of a 2n-halo and the 9Li core having its own LSSM form
of density, is adopted. The respective microscopic proton-cluster OPs are calculated and folded with the density
probability of the relative motion of both clusters to get the whole 11Li + p OP. The breakup cross sections of
11Li at 62 MeV/nucleon and momentum distributions of the cluster fragments are calculated. An analysis of the
single-particle density of 11Li within the same cluster model accounting for the possible geometric forms of the
halo-cluster density distribution is performed.
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I. INTRODUCTION

Recent experiments with radioactive ion beams have
opened a new era in nuclear physics by providing the
possibility to study light nuclei far from stability. Indeed, the
availability of radioactive ion beams favored the discovery
of halo nuclei [1]. A typical example is the neutron halo in
the nucleus 11Li, revealed as a consequence of its very large
interaction radius, deduced from the measured interaction
cross sections of 11Li with various target nuclei [2–4]. The
halo of the nucleus extends its matter distribution to a large
radius. A hypothesis based on early data [2] on the important
role played by neutron pairing for the stability of nuclei near
the drip line is suggested in Refs. [5] and [6], and in particular,
the direct link of the matter radius to the 2n weak binding in
11Li is claimed to be attributed to its configuration as a 9Li
core coupled to a dineutron.

The experiments that provide evidence of the existence of
a halo in this nucleus are related not only to measurements of
the total-reaction cross section for 11Li projectiles but also to
the momentum distributions of the 9Li or neutron fragments
following the breakup of 11Li at high energies [7–10], e.g.,
the process 11Li +12C at E = 800 MeV/nucleon in Ref. [7].
Here we mention also the experiments at lower energies, E =
60 MeV/nucleon, of scattering of 11Li on 9Be, 93Nb, and 181Ta
in [11] and of 11Li in a wide range of nuclei, from 9Be to 238U
in [12]. It was shown that the momentum distribution of the
breakup fragments has a narrow peak, much narrower than
that observed in the fragmentation of well-bound nuclei. This
property has been interpreted (e.g., [13–19]) as being related
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to the very large extension of the wave function, compared to
that of the core nucleus, leading to the existence of the nuclear
halo. As pointed out in Ref. [17], the longitudinal component
of the momentum (taken along the beam or z direction) gives
the most accurate information on the intrinsic properties of the
halo and is insensitive to details of the collision and the size
of the target.

The differential cross sections for small-angle proton elastic
scattering on Li isotopes at energies near 700 MeV/nucleon
were measured in inverse kinematics with secondary nuclear
beams at GSI (Darmstadt) [20]. They have been analyzed
using the Glauber theory and information on the nuclear matter
density distributions has been extracted. It was supposed that
the two valence neutrons in 11Li, which form the halo, could
move in a wide region far from the 9Li core that is related to
the low two-neutron separation energy (∼0.3 MeV).

The idea of the existence of a two-neutron halo in 11Li
was experimentally verified in measurements and studies of
differential cross sections of 11Li + p elastic scattering in
the energy range 60–75 MeV/nucleon [21–23]. The data
analysis at 62 MeV/nucleon [21] showed that the adjusted
phenomenological Woods-Saxon (WS) potential has a shallow
real part and an imaginary part with a long tail. In Refs. [22]
and [23] the data at 65–75 MeV/nucleon were analyzed using
the parameter-free cluster-orbital shell-model approximation
(COSMA) [24] and a conclusion was drawn that 11Li + p
scattering is mainly determined by scattering on the 9Li
core. In various work (e.g., Refs. [25–29]) the calculations
of the 11Li + p differential cross sections in the energy
range E < 100 MeV/nucleon differ among themselves by the
assumptions on how the 11Li + p optical potential (OP) should
be constructed. Most of them use the simple folding approach
to the real part of the OP (ReOP) without accounting for the
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exchange terms and with the introduction of different forms
of effective nucleon-nucleon (NN) interactions. To calculate
the folding potentials, the constituent 9Li + 2n cluster model
was usually employed, in which the 11Li density has two
separated parts taken in explicit forms. Various suggestions
were made for the imaginary part of the OP (ImOP) like
the WS and Gaussian forms or calculated within the t-matrix
method. Then the cross sections were computed numerically
by using the eikonal approximation or starting with the Glauber
multiple scattering theory. The more complicated model of
11Li treated as a 9Li + n + n three-body system was developed
in Ref. [30], where the effects of the halo distribution in 11Li
in correspondence to different parts of the three-body wave
function are manifested in the elastic cross section.

Generally, here we would like to outline the advantages of
the microscopic analyses using the coordinate-space g-matrix
folding method (e.g., Ref. [31]) as well as work (e.g., Ref. [32])
where the ReOP is microscopically calculated using effective
NN interactions within a folding approach [33–36] and
including also the exchange terms in it. In recent works
[37,38] the 11Li + p elastic scattering cross sections were
analyzed using the folding procedure and effective NN forces
to calculate the ReOP taking into account only its direct
part and not the exchange one. In Ref. [37] the volume
ImOP was taken either in a WS form or in the form of
the direct folded ReOP, and in Ref. [38] an application of
the microscopic OP [39,40] developed on the basis of the
high-energy approximation (HEA) theory [41,42] was also
made. To this end, phenomenological densities (Gaussian
types and COSMA) have been used in the calculations [37]
and the large-scale shell-model (LSSM) densities of 9,11Li [43]
in Ref. [38] as well.

The aims of our work are as follows. First, we study elastic
scattering cross sections for 11Li + p at three incident energies
(E < 100 MeV/nucleon) using microscopically calculated
OPs within the hybrid model [39]. The ReOP includes the
direct and exchange terms and the ImOP is based on the HEA.
We follow our previous work [44–46], where this model was
applied to elastic scattering of the exotic nuclei 6,8He with
the use of their LSSM densities, thus avoiding an adjustment
of free parameters. As in Ref. [45], we pay attention to
the ambiguity problem when fitting the coefficients Ns that
renormalize the strengths of different parts of the OP. This
ambiguity is minimized in Ref. [47] by testing the condition
that the true energy dependence of the volume integrals must
fulfill. Second, in addition to the analysis of elastic scattering
cross sections, we estimate other characteristics of the reaction
mechanism such as the 11Li total-reaction and breakup cross
sections. The theoretical scheme used in this second part of the
work is based on the procedure from the first part to calculate
microscopically the potentials necessary for the evaluation
of the other quantities within the model. The calculations
are performed by using the 11Li + p OP constructed as a
sum of the microscopically calculated OP of 9Li + p and
the (2n-halo) + p potential folded with a density probability
of the relative motion of clusters. For a more consistent
description of the halo structure of 11Li we calculate the
fragment momentum distributions from 11Li + p reaction at
62 MeV/nucleon within the same breakup reaction model

and present predictions for them. Finally, we give results for
the single-particle density distribution of 11Li within the true
two-cluster model considering the relative motion of clusters
(9Li + h) that is ensured by the respective wave function and
make a comparison with other calculations.

The structure of this article is as follows. The theoretical
scheme to calculate microscopically the ReOP, ImOP, and
spin-orbit term, as well as the results of the calculations of the
elastic scattering of 11Li on protons and the discussion, is given
in Sec. II. Section III reports the basic expressions to estimate
the 11Li breakup and to calculate the momentum distributions
of its products. The same section contains the results of the
total breakup cross sections, the momentum distributions of
clusters, and the single-particle density distribution of 11Li
calculated within the breakup model of 11Li. A summary and
the conclusions of the work are given in Sec. IV.

II. ELASTIC SCATTERING OF 11Li ON PROTONS
AT E < 100 MeV/NUCLEON

A. Microscopic ReOP

The OP used in our calculations has the form

Uopt = V F (r) + iW (r). (1)

In Sec. II C we also add a spin-orbit term to Uopt from Eq. (1).
The real part of the nucleon-nucleus OP is assumed to be

the result of a folding of the nuclear density and of the effective
NN potential and involves the direct and exchange parts (e.g.,
Refs. [33–35]; see also [44] and [45]):

V F (r) = V D(r) + V EX(r). (2)

The direct part V D(r) is composed of the isoscalar (IS) and
isovector (IV) contributions,

V D
IS (r) =

∫
ρ2(r2)g(E)F (ρ2)vD

00(s)dr2, (3)

V D
IV(r) =

∫
δρ2(r2)g(E)F (ρ2)vD

01(s)dr2, (4)

with s = r + r2, and

ρ2(r2) = ρ2,p(r2,p) + ρ2,n(r2,n), (5)

δρ2(r2) = ρ2,p(r2,p) − ρ2,n(r2,n). (6)

In Eqs. (5) and (6), ρ2,p(r2,p) and ρ2,n(r2,n) are the proton
and neutron densities of the target nucleus. The expressions
for the energy and density dependence of the effective NN
interaction [the formulas for g(E) and F (ρ)] are given, e.g.,
in Ref. [45]. For the NN potentials vD

00 and vD
01 we use the

expression from Ref. [35] for the CDM3Y6 type of effective
interaction based on the Paris NN potential. The IS part of the
exchange contribution to the ReOP has the form

V EX
IS (r) = g(E)

∫
ρ2(r2, r2 − s)F (ρ2(r2 − s/2))

× vEX
00 (s)j0(k(r)s)dr2, (7)

ρ2 being the one-body density matrix. It is shown in Ref. [44]
how the IV part of the exchange ReOP can be obtained. Here
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we would like to emphasize the general importance of the
account for the exchange part of the OP. As shown in different
examples in Ref. [35], the exchange effects lead, for instance,
to a particular energy dependence of the total potential and to
different signs of the direct and exchange inelastic form factors
and others, so they should be treated as accurately as possible.

The LSSM proton and neutron densities used in our work
for 11Li are calculated in a complex 2h̄ω shell-model space
using the WS basis of single-particle wave functions with
exponential asymptotic behavior [43], which is, in principle,
the realistic one. Here we would like to discuss this point. In
many works, to simplify analytical studies and calculations one
uses basic functions and densities with Gaussian asymptotics
of the type exp(−ar2), while it has to be the exponential
one, exp(−br)/r , where parameter b is related to the bound
energy of the particle in the upper shell. This difference
can affect the results for cross sections in the region of
relatively large angles of scattering. This point was one of the
reasons the LSSM densities [43] for 9,11Li were used in our
work.

B. Optical potential within the high-energy approximation

In the present work we use the hybrid model of the
OP [39], in which its imaginary part was derived within
the HEA theory [41,42], while the real part is obtained as
prescribed by the folding procedure in Sec. II A. The cross
sections are calculated by means of the DWUCK4 code [48]
for solving the Schrödinger equation. To obtain the HEA OP
one can use the definition of the eikonal phase as an integral
of the nucleon-nucleus potential over the trajectory of the
straight-line propagation, and one has to compare it with the
corresponding Glauber expression for the phase in the optical
limit approximation. In this way, the HEA OP is obtained as a
folding of the form factors of the nuclear density and the NN
amplitude fNN (q) [39,40]:

UH
opt = V H + iWH = − h̄v

(2π )2
(ᾱNN + i)σ̄NN

×
∫ ∞

0
dqq2j0(qr)ρ2(q)fNN (q). (8)

In Eq. (8) σ̄NN and ᾱNN are, respectively, the NN total
scattering cross section and the ratio of the real to the imaginary
part of the forward NN scattering amplitude, both averaged
over the isospin of the nucleus. These two quantities have
been parametrized in [49] and [50] as functions of energies up
to 1 GeV. The values of σ̄NN and ᾱNN can also account for the
in-medium effect by a factor from Ref. [51].

C. The spin-orbit term

The expression for the spin-orbit contribution to the OP
used in our work is added to the right-hand side of Eq. (1) and
has the form

VLS(r) = 2λ2
π

[
V0

1

r

dfR(r)

dr
+ iW0

1

r

dfI (r)

dr

]
(l · s), (9)

where λ2
π = 2 fm2 is the squared pion Compton wavelength,

and V0 and W0 are the real and imaginary parts of the
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FIG. 1. Total (normalized to A = 11), point-proton (normalized
to Z = 3), and point-neutron (normalized to N = 8) densities of 11Li
obtained in the LSSM approach [43].

microscopic OP at r = 0. In our work, in Eq. (9) the functions
fR(r) and fI (r) are taken as WS forms f (r, RR, aR) and
f (r, RI , aI ), with the half-radius RR(RI ) and diffuseness
aR(aI ) parameters obtained by the best fit of the WS potential
to the microscopically calculated real V (r) and imaginary
W (r) parts of the OP.

D. Results of calculations of 11Li + p elastic scattering

In the beginning of this subsection we consider 11Li +
p elastic scattering at three energies, 62, 68.4, and
75 MeV/nucleon, for which the differential cross sections
have been measured [21–23]. The respective folding OPs
V F and WH are calculated by the procedure described in
Secs. II A–II C using Eqs. (1)–(9), and then the whole OP is
constructed in the form

Uopt(r) = NRV F (r) + iNIW (r)

+ 2λ2
π

{
NSO

R V F
0

1

r

dfR(r)

dr
+ iNSO

I WH
0

1

r

dfI (r)

dr

}
(l.s).

(10)

The OP Uopt(r), (10), is applied to calculate the elastic scatter-
ing differential cross sections using the program DWUCK4 [48].
The number of partial waves is controlled by the parameter
LMAX that corresponds to the maximum partial wave for
the distorted waves. We use the parameter LMAX = 100.
For the densities of protons and neutrons of 11Li we use the
LSSM ones [43] (shown in Fig. 1) that have an exponential
asymptotics which is the correct one. As can be seen from
Eq. (10), we introduce and consider the set of N coefficients
as parameters that can be found by fitting the calculated to
the experimental differential cross sections of 11Li + p elastic
scattering. Moreover, the fitting procedure can be constrained
by additional conditions on the behavior of the OPs (as in
Refs. [44–46] and show below). The real and imaginary parts
of the SO OP in (10) are approximated by the WS form. Their
parameters V F

0 (WH
0 ), RR(RI ), and aR(aI ) were obtained by

a fitting procedure to the respective calculated microscopic
potentials V F (r) and WH (r). We take the ImOP in two forms,
the microscopically obtained WH within HEA (W = WH ) or
the form of the folded real potential V F (W = V F ).
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FIG. 2. Microscopic real part (V F ) of the OP (a) and HEA
imaginary part (WH ) (b) calculated using the LSSM densities for
energies E = 62 MeV/nucleon (solid lines), E = 68.4 MeV/nucleon
(dashed lines), and E = 75 MeV/nucleon (dotted lines).

Concerning our approach using the set of N coefficients
as parameters we consider it to be the appropriate physical
basis, which constrains the fitting procedure by the established
model forms of the potentials. We emphasize that in our work
we do not aim to find perfect agreement with the experimental
data. In this sense, however, the usage of the fitting parameters
(N ’s) related to the depths of the different components of the
OPs can be considered as a way to introduce a quantitative
measure of the deviations of the predictions of our method
(with the account for the exchange contributions to the OP)
from the reality (e.g., the differences of N ’s from unity for
given energies, as shown below). Thus, the closeness of the N
values to unity could show the ability of the approach to give
absolute values of the intensity of the OPs.

The microscopic real part (V F ) of the OP and the HEA
imaginary part (WH ) calculated using LSSM densities of 11Li
are shown in Fig. 2 for different energies. In Fig. 3 we give as an
example the differential cross section of the elastic scattering
11Li + p at 62 MeV/nucleon in cases where W = WH and
W = V F with and without accounting for the spin-orbit term
in Eq. (10). The renormalization parameters N are determined
by a fitting procedure. The results of the calculations are close
to each other and that is why all of them are shown within
shaded areas in Fig. 3. The following definition of χ2 is used:

χ2 = 1

N

N∑
i=1

[
σ exp(ϑi) − σ th(ϑi)

�σ exp(ϑi)

]2

, (11)

dσ
/d

Ω
 [m

b/
sr

]

θc.m. [deg]

62A MeV

W=VF

W=WH

1

10

10-1

102

103

 20  30  40  50  60

FIG. 3. (Color online) 11Li + p elastic scattering cross section
at E = 62 MeV/nucleon using Uopt [Eq. (10)] for values of the
parameters listed in Table I. Darker (blue) area, W = WH ; gray area,
W = V F . Experimental data are taken from Ref. [21].

where σ th(ϑi) and σ exp(ϑi) are the theoretical and experi-
mental values of the differential cross sections (dσ/d�), and
�σ exp(ϑi) is the experimental error. The darker (blue) area
in Fig. 3 includes four curves corresponding to W = WH (of
which three curves were obtained without the SO term and one
with it), while the gray area includes four curves corresponding
to W = V F (of which two curves were obtained without the
SO term and two curves with it). We list in Table I the values of
the N parameters χ2 and the total-reaction cross sections σR .

Figure 3 shows the satisfactory overall agreement of both
areas of the curves with the experimental data. However, we
note the better agreement in the case where W = WH [darker
(blue) area] and the values of χ2 are between 1.40 and 1.47,
while in the case W = V F they are between 5.00 and 5.80.
The situation is similar also for the other energies. So, in our
further calculations we use only ImOP W = WH . Second, we
note that the values of σR are quite different in both cases
(σR ≈ 455–462 mb for W = WH and σR ≈ 260–390 mb
for W = V F ). Third, one can see in Table I and from the
comparison with the data in Fig. 3 that the role of the SO term
is weak. Its effects turn out to be to decrease the values of NR

and to increase the values of NSO
R (see the last two rows in

Table I).
As is known, the problem of the ambiguity of parameters N

arises when the fitting procedure is applied to a limited number
of experimental data (see, e.g., the calculations and discussion

TABLE I. Values of the N parameters, χ 2 and σR (in mb), in the
case of 11Li + p at 62 MeV/nucleon for the results shown in Fig. 3.

W NR NI NSO
R NSO

I χ 2 σR

WH 0.871 0.953 1.415 456.97
0.870 0.965 1.435 459.37
0.873 0.948 1.423 455.98
0.854 0.974 0.028 0.000 1.468 461.21

V F 0.953 0.448 5.567 389.72
0.956 0.398 5.726 361.02
0.670 0.251 0.338 0.000 5.027 258.65
0.623 0.266 0.402 0.000 5.538 270.05
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FIG. 4. 11Li + p elastic scattering cross section at E = 62, 68.4,
and 75 MeV/nucleon. Solid line, without SO term; dashed line,
with SO term. Values of N ’s are listed in Table II. Experimental
data are taken from [21] for 62 MeV/nucleon, from [22] for
68.4 MeV/nucleon, and from [23] for 75 MeV/nucleon.

in our previous works [44–46]). Owing to the fact that the
fitting procedure belongs to the class of ill-posed problems
(see, e.g., Ref. [52]), it becomes necessary to impose some
physical constraints on the choice of the set of parameters
N . The total cross section of scattering and reaction is one
of them, however, the corresponding experimental values are
missing at the energy interval considered in the present work.

Another physical criterion that has to be imposed on the
choice of N values is the behavior of the volume integrals

JV = 4π

A

∫
drr2[NRV F (r)], (12)

JW = 4π

A

∫
drr2[NIW

H (r)] (13)

as functions of the energy.
We show in Fig. 4 the results of our calculations of the

11Li + p elastic scattering cross sections for the three energies
E = 62, 68.4, and 75 MeV/nucleon. For each energy we
present two curves, with and without accounting for the SO
term. The corresponding values of the N parameters together
with those of JV , JW , χ2, and σR are listed in Table II. In

 200
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FIG. 5. Values of the volume integrals JV and JW [Eqs. (12) and
(13)] as functions of the energy per nucleon for 11Li + p elastic
scattering. N values are listed in Table II. Solid line, without the
SO term of Uopt [Eq. (10)]; dash-dotted line, with the SO term of
Uopt. The additional values of JV and JW at E = 62 MeV/nucleon
(connected by a dotted line with the other curves) are obtained in the
case where the fitting procedure for the N parameters is limited up to
the experimental points for θc.m. � 46◦ (see text).

Fig. 5 we give the curves for the volume integrals JV and
JW connecting the results obtained in our calculations with
N values. We present them as better ones because, first, the
values of χ2 are around unity and, second, there is a good
agreement with the data including those of θc.m. up to 60◦ for
62 MeV/nucleon. One can see that the values of JV decrease
with an increase in the incident energy (with a small exception
at 68.4 MeV/nucleon), which is in general agreement with
the results in Ref. [53]. This is not the case for JW , whose
value for E = 62 MeV/nucleon is larger than for the others.
Indeed, it was pointed out in [53] that the general behavior
of the volume integral JV decreases with an increase in the
energy in the interval 0 < E < 100 MeV/nucleon, while JW

increases with an increase in the comparatively low energy
and becomes almost constant at a higher energy. However, the
same situation occurred in the analysis of the same data at three
energies within the semimicroscopic approach in Ref. [37],
where the ReOP was calculated using a single-folding
procedure with Gaussian, Gaussian-oscillator, and COSMA
forms of the single-particle density and the ImOP was taken
phenomenologically in a WS form or equal to the form
of the folded ReOP. Figure 6(a) shows the curves of JV

corresponding to the values obtained in [37] for the cases
of the four densities used. In addition, we show in Fig. 6(b)
the values of JW calculated using the corresponding fitted
imaginary part of the OPs taken in a phenomenological WS
form. One can see that the JV shows a reasonable behavior, in
agreement with the results in Ref. [53], while the values of JW

are in contradiction to them. Thus, the problem arising in our
work appeared also in the semiphenomenological approach in
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TABLE II. Values of the N parameters, volume integrals JV and JW (in MeV fm3), χ 2, and total-reaction cross sections σR (in mb) for
results at three energies E (in MeV/nucleon) considered and shown in Fig. 4.

E NR NI NSO
R NSO

I JV JW χ 2 σR

62 0.871 0.953 342.474 332.015 1.415 456.97
0.851 0.974 0.028 0.000 334.610 339.332 1.468 461.21

68.4 0.625 0.186 232.210 60.489 1.328 153.44
0.543 0.140 0.201 0.000 201.744 45.530 0.316 122.25

75 0.679 0.370 238.048 112.913 232.62
0.660 0.369 0.045 0.000 231.387 112.607 232.62

Ref. [37], in which a larger number of parameters was used. A
possible reason for such behavior of JW at this energy could
be the change in the scattering mechanism with an increase
in the angle of scattering when the other channels except the
elastic one should be taken into consideration. Such a “strong”
channel, with its influence on the elastic one, could be that of
the fragmentation of 11Li into clusters.

As the next step, we perform a methodical study
of the 11Li + p elastic scattering cross section for E =
62 MeV/nucleon, limiting our fitting procedure for the N
parameters up to the experimental points for θc.m. � 46◦. The
result of this study is presented in Fig. 7. Doing so, we now
consider the experimental data for all three energies, 62, 68.4,
and 75 MeV/nucleon, being in the same region of angles. The
fit to this number of data at 62 MeV/nucleon yields a new
set of parameters: NR = 0.656, NI = 0.164 with χ2 = 0.788,
and σR = 154.86 mb. Now we obtain values of the volume
integrals (without the SO term of Uopt) JV = 257.973 MeV
fm3 and JW = 57.136 MeV fm3 (shown in Fig. 5), while
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FIG. 6. Energy dependence of the volume integrals. (a) JV

obtained in [37] for folding potentials ReOP (V ) calculated using
two types of Gaussian (G and GG), Gaussian oscillator (GO), and
COSMA densities of 11Li for 11Li + p elastic scattering. (b) JW

calculated using the fitted imaginary WS potentials corresponding
to those real parts of OP that give JV ’s in (a).

the values obtained before are JV = 342.47 MeV fm3 and
JW = 332.015 MeV fm3 (see the first row in Table II). As a
result, we get behavior of JV and JW in reasonable agreement
with the conclusions of Ref. [53]. In our opinion, the procedure
described above points out the effect of the data at θc.m. > 46◦
on the values of χ2 and on the conclusions regarding the
mechanism of the elastic scattering process.

III. BREAKUP PROCESSES WITHIN
THE 9Li + 2n CLUSTER MODEL

A. Two-cluster model and applications

In this section, in addition to the analysis of the 11Li + p
elastic scattering cross section in Sec. II, we study other
characteristics of the reaction mechanism, such as the 11Li
total-reaction cross section, the breakup cross section, and re-
lated quantities. This part of the work is based on the procedure
for microscopic calculations of OPs presented in Sec. II. We
consider a simple two-cluster model that has been used to
study 6He elastic scattering and breakup reactions on nuclear
targets [54]. Within this model for the 11Li nucleus, first, the
density distributions of the 9Li core (c cluster) and h = 2n halo
must be given; second, the folding potentials of the interaction
of each of the clusters with the incident proton have to be
computed; and finally, the sum of these two potentials must
be folded with the respective two-cluster density distribution
of 11Li, which means that the wave function of the relative

1

10

10-1

102

103

 20  30  40  50  60

dσ
/d

Ω
 [m

b/
sr

]

θc.m. [deg]

62A MeV

FIG. 7. 11Li + p elastic scattering cross section at E = 62 MeV/

nucleon when the fitting procedure for the N parameters is limited
only up to the experimental points for θc.m. � 46◦. Obtained values
of NR , NI , JV , JW , χ 2, and σR are given in the text.
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motion of two clusters must be known. We calculate the latter
as a solution of the Schrödinger wave equation by using the
WS potential and given the 0s or 1s state for particles with a
reduced mass of both clusters. WS parameters are obtained by
fitting the energy of a given state to the empirical separation
energy value of the h cluster ε = 0.247 MeV and the rms
radius of the cluster function. For the latter we choose the
value of 4.93 fm, which is somehow “in between” the values
obtained within the three-body COSMA [55] and deduced
from shell-model calculations [56,57]. This two-cluster model
takes an interspace between the two classes of approaches. In
one of them each of the clusters has its own phenomenological
density, which is often used to fit the elastic scattering data. The
second class includes microscopic three-body models using,
to a different extent, the shell-model picture. Among them
we would like to note COSMA (see, for example, Refs. [58]
and [59]), which has already successfully described a great
number of experimental data applying the Glauber scattering
theory. Justifying our simpler two-cluster model, we hope,
however, to keep the basic physical consideration avoiding
some simplifications like folding without exchange effects,
use of Gaussian-type functions for densities of clusters and
bound-state wave functions of relative motion, and use of the
phenomenological ImOP. We always take into account the
contribution of the exchange effects, and the wave function
of the relative motion of two clusters is calculated for the
fitted finite-range potential that has an exponential behavior.
The bound-state two-cluster system requires a particular
consideration. In the earlier work estimations were made using
the wave function of the 0s state (n = 0) of the (c + h) system,
which does not have nodes inside the potential (except at
r = 0). However, it has been shown in Refs. [55] and [57] that
owing to the violation of the Pauli principle (Pauli-blocking
effect in the 11Li ground state), the 1s and 0p states make
the main contribution to the wave function of the two-cluster
system, with almost equal probabilities, thus oscillating once
inside the potential. Nevertheless, we consider both 0s and 1s

densities ρ
(0)
0 and ρ

(1)
0 in further calculations and comparisons

of the results.
In the present study, the interaction between the clusters

is taken to be a WS potential with the adjusted geometri-
cal parameters R = 1.0 fm, a = 0.25 fm, and depth V0 =
32.55 MeV for the 0s state and R = 6.25 fm, a = 0.25 fm,
and V0 = 11.55 MeV for the 1s state.

The s-state (l = 0) wave function of the relative motion of
two clusters is

φ
(n)
00 (s) = φ

(n)
0 (s)

1√
4π

, n = 0, 1, (14)

and thus, the respective density distribution is defined as the
probability of clusters being at a mutual distance s:

ρ
(n)
0 (s) = ∣∣φ(n)

00 (s)
∣∣2 = 1

4π

∣∣φ(n)
0 (s)

∣∣2
. (15)

In the framework of the 9Li + 2n model of 11Li one
can estimate the 11Li + p OP as a sum of the two OPs of
interactions of the c and h clusters with protons folded with

the density ρ
(n)
0 (s) (n = 0, 1):

U (b,n)(r) = V (b,n) + iW (b,n)

=
∫

dsρ(n)
0 (s)

[
U (n)

c (r + (2/11)s)

+U
(n)
h (r − (9/11)s)

]

= 2π

∫ ∞

0
ρ

(n)
0 (s)s2ds

×
∫ 1

−1
dx

[
U (n)

c (
√

r2 + (2s/11)2 + r(4/11)sx)

+U
(n)
h (

√
r2 + (9s/11)2 − r(18/11)sx)

]
. (16)

In Eq. (16), r − (9/11)s ≡ rh and r + (2/11)s ≡ rc define
the corresponding distances between the centers of each of
the clusters and the arbitrary position of the nucleon in the
11Li nucleus, and s = s1 + s2 = (9/11)s + (2/11)s determines
the relative distance between the centers of the two clusters,
s1 and s2 being the distances between the centers of 11Li
and each of the clusters, respectively. The potential U (n)

c in
Eq. (16) is calculated within the microscopic hybrid model of
the OP described in Secs. III A and II B. For the OP of the h-p
interaction we use the sum of two vnp potentials as

U
(n)
h = 2vnp = 2v(r)(1 + iγ ). (17)

Such an n-p complex potential was used in the four-body
model [25] in calculations of 11Li + p elastic scattering and
it was shown that the cross sections are rather insensitive to
a precise form of the n-p potential taken in the form [60] (in
MeV)

v(r) = 120e−1.487r2 − 53.4e−0.639r2 − 27.55e−0.465r2
, (18)

with γ = 0.4.
We also intend to adopt the two-cluster model to calculate

breakup reactions of 11Li in collisions with the proton target.
To this end the HEA method, which was developed in
Refs. [15] and [16] and applied in [54] to the 6He+12C reaction,
is used in the present study. For simplicity, the superscript
index (n = 0, 1) which corresponds to the number of nodes
of the relative-motion s-wave function of the two clusters is
omitted. To show briefly the eikonal formalism, we start with
the probability that after the collision with a proton (z → ∞),
cluster h or c with impact parameter b remains in the elastic
channel:

|Si(b)|2 = exp

[
− 2

h̄v

∫ ∞

−∞
dzWi(

√
b2 + z2)

]
, i = c, h,

(19)

where W is the imaginary part of the microscopic OP, (16).
Consequently, the probability of the cluster’s being removed
from the elastic channel is (1 − |S|2). Thus, the common
probability of both the h and the c clusters leaving the elastic
channel of the 11Li + p scattering is (1 − |Sh|2)(1 − |Sc|2).
After averaging the latter by ρ0(s) (which characterizes the
probability of h and c being at a relative distance s), the total
absorbtion cross section is obtained:

σ tot
abs = 2π

∫ ∞

0
bhdbh[1 − |Sh(bh)|2][1 − Ic(bh)], (20)
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where

Ic(bh) =
∫

dsρ0(s)|Sc(bc)|2. (21)

In Eq. (21)

bc =
√

s2 sin2 θ + b2
h + 2sbh sin θ cos(ϕ − ϕh) (22)

and it comes from the relation bc = bh + b, with b = s sin θ
being the projection of s on the plane normal to the z axis
along the straight-line trajectory of the incident nucleus.

In the case of a stripping reaction upon the movement of
the h cluster from 11Li to the proton target, one should use the
probability of h leaving the elastic channel [1 − |Sh(bh)|2], and
of c continuing its elastic scattering with probability |Sc(bc)|2.
Then the probability of the whole process is |Sc(bc)|2[1 −
|Sh(bh)|2], and to get the total stripping cross section one has
to average over ρ0(s) [see Eqs. (20) and (21)]. Similarly, the
9Li transfer can be constructed, and the net contribution of
both removal reactions yields the total breakup cross section:

σ tot
bu = 2π

∫ ∞

0
bhdbh{|Sh(bh)|2 + [1 − 2|Sh(bh)|2]Ic(bh)}.

(23)

The sum of both the absorption [Eqs. (20) and (21)] and the
breakup [Eq. (23)] cross sections gives the total-reaction cross
section:

σ tot
R = 2π

∫ ∞

0
bhdbh[1 − |Sh(bh)|2Ic(bh)]. (24)

B. Momentum distributions of fragments

As is known (see, e.g., [15]), the differential and total
cross sections (for elastic scattering, as well as for diffractive
breakup and absorption) all require calculations of the prob-
ability functions of the k-momentum distribution of a cluster
in the two-cluster system d3P (b, k)/dk, which depend on the
impact parameter b. The general expression for the probability
functions can be written as [15]

d3P�(b, k)

dk
= 1

(2π )3

∣∣∣∣
∫

dsφ∗
k(s)�(b, r⊥)φ(n)

00 (s)

∣∣∣∣
2

, (25)

where �(b, r⊥) is expressed by means of the two profile
functions Sc and Sh [Eq. (19)] of the core and the dineutron
clusters, respectively. In Eq. (25), φk(s) is the continuum wave
function and k is the relative momentum of both clusters in
their center-of-mass frame. The vector r⊥ is the projection
of the relative coordinate s between the centers of the two
clusters on the plane normal to the z axis mentioned above. The
ground-state wave function of the relative motion of the two
clusters φ00 is given for the s state by Eq. (14). For calculations
of, e.g., the diffractive cross sections, the continuum wave
function φk is expanded in the partial-wave representation. If
in this case the distortion in the final channel is neglected,
the wave function φk(s) is replaced by a plane wave. Then,
following Ref. [15] for the s state (l = 0) the expression for

d2P�(b, k)/dkLdk⊥ will take the form

d2P�(b, k)

dkLdk⊥
= k⊥

16π3k2

∣∣∣∣
∫

ds

∫
d(cos θs) g(s) sin (ks)

×
∫

dϕs�(b, r⊥)

∣∣∣∣
2

, (26)

with

�(b, r⊥) = Sc(bc)Sh(bh). (27)

In Eq. (26), g(s) = rφ
(n)
0 (s) = r

√
4πρ

(n)
0 (s), where φ

(n)
0 and

ρ
(n)
0 are given in Eqs. (14) and (15). Hence, the diffraction

breakup cross section has the form(
dσ

dkL

)
diff

=
∫ ∞

0
bhdbh

∫ 2π

0
dϕh

∫ ∞

0
dk⊥

d2P�(k, b)

dkLdk⊥
,

(28)

with d2P�(b, k)/dkLdk⊥ from Eq. (26). The integrations over
bh and ϕh in Eq. (28) mean integration over the impact
parameter bh of the cluster h with respect to the target.

In the case of the stripping reaction when the h cluster
leaves the elastic channel it can be shown (following [15]) that
the cross section takes the form(

dσ

dkL

)
str

= 1

2π2

∫ ∞

0
bhdbhdϕh[1 − |Sh(bh)|2]

×
∫

ρdρdϕρ |Sc(bc)|2

×
[∫ ∞

0
dz cos(kLz)φ0(

√
ρ2 + z2)

]2

. (29)

Equation (29) is obtained when the incident nucleus has spin
equal to 0 and for the s state of the relative motion of both
clusters in the nucleus expressed by Eq. (14) with s = rc − rh,
ρ = bc − bh, s = ρ + z, and bc from Eq. (22).

C. Results of calculations for breakup processes

To estimate the 11Li breakup on a proton target, we use the
two-cluster model described in Sec. III A. As presented there,
we intend to study some observables when the 11Li nucleus
with an h = 2n-cluster separation energy of 0.247 MeV
is considered as a system in the l = 0 state with principal
quantum number n = 0 or n = 1. The respective WS potentials
V (s) and probabilities ρ

(n)
0 (s) [Eq. (15)] for the distance s

between the clusters in 11Li are shown for both n = 0 and
n = 1 in Figs. 8(a) and 8(b), respectively. Figure 8(a) shows
that the WS potential for n = 0 is about 2.8 times deeper
than that for the case of n = 1, although the shapes of both
potentials are similar. We note also that the half-radius of the
n = 1 potential is equal to 6.25 fm and it is much larger than
the 1.01 fm of the n = 0 potential. Figure 8(b) shows that the
two densities differ. Particularly, a steep drop of n = 1 density
is observed at s ≈ 3.8 fm. Moreover, bearing in mind the
results of fitting procedures in phenomenological potentials
(e.g., in Ref. [20]) giving an rms radius of about 5 ÷ 6 fm for
the constituent h-cluster density ρh(r), we may conclude that
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FIG. 8. (Color online) WS potential V (s) of the interaction
between the c and the h clusters (a) and the two-cluster density
distribution ρ0(s) normalized to unity (b) for the cases of n = 0
[dashed (green) line] and n = 1 [solid (blue) line].

in our consideration the n = 1 cluster state of 11Li becomes
preferable. On the other hand, the existence of long tails of
ρ

(n=0,1)
0 (s) for both states provokes interest in testing their

effects in the further considerations.
Our next step is to apply the OP U (b,n) [Eq. (16)] constructed

in the framework of the two-cluster model of 11Li to calculate
the differential cross section of 11Li + p elastic scattering at
62 MeV/nucleon. For the real part V (b,n) of this OP we use
a single-folding procedure in which the LSSM density [43] is
taken for the 9Li cluster. The imaginary part W (b,n) of the OP is
considered, as before, to be either W = WH or W = V F . The
calculated cross sections are shown in Fig. 9 and compared

FIG. 9. (Color online) 11Li + p elastic scattering cross section
at E = 62 MeV/nucleon using U (b,n) [Eq. (16)] for values of the
parameters N listed in Table III. Solid black line, W (b,0) = V F ; dashed
(red) line, W (b,0) = WH ; and dash-dotted (blue) line, W (b,1) = WH .
Experimental data are taken from Ref. [21].

TABLE III. The N parameters of OPs for 11Li + p scattering at
62 MeV/nucleon and HEA estimations of the total cross sections σ tot

abs

[Eq. (20)], σ tot
bu [Eq. (23)], and σ tot

R [Eq. (24)] (in mb) using the cluster
model of 11Li.

W (b,n) NR NI σ tot
abs σ tot

bu σ tot
R

W (b,0) = V F 1.407 1.195 79.0 431.8 510.8
W (b,0) = WH 1.381 1.306 78.6 405.3 483.9
W (b,1) = WH 4.68 3.99 106.6 581.6 688.2

with the experimental data [21]. For both cases we list in
Table III the values of the fitted renormalization coefficient N ’s
and the respective total cross sections for the n = 0 and n = 1
cases. One can see from Fig. 9 that the angular distributions
for both kinds of ImOP are closely displayed and they lead to
a fairly good agreement with the experimental data. However,
we note that the data are reproduced better again when
W = WH for both the n = 0 and the n = 1 cases, as pointed
out in the discussion of the results presented in Fig. 3 and
obtained with the usage of the LSSM density for 11Li.

In Table III the values of the total absorption σ tot
abs, breakup

σ tot
bu , and total-reaction σ tot

R cross sections are listed. First, we
note the significant role that the breakup channel plays in the
11Li + p reaction, where σ tot

bu contributes more than 80% to
σ tot

R . This is not the case for the 6He+12C process at an energy
of 38.3 MeV/nucleon [54], for which the breakup cross section
constitutes only about half of the total-reaction cross section.
This can be related to the observation that a quite substantial
amount of the 11Li + p imaginary potential in the elastic
scattering channel is formed owing to a transfer of the incident
flux of 11Li to a larger extent into breakup channels. Also, for
the case of the n = 1 state of the cluster wave function, the
fitted strength coefficients N and the respective values of the
cross sections are larger than for the n = 0 state, but the general
conclusions on the preferable role of breakup processes remain
the same.

Our next step is to calculate, using Eqs. (28) and (29) as
examples, the cross sections of the diffractive and stripping
(when h = 2n cluster leaves the elastic channel) 11Li + p
reactions at E = 62 MeV/nucleon, respectively. For this
purpose we use in Eqs. (28) and (29) the corresponding
functions Si(bi), i = c, h [see Eq. (19)]. They are given in
Fig. 10 for the s state with n = 0 and n = 1. In Figs. 11 and 12
we show the results for the diffraction breakup and stripping
11Li + p scattering at E = 62 MeV/nucleon, respectively.
These results give predictions because of missing experimental
data for such processes accompanying the 11Li + p scattering
at E � 100 MeV/nucleon. For the diffractive scattering we
obtain values of the widths 98 MeV/c (for n = 0) and
85 MeV/c (for n = 1), and for the stripping reaction 79 MeV/c
(for n = 0) and 72 MeV/c (for n = 1), respectively, thus
favoring the configuration in which the two valence neutrons
occupy the 1s state in 11Li. It is noteworthy that the widths
calculated in our work for the 11Li breakup on the proton
target are larger than those obtained in experiments (around
50 MeV/c) for the reactions of 11Li on the nuclear targets
9Be, 93Nb, and 181Ta at an energy of 66 MeV/nucleon [11]
and on a wide range of targets (9Be to 238U) [12]. It is noted
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FIG. 10. (Color online) Functions Si(bi), i = c, h [see Eq. (19)],
for the s state of the relative motion of clusters with n = 0 and n = 1.

in [11] and [12] that the width almost does not depend on
the target’s mass number, and thus, it characterizes basically
the momentum distribution of two clusters. Our width for
the stripping of the 2n cluster is similar to the cases of 2n
stripping from other nuclei (but not from 11Li). It turns out
that the account for 2n binding in 11Li is not enough to obtain
the observed widths in the scattering of 11Li on nuclei, as
well as on proton targets. We would like to mention also
that we had a methodical task to calculate the widths using
different wave functions (n = 0, 1) of the relative motion of
the clusters. The results show similar values of the widths
in both cases. Probably, it is difficult to solve the problem
within our simplified two-cluster model, and thus, it must be
considered in a more complicated three-body model. Also,
obviously, experiments on stripping and diffraction reactions
of 11Li on proton targets are highly desirable. This concerns
measurements of the neutrons in the decay as well.

D. Single-particle density of 11Li in the two-cluster model

In this subsection we consider in more detail the single-
particle density distribution of 11Li that can be calculated and

 0
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FIG. 11. (Color online) Cross section of diffraction breakup in
11Li + p scattering at E = 62 MeV/nucleon for the cases of n = 0
[dashed (green) line] and n = 1 [solid (blue) line].

FIG. 12. (Color online) The same as Fig. 11, but for the stripping
reaction.

applied, instead of the phenomenological one, in the analyses
and interpretation of 11Li + p experimental data. For this
purpose, we adopt our cluster model, consisting of a 9Li core
and halo h = 2n. If one sets ρh(r1) for the h cluster and ρc(r2)
for the 9Li nucleus, the single-particle density distribution of
11Li can be derived in analogy to Eq. (16) in the following
form:

ρ(r)

=
∫

dφ sin θdθ

∫
dss2 [ρh(rh) + ρc(rc)] ρ

(n)
0 (s)

= 2π

∫ 1

−1
dx

∫ ∞

0
dss2[ρh(

√
r2 − 2(9/11)rsx + (9/11)2s2)

+ ρc(
√

r2 + 2(2/11)rsx + (2/11)2s2)]ρ(n)
0 (s). (30)

Expression (30) indicates that the density of 11Li can be
calculated using the sum of the corresponding densities of both
clusters and folding it with the square of the relative-motion
wave function of the two clusters |φ00(s)|2.

As a comment on our approach we would like to mention
the difference between the method used to calculate the folding
11Li + p OP [Eq. (16)] and that used to estimate the single-
particle density of 11Li [Eq. (30)]. In fact, in the former, the
Uh OP was not calculated as a folding integral, but expressed
through the vnp potentials, and therefore there we did not
include the density of the h = 2n cluster. Instead, in Eq. (30)
we consider the h-cluster density, together with the density of
the 9Li core, both being folded by the wave function of the
relative motion of the two clusters.

Further, in the calculations we use the LSSM density for
the 9Li cluster with rms radius Rc = 2.31 fm [43] and for the h
halo we probe two densities: one is described by the Gaussian
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TABLE IV. Values of the parameters of the symmetrized Fermi
and Gaussian density distributions, h- and c-cluster rms radii Rh and
Rc, and deduced matter rms radii Rm (in fm) within the 9Li + 2n

model of 11Li.

Parametrization R a Rh Rc Rm

SF1 2.234 0.27 2 2.31a 2.77 (n = 0)
2.93 (n = 1)

G 2 2.31a 2.77 (n = 0)
2.93 (n = 1)

SF2 4.573 0.5 4 2.31a 3.32 (n = 1)
0.2GG + 0.8GO [20] 5.98 2.52 3.42

aFrom the LSSM for 9Li.

function (G density) (e.g., [61])

ρG(r) =
(

3

2πR2
h

)3/2

exp

(
− 3r2

2R2
h

)
, (31)

and the other is the symmetrized Fermi distribution (SF
density) (e.g., [62])

ρSF(r) = ρ0
sinh (R/a)

cosh (R/a) + cosh (r/a)
, (32)

where

ρ0 = 3

4πR3

[
1 +

(
πa

R

)2]−1

, (33)

and the corresponding rms radius is

〈r2〉 = R2
h = 3

5
R2

[
1 + 7

3

(
πa

R

)2]
. (34)

The two densities [Eqs. (31) and (32)] are normalized to unity,
and substituting them in Eq. (30) they have to be multiplied by
a factor of 2. As for the G density it has only one parameter that
governs its behavior: the rms radius of the halo Rh. First, we
take Rh = 2 fm, which is almost twice the nucleon radius. In
principle, such a choice of Rh is justified, as the cluster inside
the nucleus is “smeared,” and moreover, the folding procedure
itself [in which the relative motion function φ00(s) takes
place with rms radius 4.93 fm; see also Sec. III A] ensures that
the h cluster is in the periphery. Concerning the SF density,
we perform calculations with a set of parameters R and a,
selected so as to obey rms Rh = 2 fm (see the set SF1 in Table
IV). For the choice of them the condition R > πa must be
satisfied, and for more convenience Eq. (34) can be rewritten
in the following way:

R2 = 5
3R2

h − 7
3 (πa)2. (35)

The calculated single-particle density distributions of 11Li
are presented in Fig. 13 together with the LSSM density.
Results are shown for both the n = 0 and the n = 1 cases. As
shown, the usage of two kinds of h density, SF1 and G, yields
very similar 11Li densities, shown as the pair of dotted and
dashed curves for n = 0 and, also, as the solid and dot-dashed
curves for n = 1, correspondingly, in the whole region of r up
to 10 fm. In addition, all four curves are close at r < 4 fm.
However, the difference between the n = 0 and the n = 1 pairs
is seen in the interval 5 < r < 7 fm, where the n = 1 curves

FIG. 13. (Color online) Single-particle density distribution of
11Li (normalized to A = 11) obtained in the framework of the cluster
model [Eq. (30)]. The h-cluster density distributions are taken in two
forms: the symmetrized Fermi distribution (SF1) and the Gaussian
function (G) with Rh = 2 fm. Results are presented for the cases of
n = 0 and n = 1, respectively. The LSSM density is also given.

exhibit a “bump,” while the n = 0 curves go down compared
to the case of the LSSM density of 11Li. Moreover, we note that
the 11Li rms radius of 2.93 fm for n = 1 curves is very close
to the LSSM value of 2.94 fm. The tail of the LSSM density
is higher at r > 8 fm than those of the cluster curves with
Rh = 2 fm, but as pointed out in Ref. [20] the calculated
differential cross sections of 11Li + p scattering are not
sensitive to a possible long density tail at the nuclear far
periphery.

The very pronounced halo nature of the 11Li nucleus is
mainly supported by its large matter radius demonstrated by
Tanihata et al. in Ref. [1]. Recently, a successful attempt to get
a “realistic” density of this nucleus was realized in Ref. [20].
In the latter the experimental data at about 700 MeV/nucleon
were described using the phenomenological constituent cluster
model of the 11Li density composed of two terms 0.2GG +
0.8GO with the Gaussian GG and the harmonic oscillator
GO functions together. The fitting procedure led to the total
rms matter radius Rm = 3.42 fm of the whole density, where
the fitted values Rc = 2.52 fm and Rh = 5.98 fm of its
separate terms were interpreted as the core and h-halo radii,
respectively. These radii satisfy the relation

R2
m = AcR

2
c + AhR

2
h

A
, A = Ac + Ah (36)

(Ac, Ah, and A being the number of nucleons in the core,
the 2n-cluster, and the nucleus, respectively) that is valid for
the constituent model. However, instead, we may argue that
the 9Li and h systems can be considered the true clusters only
when, in a cluster model, they are folded [see Eq. (30)] with
the probability density of their relative motion. In Fig. 14
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FIG. 14. (Color online) Single-particle density distribution of
11Li (normalized to A = 11) obtained in the framework of the cluster
model [Eq. (30)] with a symmetrized Fermi (SF2) distribution for
the h-cluster density with Rh = 4 fm [dash-dotted (green) line]. The
dashed black line represents the best density parametrization that
describes the 11Li + p elastic scattering data [20]; the solid black
line, the LSSM density.

our result is shown as the SF2 curve when the value of
Rh = 4 fm is taken to be twice as large as the Rh = 2 fm
in the SF1 case. Also in the same figure we present the
phenomenological 0.2GG + 0.8GO density from Ref. [20].
Our SF2 parametrization leads to a value for the matter rms
radius Rm = 3.32 fm that is close to the Rm = 3.42 fm for the
phenomenological constituent model mentioned above. Thus,
our folding method to calculate the single-particle density
distribution [Eq. (30)] which takes into account the relative
motion of the clusters makes it possible to get realistic densities
within cluster models without the use of phenomenology. It is
seen from our analysis with SF2 parametrization that the h
cluster is really “smeared” in the 11Li nucleus (Rh = 4 fm)
and that the averaging on a relative motion of both clusters
(which strongly depends on the h-cluster separation energy)
plays an important role. This fact is confirmed also in Ref. [20],
where the deduced halo radius Rh = 5.98 fm is larger than
the core radius Rc = 2.52 fm by a factor of more than 2.
However, the ambiguity remains in the choice of the “best”
density distribution of 11Li because only the 11Li + p elastic
scattering data are not sufficient.

IV. CONCLUSIONS

The results of the present work can be summarized as
follows.

(i) In Sec. II the microscopic OPs and cross sections
of 11Li + p elastic scattering have been calculated at the
energies of 62, 68.4, and 75 MeV/nucleon and were compared
with the available experimental data. The direct (V D) and

exchange (V EX) parts of the real OP (V F ) are calculated
using the folding procedure with the density-dependent M3Y
(CDM3Y6-type) effective interaction based on the Paris NN
potential. The imaginary part of the OP (WH ) has been
calculated microscopically within the folding model based on
the HEA. The LSSM densities [43] of protons and neutrons
with exponential asymptotic behavior of 11Li, which is the
correct one, are used in the calculations. The spin-orbit
contribution to the OP is also included in the calculations. The
11Li + p elastic scattering cross sections and the total-reaction
cross sections are calculated using the program DWUCK4 [48].

(ii) We point out that the regularization of our microscopic
OPs is achieved by introducing the fitting parameters NR , NI ,
NSO

R , and NSO
I related to the “depths” of the separate parts

of the OP. They are, in principle, the only free parameters
of our approach, in contrast to other phenomenological ones,
and serve as a quantitative test of the latter; i.e., the proximity
of N values to unity shows the closeness of the approach
to reality. However, here the “ill-posed” problem takes place
because the fitting procedure is applied to a limited number
of experimental data. The problem of the ambiguity of the N
parameters has been considered in our previous work [45,46].
In the present work we use a physical constraint on the
choice of the values of the N parameters, namely, the known
behavior of the volume integrals JV and JW as functions of the
incident energy for E � 100 MeV/nucleon [53]. We compare
the behaviors of the values of JV and JW obtained in our
work with those in the semiphenomenological approach in
Ref. [37], where many more parameters have been used
than in our microscopic method. We discuss in more detail
the problem arising from the behavior of JW at E = 62
MeV/nucleon and relate it to the quality of the data at larger
angles (θc.m. > 46◦). We note that this problem appeared also
in [37]. Finally, we obtained a definite set of the fitted N
parameters that give satisfactory agreement of our results with
the data on the 11Li + p elastic scattering cross section using
the physical criterion of the behavior of the volume integrals
as a function of the energy.

(iii) We would like to mention that the values of the
total cross sections of scattering and reaction can serve as
another physical criterion for the N values. However, the
corresponding experimental data for these values are missing
at the energy interval considered in our work, so they are highly
desirable.

(iv) As in our previous work [45,46], we would like to em-
phasize that a more successful explanation of the cross-section
data could be given by accounting for virtual excitations of
inelastic and decay channels of the reaction. For this reason, in
Sec. III of the present paper, apart from the usual folding model
based on the LSSM, we consider another folding approach,
which includes 11Li breakup, suggesting a simple 9Li + 2n
cluster model for its structure. Both LSSM and cluster models
of 11Li are capable of reproducing fairly well the two-neutron
separation energy from 11Li. In Sec. III we use the procedure
from Sec. II for microscopic calculations of the necessary OPs
in the breakup model for estimations of the elastic scattering
cross sections, as well as of the momentum distributions in the
processes of proton scattering on clusters and the correspond-
ing S functions in 9Li + p and h + p scattering. The folding
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OPs calculated in the two parts of our work behave rather
closely if one fits their strengths to the same elastic scattering
data as done for 11Li + p at an energy of 62 MeV/nucleon.
Thus, the analysis of other types of reaction mechanism,
such as 11Li breakup, makes it possible to understand their
significant role in the formation of the OP responsible for
11Li + p elastic scattering. It turns out that the breakup channel
gives a σ tot

bu that exceeds 80% of σ tot
R , while it is about a half

of σ tot
R in the case of 6He+12C (as obtained in Ref. [54]).

(v) In the present work we also give predictions for
the longitudinal momentum distributions of 9Li fragments
produced in the breakup of 11Li at 62 MeV/nucleon on a
proton target. We have calculated the diffraction and stripping
(when the cluster 2n leaves the elastic channel) cross sections
of the reaction of 11Li on a proton target at an energy of
62 MeV/nucleon. We note that our breakup gives the width of
the peak as between 70 and 80 MeV/c, while widths of about
50 MeV/c are known from the reactions of 11Li on nuclear
targets 9Be, 93Nb, and 181Ta at an energy of 66 MeV/nucleon.
In relation to this, here we should mention that at an energy
in the range 60–70 MeV/nucleon a distortion owing to the
nuclear and Coulomb forces could affect the cross sections.
We have in mind also that our simplified two-cluster model
could not give the correct answer and that it can be found in a
more complicated three-body approach. Hence, this problem
remains open and requires further analysis. We emphasize the
necessity for experiments on stripping and diffraction reactions
of 11Li on proton targets at an energy E < 100 MeV/nucleon.

(vi) We present results for the single-particle density
distribution of 11Li in the framework of a cluster model.
Our calculated density is close to the phenomenological one
obtained in Ref. [20] by fitting to the experimental differential
cross sections of scattering of 11Li at 700 MeV/nucleon on
a proton target. From a physical point of view the cluster
model allows more clear interpretation of the experimental
data, and together with the phenomenological densities, it
can be applied as a pattern density to fit the data. Future
measurements of the cross sections for proton elastic scattering
and momentum distribution of 9Li fragments in 11Li breakup
reactions might provide supplemental information on the
internal spatial structure of the 11Li nucleus.
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