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Population of the yrast superdeformed band in 152Dy within a cluster approach
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By using the dinuclear system approach combined with quantum diffusion and statistical methods, the
population of the yrast superdeformed band in the 152Dy nucleus is treated. The excitation functions are calculated
and analyzed for the population of the superdeformed states in xn, pxn, and αxn evaporation channels of different
asymmetric and almost symmetric reactions. The dependencies of the relative intensities of E2 transitions between
the rotational states of the superdeformed band on the de-excitation channels, charge asymmetry of the entrance
channel, and beam energy are established. The restrictions of the population of the superdeformed band in spin
by complete fusion and quasifission processes are shown. The calculated results are compared with the available
experimental data.
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I. INTRODUCTION

Superdeformed (SD) nuclear states were initially discov-
ered in actinides at low spins [1]. Subsequently, the effect
of superdeformation has been observed at high spins in
different regions of the nuclear chart [2]. The SD states of
nuclei with mass numbers A ∼ 150 are still of theoretical
and experimental interest. The SD states of several isotopes
of Dy, Gd, and Tb [2] have been produced in different
evaporation channels of fusion-evaporation reactions with
population intensities of about 1%. The measured moments
of inertia are about 80h̄2/MeV, which correspond to the
quadrupole deformation parameters β2 ∼ 0.6. For these states,
one can observe the rotational γ transitions from very high
(∼60h̄) to lower (∼20h̄) spins and, in some cases, determine
the energy of the lowest observed state of the SD band. The
experimental achievements have stimulated the theoretical
description of the SD states and the mechanism of their
population. The observed nuclear properties of SD states are
similar in different nuclei with A ∼ 150 [2]. Therefore, in this
paper we focus only on the population of the SD band in
152Dy, first discovered and experimentally studied in the best
way [3–14].

Investigations of the high-spin SD rotational bands in
different mass regions have been performed with the cranked
Woods-Saxon and Nilsson models [15,16] using a few
deformation parameters and with the cluster models where
the cluster degrees of freedom, taken properly, allow us to
simplify the treatment of a nuclear system in the space of
collective coordinates. The coexistence of the clustering and
of mean-field aspects is a unique feature of nuclear many-body
systems [17,18]. There have been many recent developments in
the field of nuclear clusters including the ability to perform ab
initio calculations of the light nuclei, such as Green’s function
Monte Carlo methods [19] and antisymmetrized molecular
or fermionic dynamics approaches [20,21]. Semimicroscopic
symmetry-adopted cluster approaches have been applied to
predict the SD and hyperdeformed (HD) states in light
nuclei [17,18,22,23]. The calculations for light nuclei have
shown that the configurations with large quadrupole and

octupole deformation parameters and the low-lying collective
negative-parity states are strongly related to clustering
[16,22–30]. As known from the study of light nuclei, the SD
shape of nuclei can be considered as dinuclear rather than ellip-
soidal. The experimental and theoretical results provide us with
evidence for the existence of fission modes by the clustering
of fissioning nuclei [31]. Strong collective dipole transitions
between the excited SD band and the lowest-energy SD band in
150Gd, 152Dy, 190,194Hg, and 196–198Pb and between the yrast SD
band and the ND band in 194Hg and 194Pb have been observed
[5,32]. This indicates the possibility that the transitions are
affected by the existence of a pronounced cluster structure of
SD states.

Based on the theoretical results of Refs. [33–42], one can
be convinced that certain quasimolecular configurations with
dumbbell shapes have the same quadrupole moments and
moments of inertia as those measured for high- and low-spin
SD states and low-spin HD isomer states. With the dinuclear
system (DNS) approach [34,37,39–42], the main properties of
SD states in the 60Zn nucleus and several isotopes of Pb and
Hg have been described. In this model, two clusters are in a
touching configuration and the main collective coordinate is
the charge (mass) asymmetry. The relative distance between
the centers of the clusters corresponds to the minimum
of the nucleus-nucleus interaction potential and is slightly
larger than the sum of cluster radii. The overlapping of nuclei is
hindered by a repulsive nucleus-nucleus interaction potential
at smaller relative distances. In the cluster models [36,38],
the charge (mass) asymmetry coordinate is fixed, and the
main collective coordinate is the relative distance between the
centers of the clusters. Because of this, the clusters penetrate
each other.

According to the DNS approach [34,37,39–42], the strongly
deformed nuclear state can be treated as the cold rotating DNS
(in which the internal excitation energy is zero). At given
angular momentum the potential pocket of the nucleus-nucleus
potential contains the quasibound states with quite large
half-lives. The lowest quasibound state seems to be identical to
the SD (HD) state in the case of asymmetric (more symmetric)
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DNS configuration. As shown within the cluster and statistical
approaches, the highly deformed states can be populated in
the capture process [without the compound nucleus (CN)
formation stage] either by de-excitation (neutron emission)
of the initial DNS formed in the entrance channel at collision
energy above the Coulomb barrier [43] or directly by tunneling
through this barrier [40,44]. Using the same approach, in the
present paper we will consider the population of the SD states
in the reactions with different entrance-channel asymmetries.
However, the SD cluster states of interest will be located quite
far from the entrance-channel configuration and reached by
nucleon transfer. Note that in the literature there are only rather
schematic calculations of the population of the SD band and
the relative intensities of E2 transitions between the rotational
states of the SD band [45].

II. MODEL

A. Population of the SD state in fusion-evaporation reactions

According to the DNS approach [34,37,39–42], the SD
state can be considered as the cold rotating DNS. Its formation
can be treated as a two-step process. First, the colliding
nuclei pass over the Coulomb barrier and form the initial
excited DNS (two nuclei in a touching configuration) in the
entrance channel. After the capture, the DNS is trapped in the
pocket of the interaction potential between partners or in
the local minimum of the potential energy surface. Second,
this initial DNS evolves by diffusion in the charge Z and
mass A asymmetry coordinates (where Z and A are the
charge and mass numbers of the DNS light nucleus) and
transforms into the SD state related to the DNS which is
quite different from the initial one. This transformation is
accompanied by de-excitation due to particle emission and
the DNS decay in the coordinate of the relative distance R
between the centers of nuclei. The proposed mechanism for
populating the SD state is schematically presented in Fig. 1.
Here, U is the potential energy of the DNS (see the next
section). The cold DNS corresponding to the SD state is formed
by evolution of the initial DNS toward a more asymmetric
DNS configuration. The DNS configuration is trapped in the
potential minimum both in Z, A and in R coordinates and
lives rather a long time to be interpreted as the SD state.
Such a system can possibly emit γ quanta between collective
rotational states and these can be can be experimentally
observed.

The partial cross section

σSD(Ec.m., L) = σcap(Ec.m., J )PSD(Ec.m., J ) (1)

of the population of the SD state with spin L depends
on the capture cross section σcap, which is related to the
formation of the excited initial DNS, and the probability
PSD of transformation of this DNS into the SD state (cold
rotating DNS). Here, Ec.m. is the bombarding energy in the
center-of-mass system, J = L + �L is the initial angular
momentum, and �L is the average angular momentum carried
by the evaporated particles.

FIG. 1. Scheme of the formation of the SD state in an asymmetric
reaction. Z is the charge number of the DNS light nucleus. Zi and ZSD

are the charge asymmetries of the initial entrance-channel DNS and
SD DNS, respectively. The Businaro-Gallone point ZBG is marked.

B. DNS potential energy and the nucleus-nucleus
interaction potential

Under the assumption of a small overlap of the nuclei in
the DNS its potential energy is calculated as follows [46]:

U (R,Z,A, J ) = B1 + B2 + V (R,Z,A, β1, β2, J )

− [
B12 + Erot

12 (J )
]
, (2)

where B1 and B2 are the mass excesses of the fragments in their
ground states, and β1 and β2 are their quadrupole deformation
parameters, which are taken from Ref. [47] for even-even
nuclei. For the quadrupole deformation parameter of an odd
nucleus, we choose the maximal value from the deformation
parameters of neighboring even-even nuclei. The experimental
values of B1 and B2 in Ref. [48] are used if available.
Otherwise, we use the values from Ref. [49]. The potential
energy is normalized to the potential energy B12 + Erot

12 (J ) of
the rotating CN [the sum of the mass excess B12 and rotational
energy Erot

12 (J )]. The nucleus-nucleus potential

V (R,Z,A, β1, β2, J )

= VC(R,Z, β1, β2) + VN (R,A, β1, β2)

+Vrot(A, β1, β2, J ) (3)

in (2) is the sum of the Coulomb potential VC , the
nuclear potential VN , and the centrifugal potential Vrot =
h̄2J (J + 1)/(2�). Because the overlap of nuclei in the DNS is
quite small, the DNS moment of inertia � is calculated in the
sticking limit as

� = k0(�1 + �2 + μR2). (4)
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For large angular momenta L, the moments of inertia �i

(i = 1, 2) of the DNS nuclei are obtained in the rigid-body
approximation as

�i = 1

5
m0Ai

(
a2

i + b2
i

)
,

ai = R0i

(
1 − β2

i

4π

)(
1 +

√
5

4π
βi

)
, (5)

bi = R0i

(
1 − β2

i

4π

)(
1 −

√
5

16π
βi

)
.

As known from the experimental study, the moments of inertia
of strongly deformed nuclear states are very close to 85% of
those in the rigid-body limit [33]. In our calculations we set
k0 = 0.85 for the DNS with Z < ZBG and k0 = 1 for the DNS
with Z � ZBG. Here, ZBG is the value of charge asymmetry
in the Bussinaro-Gallone point (the position of the maximum
of U ; see Fig. 1). In the entrance channel (the capture stage)
� = μR2, where μ is the reduced mass of relative motion.

For the nuclear part, we use the double-folding formalism
with the Skyrme-type effective density-dependent nucleon-
nucleon interaction [37,46,50]. The densities of the nuclei
are taken in the Woods-Saxon form with the nuclear radius
parameter r0 = 1.02–1.16 fm and the diffuseness parame-
ter a = 0.48–0.56 fm, depending on the charge and mass
numbers of the nucleus [37]. Due to the sum of the repul-
sive Coulomb and centrifugal summands with the attractive
nuclear one in Eq. (3), the nucleus-nucleus potential has
a potential pocket with a minimum situated for pole-pole
orientation at the distance R = Rm ≈ R1[1 + √

5/(4π )β1] +
R2[1 + √

5/(4π )β2] + 0.5 fm (where Ri = r0A
1/3
i fm). The

position of the Coulomb barrier corresponds to R = Rb ≈
Rm + 1 fm in the DNS considered. The quasifission barrier
B

qf
R , calculated as the difference between the bottom of the

potential pocket and the top of the Coulomb barrier (Fig. 2),
prevents the decay of the DNS in the R degree of freedom.
The barriers B

sym
Z and B

asym
Z hinder the drift and diffusion of

the SD DNS toward more symmetric and more asymmetric
configurations in Z, respectively.

The nucleus-nucleus potential V as a function of R and
the potential energy U at R = Rm(η) as a function of Z are
presented in Fig. 2 at different angular momenta J . For each Z,
we minimized U (Rm,Z,A, J ) with respect to A. The values
of barriers B

qf
R and B

asym,sym
Z for the DNS corresponding to the

SD state are also shown. While the depth B
qf
R of the potential

pocket decreases with increasing angular momentum J and is
equal to zero at the critical angular momentum J = Jcr due
to the large repulsive centrifugal part of the nucleus-nucleus
potential (3), the values of B

asym,sym
Z vary only slightly with J .

Because B
asym
Z < B

sym
Z in the case considered, the complete

fusion (or, in other words, the transition to a normally
deformed state) from a given cluster configuration is more
probable than the diffusion in the charge (mass) asymmetry
coordinate to smaller asymmetry. The potential energy of
more symmetric DNS configurations decreases faster with
angular momentum, in comparison with asymmetric ones,
since the moments of inertia of these DNS are larger and,
thus, the positive contributions from the centrifugal term in

FIG. 2. (a) Dependencies of the nucleus-nucleus potential V on
R for a cluster configuration which corresponds to the SD state of
152Dy. The definition of B

qf
R is illustrated. (b) The DNS potential

energy as a function of charge number Z of the DNS light nucleus for
152Dy. The value of U is normalized to the energy of the rotating CN
152Dy. The calculated results at J = 0, 20, 40, and 60 are presented
by solid, dashed, dotted, and dashed-dotted curves, respectively. The
definitions of Bsym

η and Basym
η are illustrated.

Eq. (3) to U are smaller. One can also introduce the value of
angular momentum J0 at which the potential energy of the
almost symmetric DNS configuration becomes smaller than
that of the CN configuration. For 152Dy, we obtain J0 ≈ 60.
At Jcr > J > J0 the cold DNS can be trapped in the minimum
of potential energy at the symmetric DNS configuration, the
complete fusion becomes energetically denied, and the DNS
decay (quasifission) becomes the dominant process.

C. Capture cross section

The partial capture cross section σcap(Ec.m., J ) depends on
the capture probability Pcap, which is related to the transition
through the entrance Coulomb barrier (Fig. 2):

σcap(Ec.m., J ) = πh̄2

2μEc.m.

(2J + 1)Pcap(Ec.m., J ). (6)

The maximal angular momentum in (6) is Jmax = Jcr at which
the pocket in the nucleus-nucleus potential in the entrance
channel disappears and the capture does not occur. For the
reactions considered, Jcr = 76–82. The capture probability
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Pcap is calculated by employing the quantum diffusion ap-
proach [51,53,54] (see Appendix A).

D. Transformation of initial excited DNS into a SD cluster state

1. Evolution of the DNS in charge
and mass asymmetry coordinates

After the capture stage there are nucleon drift and nucleon
diffusion between the nuclei of the DNS. The system evolves
either toward the CN configuration or to a more symmetric
DNS configuration. Then, a statistical equilibrium is reached
in the charge and mass asymmetry coordinates so that the
formation probability [55]

PZ,A ∼ exp[−U (Rm,Z,A, J )/Tmax(J )] (7)

of each DNS (Z � 2) or CN (Z = 0 and 1) configuration at
certain J depends on the potential energy U (Rm,Z,A, J ). The
CN is taken into consideration with U (Rm,Z,A, J ) = 0. The
temperature in Eq. (7) is taken in the deepest minimum of U :

Tmax(J ) = max[TCN(J ), {TZ,A(J )}Z�2,A�2],

where TCN(J ) = [E∗
CN(J )/a]1/2 and TZ,A(J ) =

[E∗
Z,A(J )/a]1/2 are the temperatures of the CN with

excitation energy E∗
CN(J ) = Ec.m. + Q − Erot

12 (J ) and the
DNS with asymmetries (Z,A) and excitation energy
E∗

Z,A(J ) = E∗
CN(J ) − U (Rm,Z,A, J ), respectively. The

notation {TZ,A(J )}Z�2,A�2 means the set of temperatures of
all possible DNS. Here, the Fermi-gas model is employed
to calculate the temperatures with a level-density parameter
a = At/12, where At is the total mass number of the system.

2. Competition between particle emission and DNS decay

Any excited DNS with Z � 2 existing with probability
PZ,A can decay in the R coordinate into two fragments with a
probability rate [55]

	R
Z,A ∼ exp

[−B
qf
R (Z,A, J )/TZ,A(J )

]
(8)

if the local excitation energy of the DNS is high enough to
overcome the barrier B

qf
R (Z,A, J ) of the nucleus-nucleus

potential (Fig. 2). For 0 � Z < 2, 	R
Z,A = 0. The competition

between particle (for example, neutron or proton) emission
and the DNS transition over the quasifission barrier B

qf
R

in R should be considered for all possible DNS and CN
configurations. The probability rate for neutron (n) or proton
(p) emission from the DNS with Z � 2 is

	
n,p
Z,A ∼ exp[−Bn,p(Z,A)/TZ,A(J )]

+ exp[−Bn,p(Zt − Z,At − A)/TZ,A(J )], (9)

where the emission of particles from both light (first term) and
heavy (second term) DNS nuclei is taken into account with
the corresponding binding energies Bn,p (plus the value of the
Coulomb barrier for the proton). Here, Zt is the total charge
number of the DNS. For the emission of a neutron or proton
from the CN (Z = 0 or 1), the probability rate is defined as

	n
Z=0,A=1 ∼ exp[−Bn(Z = 0, A = 1)/TCN(J )] (10)

or

	
p
Z=1,A=1 ∼ exp[−Bp(Z = 1, A = 1)/TCN(J )], (11)

where Bn(Z = 0, A = 1) or Bp(Z = 1, A = 1) is the neutron
or proton binding energy in the CN. Here, 	n

Z=1,A=1 =
	

p
Z=0,A=1 = 0. Analogously, we calculate the probability rates

of the deuteron (Z = 1, A = 2) and triton (Z = 1, A = 3)
emissions from the CN [55].

The neutron or proton emission probability W
n,p
Z,A(E∗

CN, J )
from the DNS with (Z,A) or the CN is calculated as the
product of the DNS or CN formation probability and the
particle emission probability rate from this configuration:

W
n,p
Z,A = PZ,A	

n,p
Z,A∑

Z′,A′ PZ′,A′
[
	R

Z′,A′ + 	n
Z′,A′ + 	

p
Z′,A′

] , (12)

where the indexes Z′ and A′ run over all possible decay
channels from the neutron and proton evaporations to the
symmetric splitting. Note that the same statistical approach
was applied in Ref. [55] to analyze the light particle and
fragment emission from the excited DNS and compound
nuclei. The calculated mass and isotopic distributions, as well,
as average total kinetic energies of the reactions products,
were found to be in a good agreement with the experimental
data [55].

3. De-excitation by neutron emission

In the evaporation channel of the emission of x neutrons,
the probability of transformation of the initial excited DNS
with (Zi,Ai) into the SD state [cold DNS with (ZSD, ASD)],

PSD(Ec.m., L) = wxn(Ec.m., J )
x∏

k=1

P k
n , (13)

depends on the probabilities P k
n of neutron emission from

all possible DNS nuclei and CN in the evaporation step k
and the probability wxn of realization of the xn-evaporation
channel at given J and excitation energy corresponding to
the values of Ec.m. (see Appendix B). The average angular
momentum and energy carried by the neutron are taken as
ln = 0.5 and Bn + 2T (J ) [where T (J ) is the temperature of
the DNS or CN configuration], respectively. At the evaporation
steps k = 1, . . . , (x − 1) and last step k = x,

P k<x
n =

( ∑
Z′,A′

Wn
Z′,A′

)
k

(14)

and

P k=x
n = (

Wn
ZSD,ASD+1

)
k=x

, (15)

respectively. So, at each evaporation step the competition be-
tween neutron emission and different binary fragmentations of
the excited system (decays of the excited DNSs) is considered.
At the last evaporation step [see Eq. (15)], the neutron is
emitted from the DNS with Z = ZSD and A = ASD + 1.
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4. De-excitation by proton and α-particle emission

In the case of proton emission, one can use the same
expressions as presented above for calculating PSD. The
neutron binding energy should be replaced in Eqs. (13), (B1),
and (B2) by the sum of the proton binding energy and the
Coulomb energy. The average angular momentum carried
by protons is taken as lp = 0.5. The evaporation of charge
particles likely occurs in the first steps. To calculate wpxn

and wαxn, one can use the expressions in Appendix B, taking
into consideration the Coulomb interaction in the emission
thresholds.

In the DNS approach, the emission of an α particle is
interpreted as quasifission of the excited DNS being in an
α-cluster configuration. An α particle is assumed to be emitted
at the first evaporation step. The probability of this process is
calculated as

Wα
2,4 = P k

α = PZ=2,A=4	
R
Z=2,A=4∑

Z′,A′ PZ′,A′
[
	R

Z′,A′ + 	n
Z′,A′ + 	

p
Z′,A′

] . (16)

The threshold of α-particle emission from the DNS is
calculated as

B
qf
R (Z = 2, A = 4, J ) = B

qf
R (Z = 2, A = 4, J = 0)

+ h̄2lα(lα + 1)

2k0μ

(
1

R2
b

− 1

R2
m

)
. (17)

Here, lα = μR2
m

�1+�2+μR2
m
J is the orbital angular momentum

carried by the α particle. After the emission of an α particle
the average excitation energy of the system decreases by the
value B

qf
R (Z = 2, A = 4, J ) + 2TZ=2,A=4 (see Appendix C).

E. Intensity of E2 transitions between rotational states
of the SD band

The cold rotating SD DNS, being in the potential minimum
in (R,Z,A) coordinates, can emit γ quanta because of the
transitions between the collective rotational states. The time
Tγ (L) of the collective E2 transition between the rotational SD
states with angular momenta L and L − 2 is written as [47]

Tγ (L) = 408.1

5/(16π )
(
Q

(c)
2

)2
[Eγ (L → L − 2)]5

, (18)

where the energy

Eγ (L → L − 2) = L(L + 1)/(2�) − (L − 2)(L − 1)/(2�)

of the γ quantum is in units of keV, the electric quadrupole
moment

Q
(c)
2 = 2e

A2
2Z1 + A2

1Z2

A2
R2 + Q

(c)
2 (1) + Q

(c)
2 (2)

of the SD DNS is in 102 e fm2, and Tγ is in seconds. The electric
quadrupole moments Q

(c)
λ2

(i) (i = 1, 2) of the SD DNS nuclei
are calculated in their centers of mass.

The γ transition between the collective rotational SD
states competes with the SD DNS decays by tunneling in R
(quasifission) and Z coordinates. The tunneling probability in
A at fixed Z = ZSD is neglected. The tunneling times through

the barrier in R and Z coordinates, respectively, are estimated
by using a parabolic approximation for the potential energy
surface as (i = R,Z, j = qf, asym) [43]

Ti = 2π

�
j
i

{
1 + exp

[
2πB

j
i

/(
h̄ω

j
i

)]}
, (19)

where �
j
i and ω

j
i are the corresponding frequencies in

the minimum of the potential energy and on the barrier,
respectively, and B

j
i are the heights of barriers for the cold

DNS. B
asym
Z (Bsym

Z ) is the minimal value of the barrier which
prevents the evolution of the DNS in Z to the direction
of more asymmetric (symmetric) configurations. For the
reactions considered, B

asym
Z < B

sym
Z , and the tunneling in Z

to the direction of symmetry (through the barrier B
sym
Z ) can be

neglected. The tunneling in Z to the direction of asymmetry
leads to the complete fusion of the DNS nuclei.

Using the rates 	γ,R,Z = h̄/Tγ,R,Z of different competing
processes (collective γ transition in the SD band and tunneling
in R and Z from the SD minimum on the potential energy
surface), one can estimate the probability of the emission
of a rotational γ quantum from the SD state with angular
momentum L as

Pγ (L) = 	γ (L)

	γ (L) + 	R(L) + 	Z(L)
. (20)

The cross section for the E2 transition between the rotational
states L and (L − 2) of the SD band is calculated as

σγSD (Ec.m., L) =
Lmax∑
L′=L

σSD(Ec.m., L
′)

L′∏
L′′=L

Pγ (L′′), (21)

and the relative intensity of this transition is proportional to
this cross section:

ISD(Ec.m., L → L − 2) = σγSD (Ec.m., L)

σ max
γSD

, (22)

where σ max
γSD

= σγSD (Ec.m., L = Lmax
SD ) = max[σγSD (Ec.m., L),

L = 0, . . . , Lmax] and Lmax = Jmax − �L.
Using the same approach, one can calculate the γ -transition

intensities of the normal deformed (ND) bands in nuclei
produced in the fusion-evaporation reactions. Then one can
calculate the ratio of SD and ND bands intensities as

ISD

IND
= ISD

(
Ec.m., L

max
SD → Lmax

SD − 2
)

IND
(
Ec.m., L

max
ND → Lmax

ND − 2
)

= σγSD

(
Ec.m., L = Lmax

SD

)
σγND

(
Ec.m., L = Lmax

ND

) = σ max
γSD

σ max
γND

. (23)

Note that σND is related to PND, which is defined by an
expression similar to Eq. (13).

III. CALCULATED RESULTS

A. Cluster SD states of 152Dy

One can choose the DNS configuration that corresponds
to the experimentally observed SD state by comparison
of the calculated nuclear characteristics of different DNS
configurations with the measured ones for the SD state.
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Here, we treat the SD states of the 152Dy nucleus with
measured moment of inertia �exp

SD = (85 ± 2)h̄2/MeV [3],
charge quadrupole moment Q

exp
2 = (18 ± 3) × 102 e fm2 [4],

and energy E
exp
SD (24+) = 10.64 MeV [5] of the lowest mea-

sured state Lπ = 24+ of the SD band as the states of the
DNS 12C + 140Nd, for which our calculations give the values
�th

SD = 76h̄2/MeV, Qth
2 = 11 × 102 e fm2, and Eth

SD(24+) =
9.94 MeV. As seen in Fig. 2, this DNS is in one the deepest local
minima of the driving potential. The depth of the minimum
is almost insensitive to the value of J . Another deep local
potential minimum corresponds to the DNS 8Be + 144Sm,
which has smaller moment of inertia and quadrupole moment
and probably contributes to other rotational bands. The minima
for more symmetric DNSs are shallower. Because the value of
B

qf
R decreases with increasing Z, more symmetric DNSs have

smaller lifetimes to produce long rotational bands.

B. Population of cluster SD states of 152Dy
in the 4n-evaporation channel

1. Capture process

The dependence of the capture cross section on angular
momentum is shown in Fig. 3 for the 48Ca + 108Pd reaction
at beam energies Elab = 191, 197, 205, and 212 MeV. At
small angular momenta, the partial capture cross section
σcap(Ec.m., J ) grow due to the factor 2J + 1 in Eq. (6), while
the decrease of the capture probability Pcap due to the increase
of the centrifugal term in the nucleus-nucleus potential is rather
weak. At larger J , the system of colliding nuclei turns out in
the sub-barrier region and the capture cross section drops,
since in this region the decrease of Pcap with increasing J is
not compensated by the factor 2J + 1. The larger the value of

FIG. 3. The calculated partial capture cross sections in the
48Ca + 108Pd reaction at beam energies Elab = 191 MeV (solid line),
197 MeV (dashed line), 205 MeV (dash-dotted line), and 212 MeV
(dotted line).

FIG. 4. The calculated relative contributions of the CN and
different DNS configurations to the neutron emission as a function of
the angular momentum in the 48Ca + 108Pd reaction at beam energies
Elab = 191 MeV (a) and 205 MeV (b). The lighter nuclei of the DNS
are indicated.

Ec.m., the larger value of the angular momentum at which the
transition to the sub-barrier regime occurs.

2. Transition from an excited initial DNS to a cold SD DNS

At angular momenta J � 50–60, the main contribution
to the neutron emission is provided by the excited CN and
α-cluster configuration (DNS with the light nucleus 4He),
as one can conclude from Fig. 4. In the cluster approach,
the wave function of the ND state contains the α-cluster
component whose weight increases with J [56]. For higher
angular momenta (J > J0 ≈ 60), the contributions to neutron
emission from symmetric and asymmetric DNS configurations
become sufficient. The potential energies of these configura-
tions are comparable to or smaller than those for the CN and α
configuration at high angular momenta (see Fig. 2), and their
statistical weights become larger.

The potential energy of the DNS 12C + 140Nd ascribed to
the SD state increases slower with J than those of the α-cluster
configuration and CN. Therefore, the statistical weight of this
configuration increases with J , which leads to the increase
of factors P k=4

n and
∏4

k=1 P k
n (Fig. 5). The moderate growth

of the factor
∏4

k=1 P k
n at L � 50 is caused by the angular

momentum dependence of the probability P k=4
n of neutron

emission at the last (fourth) evaporation step [see Eq. (15)].
For higher angular momenta, the statistical weights of almost
symmetric DNS configurations are the largest ones, and their
quasifission probabilities are larger than the probabilities of
neutron emission due to the small values of B

qf
R caused by the

repulsive Coulomb and centrifugal forces. This leads to the
rapid decrease of

∏4
k=1 P k

n with increasing J at J � 50.
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FIG. 5. The calculated dependencies of the factors
∏4

k=1 P k
n (a),

w4n (b), and PSD (c) on angular momentum J in the 48Ca + 108Pd
reaction at beam energies Elab = 191 MeV (solid line) and 205 MeV
(dashed line).

The influence of the beam energy on the factor
∏4

k=1 P k
n

is realized through the temperatures Tmax(J ), TZ,A(J ), and
TCN(J ) in Eqs. (7)–(11). At smaller angular momenta the neu-
tron emission from asymmetric DNS configurations prevails
over quasifission. Therefore, as follows from Eqs. (7)–(12),
the larger values of Elab lead to the larger factors of

∏4
k=1 P k

n

over this range of J . At larger values of J , the quasifission
from almost symmetric DNS configurations is the dominant
process, and the opposite effect is observed (Fig. 5). One can
also see in this figure that the influence of the beam energy on
the factor

∏4
k=1 P k

n is rather weak.
The dependence of the factor w4n on J has a Maxwellian-

like form with a maximum at the excitation energy at which
the realization of the 4n-evaporation channel is the most
probable in comparison with other xn channels. The larger
value of Elab leads to a shift of the maximum of the function
w4n(J ) to larger angular momenta. The growth of w4n and
the decrease of

∏4
k=1 P k

n at 45 � L � 60 mainly provide the
appearance of the maximum in the partial probability PSD

(Fig. 5) and, correspondingly, in the cross section σSD(Ec.m., L)
at L = L

opt
SD ≈ 50 (Fig. 6).

3. SD band intensities

Calculated probabilities of the emission of rotational γ
quanta from the SD states of 152Dy are shown in Fig. 7.
The angular momentum dependencies of 	R,ηZ

are determined
by the angular momentum dependence of the corresponding
barriers. While the barrier in Z is weakly affected by the

FIG. 6. The calculated dependencies of the cross sections
σcap(Ec.m., J = L + 2) (solid lines), σSD(Ec.m., L) (dashed lines), and
σγSD (Ec.m., L) (dash-dotted lines) on the spin L in the 108Pd(48Ca,4n)
reaction at the beam energies Elab = 191 MeV (thin lines) and
205 MeV (thick lines).

change of L, the value of the quasifission barrier, B
qf
R ,

decreases much stronger with increasing L. Therefore, the
tunneling in R (quasifission) suppresses the γ emission at large
L. At very small angular momentum the E2 transition time
becomes enormous due to the small values of Eγ (L → L − 2).
The dominant process in this range of L is tunneling in Z to a
more asymmetric configuration and complete fusion.

FIG. 7. The calculated probability Pγ of the emission of a
rotational γ quantum from the SD state of 152Dy as a function of
spin L.
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FIG. 8. The measured (symbols) [2,3] and calculated (lines) col-
lective rotational E2-transition intensities in the SD band of the 152Dy
nucleus produced in the 108Pd(48Ca, 4n) reaction at beam energies
Elab = 191 MeV (squares and solid line) and Elab = 205 MeV (circles
and dashed line).

The populated SD states with spins near the maximum
of σSD (or PSD) at L

opt
SD ≈ 50 (Figs. 5 and 6) give the main

contribution to the cross sections σγSD (Ec.m., L) of the E2
transition between the rotational states and play the role of
doorway states for a rotational cascade (Fig. 6). At 30 �
L � 50 the probabilities Pγ of the emission of rotational γ
quanta are close to 1 (see Fig. 7). Therefore, γ emission is the
dominant process among the different ways of the populated
SD state evolving at these spins. This results in the appearance
of a plateau in the function σγSD (L) near its maximum at
Lmax

SD ≈ 40. The fall of the cross section σγSD at large L � 50
is explained by the significant decrease of the quasifission
barriers in this region due to the increase of centrifugal forces,
which lead to a decrease of σSD and Pγ (see Fig. 6 and 7). At
L � 25 the E2 transitions in the SD band are suppressed, as
their times are too large, and the transition to the ND rotational
bands (CN and α configuration) becomes more favorable. The
values of PSD, σSD(Ec.m., L), and σγSD are rather sensitive to
beam energy due to the strong dependence of the factor w4n

on Elab, as one can see in Figs. 5 and 6. However, the shape of
the function σγSD (L) remains almost stable with the variation
of beam energy.

In Fig. 8, the measured [2,3,6] and calculated relative
transition intensities in the yrast SD rotational band of the
152Dy nucleus produced in the reaction 108Pd(48Ca, 4n) at
bombarding energies Elab = 191 and 205 MeV are presented.
Our calculated results well represent the dependence of
intensities on angular momentum. Note that the very weak
dependence of transition intensities on the beam energy found
in our calculations is confirmed in the experiment.

The measured [7] and calculated intensities of γ -ray
transitions of the alternative parity ND band in 152Dy produced

FIG. 9. The measured [7] (squares) and calculated (line) intensi-
ties in the ND band in the 152Dy nucleus produced in the 120Sn(36S, 4n)
reaction at beam energy Elab = 168 MeV.

in the reaction 120Sn(36S, 4n) at Elab = 168 MeV are presented
in Fig. 9. In the cluster approach, the wave functions of the
states of the alternative parity ND band contain an α-cluster
component [56]. Since we consider the population of the yrast
ND band only in the evaporation process and the transitions to
this band from other ND bands are not taken into consideration,
there is disagreement with the experimental data at L > 35.
However, the calculated values are close to the measured ones
near the maximum of relative intensity. So, we can estimate
the ratio of the SD and ND band intensities with Eq. (23). This
ratio is presented in Fig. 10 as a function of beam energy for
the 108Pd(48Ca, 4n) reaction. One can seen a good agreement
of the calculated results with the experimental data.

4. Entrance-channel effects

In order to study whether entrance-channel effects influence
the production of the SD states and the SD band intensity, we
consider the population of the yrast SD band in 152Dy via nearly
mass symmetric [74Ge + 82Se (Fig. 11)] and mass asymmetric
[36S + 120Sn (Fig. 12) and 48Ca + 108Pd (Fig. 6)] reactions
leading to the same CN at similar excitation energies. At
energies corresponding to the maximal ratios of the SD and ND
band intensities, σ max

γSD
(74Ge + 82Se) < σ max

γSD
(36S + 120Sn) <

σ max
γSD

(48Ca + 108Pd), because σSD(74Ge + 82Se) < σSD(36S +
120Sn) < σSD(48Ca + 108Pd) or σcap(74Ge + 82Se) <
σcap(36S + 120Sn) < σcap(48Ca + 108Pd). The measured [9,10]
and calculated ratios of SD and ND band intensities are
presented in Figs. 13 and 14 for the reactions 82Se(74Ge, 4n)
and 120Sn(36S, 4n), respectively. The calculated values
are in a good agreement with the experiment for the
asymmetric reaction 36S + 120Sn, but they about half those
of the experimental data for the almost symmetric reaction
74Ge + 82Se. No evidence for entrance-channel effects is
found in our model, which contradicts with the experimental
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FIG. 10. The calculated ratio of the SD and ND band intensities
(line) in the 152Dy nucleus as a function of the beam energy in the
108Pd(48Ca, 4n) reaction. The experimental data are from Refs. [8]
(closed circles) and [10] (open circles).

data results from Refs. [9,10], in which some enhancement of
the SD band intensities was observed with respect to the ND
band intensities in the case of a symmetric entrance-channel
reaction. The largest deviation of the calculated value of ISD

IND
in

the 74Ge + 82Se reaction from one in the 36S + 120Sn reaction
is found to be about of 5% in the case of the owest considered
excitation energy E∗

CN(J = 0) = 62 MeV, at which ISD
IND

≈ 0.2
(Fig. 10). With increasing E∗

CN(J = 0) this deviation rapidly
decreases. In the experiment [9,10] the difference between
two reactions is up to 100%, although the error bars are
quite large.

If one fixes the same excitation energy for two
different reactions 1 and 2, then the ratio of in-
tensities of the SD and ND bands can be ex-
pressed as [ ISD

IND
]1/[ ISD

IND
]2 =[

σ max
γSD

σ max
γND

]1/[
σ max

γSD
σ max

γND
]2 ≈[ σ max

SD (Ec.m.,L
opt
SD)

σ max
ND (Ec.m.,L

opt
ND

]1/

[ σ max
SD (Ec.m.,L

opt
SD)

σ max
ND (Ec.m.,L

opt
ND)

]2 ≈[ Pcap(Ec.m.,L
opt
SD)

Pcap(Ec.m.,L
opt
ND)

]1/[ Pcap(Ec.m.,L
opt
SD)

Pcap(Ec.m.,L
opt
ND)

]2. For the re-

actions considered, the spins [Lopt
SD,ND]1 ≈ [Lopt

SD,ND]2, and these
values vary in the interval from 50 to 56. The capture
probabilities for the reactions 120Sn(36S, 4n), 108Pd(48Ca, 4n),
and 82Se(74Ge, 4n) calculated at the same excitation energy
E∗

CN(J = 0) = 62 MeV are presented in Fig. 15. One can see
that the bombarding energy is higher than the entrance barrier
at optimal angular momentum for all reactions considered and
the values of capture probabilities Pcap(Ec.m., J ) are slightly
less than 1 in the angular momentum interval of interest.
So, the capture probabilities are close to each other and
there is no entrance-channel effect in the calculated ratio
of the SD and ND band intensities. Hence, the entrance-
channel effect requires additional experimental and theoretical
studies.

FIG. 11. The calculated dependencies of the cross sections
σcap(Ec.m., J = L + �L) (a), σSD(Ec.m., L) (b), and σγSD (Ec.m., L)
(c) on the spin L in the reactions 80Ge(74Se, 2n) (solid line) and
82Se(74Ge, 4n) (dashed line) at the optimal bombarding energies
corresponding to the maximal ratios of the SD and ND band intensities
in these reactions.

C. Evaporation-channel effects

The population and properties of the SD states of 152Dy have
been also experimentally studied in different de-excitation
channels of the reactions 80Se(74Ge, 2n) [11], 124Sn(33S, 5n)
[12], 120Sn(37Cl, p4n) [13], and 123Sb(37Cl, α4n) [14]. To
analyze the dependence of the SD band intensity on the
de-excitation channel and beam energy, we calculate the
excitation functions for the population of the SD band in 152Dy
produced in these reactions. Dependencies of the cross sections
σcap(Ec.m., J ), σSD(Ec.m., L), and σγSD (Ec.m., L) on J and L
for these reactions are presented in Figs. 11, 12, and 16. The
calculations are performed at beam energies corresponding
to the maximal ratios of the SD and ND band intensities
(Figs. 13, 14, and 17).

As follows from Figs. 6, 11, 12, and 16, the excitation
functions for the population of the SD band are similar to ones
for the CN reactions, but they are much broader. The widths
of the calculated excitation functions increase with number
of evaporated particles. This is similar to the CN reactions
as well. The values of σSD and σ max

γSD
for the 4n de-excitation

channel is close to those for the 5n channel, as the decrease
of

∏5
k=1 P k

n in comparison with
∏4

k=1 P k
n is compensated by

larger σcap in the 33S + 124Sn reaction than in the 36S + 120Sn
reaction (Fig. 12). The strong decrease of σ max

γSD
in the

p4n channel in comparison with 4n- and 5n-evaporation
channels is mainly determined by the smaller probability
of proton emission from the DNS in comparison with that
of neutron emission. In the reactions 82Se(74Ge, 4n) and
80Se(74Ge, 2n) σcap[82Se(74Ge, 4n)]/σcap[80Se(74Ge, 2n)] ≈ 2
at optimal angular momentum L

opt
SD ≈ 50 and,
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FIG. 12. The same as in Fig. 11, but for the reactions
120Sn(36S, 4n) (solid line), 124Sn(33S, 5n) (dashed line), and
120Sn(37Cl, p4n) (dotted line).

correspondingly, σSD[82Se(74Ge, 4n)]/σSD[82Se(74Ge, 4n)] ≈
σ max

γSD
[82Se(74Ge, 4n)]/σ max

γSD
[82Se(74Ge, 4n)] ≈ 2.

In all de-excitation channels considered, except for α4n,
the ratio of the SD and ND band intensities in the maximum
is about 0.01 (Figs. 10, 13, and 14). The optimal chan-
nel is the 4n channel (1.25%). For example, the maximal

FIG. 13. The calculated ratio of the SD and ND band intensities
(lines) in the 152Dy nucleus as a function of beam energy in the
reactions 80Se(74Ge, 2n) (a) and 82Se(74Ge, 4n) (b). The experimental
data are from Refs. [10] (open squares) and [9] (closed squares).

FIG. 14. The calculated ratio of the SD and ND band intensities
(lines) in the 152Dy nucleus as a function of beam energy in the
reactions 120Sn(36S, 4n) (a) and 124Sn(33S, 5n) (b). The experimental
data are from Refs. [10] (open squares) and [12] (closed squares).

ratios are ISD/IND = 0.0108, 0.009, and 0.008 in 2n, 5n,
and p4n channels, respectively. Note that in spite of
σ max

γSD
[120Sn(37Cl, p4n)] � σ max

γSD
[124Sn(33S, 5n)], the maximal

ratios [ISD/IND]120Sn(37Cl,p4n) ≈ [ISD/IND]124Sn(33S,5n). We ob-
serve similar behavior in the reactions 82Se(74Ge, 4n) and
80Se(74Ge, 2n) (Fig. 13).

In the case of α emission, the evaporated α particle carries
rather large orbital momentum �L = lα (Fig. 16), and the spin
L of the populated SD state corresponds to the larger values of

FIG. 15. The calculated capture probabilities in the reactions
120Sn(36S, 4n) (solid line), 108Pd(48Ca, 4n) (dashed line), and
82Se(74Ge, 4n) (dotted line) as functions of L = J − �L at the same
excitation energy E∗

CN(J = 0) = 62 MeV of the CN. The maximal
values of L, at which Ec.m. = Vb(J ) in these reactions, are denoted
by arrows with the same lines as the capture probabilities.
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FIG. 16. The calculated dependencies of the capture cross section
σcap(Ec.m., J ) (a), the orbital momentum lα carried out by emitted
α particle on angular momentum J (b), and the cross sections
σSD(Ec.m., L) and σγSD (Ec.m., L) as functions of spin L (c) in
the 123Sb(37Cl, α4n) reaction at the optimal bombarding energy
corresponding to the maximal ratio of the SD and ND band intensities.

initial angular momentum J than in xn- and pxn-evaporation
channels. This leads to an increase of quasifission in the α4n
channel and a decrease of the value ISD/IND (Fig. 17). Here,
the maximal ratio ISD/IND is 0.0039.

The optimal population (with the maximal ISD/IND) of the
SD band in 152Dy occurs at a bombarding energy Ec.m. = E

opt
c.m.

FIG. 17. The calculated ratio of the SD and ND band intensities in
152Dy as a function of beam energy in the reactions 120Sn(37Cl, p4n)
(a) and 123Sb(37Cl, α4n) (b).

FIG. 18. The calculated dependencies of the cross sections
σ max

γSD
on Ec.m. − Vb(J = 0) for the reactions 108Pd(48Ca, 4n) (solid

line), 82Se(74Ge, 4n) (dashed line), 80Se(74Ge, 2n) (dash-dotted line),
120Sn(36S, 4n) (dotted line), 124Sn(33S, 5n) (dash-dot-dotted line),
120Sn(37Cl, p4n) (thick solid line), and 123Sb(37Cl, α4n) (thick dashed
line). The intervals of the values of Ec.m. correspond to the beam
energies in Figs. 13, 14, and 17. For the 4n-, 5n-, p4n-, and α4n-
evaporations channels, only the right-hand sides of σ max

γSD
are shown

and the values of σ max
γSD

at the lowest energies are close to the maxima.

much higher than the entrance Coulomb barrier Vb = Vb(J =
0) = V (Rb,Z,A, β1 = 0, β2 = 0, J = 0) at J = 0 for all de-
excitation channels, except for the 2n channel. Note that in all
channels E

opt
c.m. > Vb(J = L

opt
SD), where the SD state with the

optimal spin L = L
opt
SD gives the largest contribution to σ max

γSD
.

For example, in the 74Ge + 80Se reaction, Vb(J = L
opt
SD ≈

50) = 133 MeV and E
opt
c.m. = 135 MeV and at lower energies

the values σ max
γSD

and ISD/IND rapidly decrease (Figs. 13 and 18).
From Fig. 18 one can conclude that the maxima of σ max

γSD
are

shifted by about 15 MeV to smaller energies with respect to
the maxima of ISD/IND in the 4n, 5n, p4n, and α4n channels.
This means that with increasing Ec.m. the population of the ND
states decreases faster than the population of the SD states. For
the 2n channel, the energy positions of the maxima of σ max

γSD

and ISD/IND are comparable.

IV. SUMMARY

Employing the DNS approach combined with dynamical
and statistical methods, we studied the population of the yrast
SD band in 152Dy, produced in various de-excitation channels
of the reactions with different entrance-channel asymmetries.
It was shown that the spin population interval of the SD band
is restricted from below by the complete fusion process and
from above by the quasifission (DNS decay) process. For
example, the α4n-evaporation channel is not the optimal one
due to the arger initial angular momentum required because of
the large orbital angular momentum carried by an α particle
and, correspondingly, large suppression of the SD population
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by quasifission. The excitation function for the population of
the SD band shows the same trends as that for the complete
fusion reactions but it has a much larger width. We found
very weak dependencies of the SD transition intensities on the
beam energy. No evidence for an entrance-channel effects is
found in our model, in contradiction with the experimental
data [9,10]. New experimental and theoretical studies of the
entrance-channel effect are required.

The quite good agreement of our results with the experi-
mental data indicates the validity of the DNS interpretation of
strongly deformed nuclear states and supports predictions con-
cerning the possible formation of highly deformed states in the
entrance channel of heavy-ion reactions [43,44] (without the
CN formation stage) based on the same theoretical approach.
In future, it will be interesting to study the population of the
SD bands of nuclei in the mass regions A ≈ 100 and 190.
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APPENDIX A: CAPTURE PROBABILITY

The capture probability Pcap is obtained by integrating the
propagator G from the initial phase space state (R0, P0) at time
t = 0 to the final phase space state (R,P ) at time t [51]:

Pcap = lim
t→∞

∫ Rin

−∞
dR

∫ ∞

−∞
dP G(R,P, t |R0, P0, 0)

= lim
t→∞

1

2
erfc

[−Rin + R(t)√

RR(t)

]
. (A1)

Here, P is the conjugate momentum. The second line
in (A1) is obtained by using the propagator G =
π−1|det 
−1|1/2 exp(−qT 
−1q) [with qR(t) = R − R(t),
qP (t) = P − P (t), R(t = 0) = R0, P (t = 0) = P0, 
ij (t) =
2qi(t)qj (t), and 
ij (t = 0) = 0, i, j = R,P ] calculated in
Ref. [52] for the inverted oscillator which approximates the
nucleus-nucleus potential V in the variable R. The frequency
ω of this oscillator with internal turning point Rin is defined
from the condition of equality of the classical actions of
approximated and realistic potential barriers of the same height
at given J (Fig. 2). Many quantum-mechanical, dissipative,
non-Markovian, neutron transfer, and deformation effects
accompanying the passage through the potential barrier are
taken into consideration in our formalism [53]. The derivation
of equations for the first moment R(t) and variance 
RR(t) in
the coordinate is presented in Refs. [53,54].

APPENDIX B: PROBABILITY OF EMISSION
OF A FIXED NUMBER OF NEUTRONS

In the case of the emission of x neutrons with bind-
ing energies Bnk

(i = k, . . . , x) from a system with initial
excitation energy E, the probability to cool the system at the
last xth evaporation step by neutron emission to an excitation

energy smaller than δ = 0.2 MeV, in order to consider it cold,
is obtained by using the Maxwellian form of the neutron
spectrum νn(εn) = εn exp[−εn/T ]/T 2:

wx
xn(Ex) =

∫ Ex−Bnx

Ex−Bnx −δ
ν(εn)dεn∫ Ex−Bnx

0 ν(εn)dεn

, (B1)

where Ex is the excitation energy before the emission of the
last neutron. Then the probability to cool the system by a
sequence of neutron emission from the kth to xth evaporation
steps is recursively defined as

wk
xn(Ek)

=
∫ Ek−Bnk∑x

j=k+1 Bnj
+δ

wk+1
xn (Ek+1)ν(Ek − Bnk

− Ek+1)dEk+1∫ Ek−Bnk

0 ν(Ek − Bnk
− Ek+1)dEk+1

.

(B2)

Finally, w1
xn(E1) ≡ wxn(E).

APPENDIX C: INTERNAL EXCITATION ENERGIES
OF QUASIFISSION FRAGMENTS

By using total energy conservation

Etotal
DNS(J ) = Etotal

QF (l, J1, J2),

where

Etotal
DNS(L) = B1 + B2 + V (Rm,Z,A, β1, β2, J = 0)

+ h̄2J (J + 1)

2� + E∗
Z,A(J )

is the total energy of the DNS with asymmetries (Z,A)
and

Etotal
QF (l, J1, J2) = B1 + B2 + T KE(l) + h̄2J1(J1 + 1)

2�1

+ h̄2J2(J2 + 1)

2�2
+ E∗

1 (J1) + E∗
2 (J2),

T KE(l) = V (Rb,Z,A, β1, β2, J = 0)

+ h̄2l(l + 1)

2μR2
b

+ 2TZ,A(J ),

are the total energy and the total kinetic energy of the
quasifission fragments, respectively, one can derive the sum
of the internal excitation energies of quasifission fragments 1
and 2:

E∗
1 + E∗

2 = E∗
Z,A(J ) − B

qf
R (Z,A, J = 0) − 2TZ,A(J )

+ h̄2J (J + 1)

2� − h̄2J1(J1 + 1)

2�1

−h̄2J2(J2 + 1)

2�2
− h̄2l(l + 1)

2μR2
b

. (C1)

Here, for simplicity, we assume that k0 = 1. Since at the
sticking limit Ji = �i

� J (i = 1, 2) for the spins of fragments
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and l = μR2
m

� J for the orbital angular momentum,

h̄2J (J + 1)

2� = h̄2l(l + 1)

2μR2
m

+ h̄2J1(J1 + 1)

2�1
+ h̄2J2(J2 + 1)

2�2
,

and

Bqf (Z,A, J )

= Bqf (Z,A, J = 0) + h̄2l(l + 1)

2μR2
b

− h̄2l(l + 1)

2μR2
m

,

then Eq. (B1) can be rewritten as

E∗
1 + E∗

2 = E∗
Z,A(J ) − [Bqf (Z,A, J ) + 2TZ,A(J )]. (C2)

By using Eq. (B2) and the relation E∗
2/E∗

1 = a2/a1, where ai

are the level density parameters of fragment i, we obtain the

internal excitation energies of the fragments as

E∗
1,2 = a1,2

a1 + a2
{(E∗

Z,A(J ) − [Bqf (Z,A, J ) + 2TZ,A(J )]}.
(C3)

If ai = Ai/b, b is the constant; for example, if b = 12 MeV−1,
the excitation energies of the fragments,

E∗
1,2 = A1,2

A
{E∗

Z,A(J ) − [Bqf (Z,A, J ) + 2TZ,A(J )]}, (C4)

are proportional to their mass numbers. Assuming a1 = E∗
1 =

0 for the stiff magic α particle in the DNS, i.e., assuming that
the α particle has no internal structure, we obtain the following
simple formula for the internal excitation energy of the heavy
quasifission fragment:

E∗
2 = E∗

Z,A(J ) − [Bqf (Z,A, J ) + 2TZ,A(J )]. (C5)
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