# Spin-density contribution in the optical potential of open *j*-shell nuclei

Keshab C. Panda

School of Physics, Sambalpur University, Jyoti Vihar, Sambalpur 768019, India

Binod C. Sahu Panchayat College, Bargarh 768038, India

Raj K. Gupta

Department of Physics, Panjab University, Chandigarh 160014, India (Received 12 April 2013; revised manuscript received 19 July 2013; published 5 September 2013)

The energy-dependent real and imaginary parts of the optical potential of some twenty pairs of spin-unsaturated, open *j*-shell nuclei are calculated in the energy density model, using the complex Skyrme III energy density. The calculated potentials, without any renormalization, reproduce the experimental data on elastic scattering cross sections of all the pairs of nuclei studied. The contribution of the spin density terms, of the Skyrme III energy density, toward such potentials and toward the corresponding elastic scattering cross sections and sub-barrier fusion cross sections are investigated.

DOI: 10.1103/PhysRevC.88.034602

PACS number(s): 24.10.Ht, 25.70.Bc, 25.70.Jj

## I. INTRODUCTION

In heavy-ion reactions, rich varieties of novel manifestations take place in the exit channel due to the strong interaction between the heavy ions. These events, characterized by the incident energy, mass, and structural properties of the colliding ions, are expected to add significantly to our present knowledge of nuclear properties. The understanding of these events requires the microscopic heavy-ion interaction potential that properly contains the effects of relative motion and structural properties of colliding nuclei. Therefore, gaining knowledge of such an interaction potential has been one of the major problems in nuclear physics.

In the recent past, initial efforts were made by Kaur and Chattopadhyay [1] and Panda [2] to illustrate the structural effects of the spin density of unsaturated, closed *j*-shell nuclei on the microscopic calculation of their interaction potential. Since the spin density arises from the nucleonic configuration of the last unfilled l shell of the nucleus, it is expected to play an important role in the heavy-ion reactions involving weak to strong overlap of the projectile and target densities. In the region of weak overlap, elastic scattering occurs and it is observed that the heavy-ion elastic scattering cross sections of spin-saturated nuclei are nicely described by a microscopic optical potential [3–5] that does not contain any adjustable parameter or need renormalization. The microscopic calculation of the energy-dependent real and imaginary parts of such an optical potential requires only a two-body effective interaction and the density distributions of the projectile and target nuclei as inputs. Panda and Patra [6] extended this technique to spin-unsaturated, closed j-shell nuclei, and they showed the structural effects of the spin densities on their potential and the corresponding elastic scattering cross sections. The real and imaginary parts of the optical potential were calculated [6] by taking (i) the Skyrme III effective interaction [7], (ii) the parametrized self-consistent matter densities [8], and (iii) the spin densities obtained from the shell-model wave functions by using the prescription of

Vautherin and Brink [9] as inputs in the energy density model (EDM). The calculated optical potential also reproduced nicely the elastic scattering data of spin-unsaturated, closed *j*-shell nuclei, without any renormalization. However, the contribution of the spin density toward the real and imaginary potentials, in the region sensitive to elastic scattering, was not appreciable and essentially had no effect on the elastic scattering angular distributions. Also, the effects of spin density on sub-barrier fusion, which involves more overlap of the densities of spin-unsaturated, closed *j*-shell nuclei, were investigated by Puri and Gupta [10,11], by using the real part of the optical potential in the barrier penetration model. They found that the positions are affected within  $\sim 1\%$  only, since the closed *j*-shell nuclei are very weakly spin-unsaturated.

Recently, Gupta and collaborators [12-15] have also investigated the contribution of spin density on the energyindependent real part of the interaction potential of highly spin unsaturated, open j-shell, even-even nuclei. They have calculated the real potential by using the Skyrme II effective interaction [7], the experimental nucleonic densities of the target and projectile [16,17], and the spin density obtained from the shell-model wave functions in the proximity model approximation [18]. This calculation shows that the contribution of spin density is rather large. In the relevant region, the contribution is repulsive and reduces the energy-independent real potential by as much as 5-7 MeV at the repulsive maxima of the spin-density potential. A similar contribution toward the imaginary part of the optical potential is highly expected since, from our previous analysis [4-6], it is evident that the elastic scattering data are very much sensitive to the variation of both the real and imaginary potentials. Hence, the role of spin density of open *j*-shell even-even nuclei might be important in determining the elastic scattering optical potential and the corresponding elastic scattering cross section and sub-barrier fusion cross section [3,19]. This enables one to test the accuracy of the radial dependence of the same potential in different regions of nuclear reaction data and to provide new

information on the physics taking place when two nuclei come together. We investigate these aspects in the present paper.

The aim of the present paper is at least threefold: 1. to properly calculate the energy-dependent real and imaginary parts of the optical potential of those pairs of nuclei having at least one being an open *j*-shell nucleus, 2. to study the effect of the spin-density terms on the real and imaginary parts of the calculated energy-dependent potentials in different radial regions, and 3. to study the role of spin density on the elastic scattering and sub-barrier fusion cross sections of the chosen pairs of nuclei and to estimate the percentage contribution of the spin density in the relevant region of the potential sensitive to these nuclear reactions.

The paper is organized as follows: In Sec. II, we present our derivation of the energy-dependent real and imaginary potentials for spin-unsaturated, open j-shell even-even nuclei in the energy density model. In Sec. III, we discuss the role of spin density on our calculations of the optical potential, elastic scattering, and sub-barrier fusion. Finally, in Sec. IV, we present a summary of our conclusions.

# II. DERIVATION OF ENERGY-DEPENDENT REAL AND IMAGINARY PARTS OF OPTICAL POTENTIAL FOR SPIN-UNSATURATED, OPEN *j*-SHELL NUCLEI

In the EDM, the energy-dependent real  $V(D, E_{c.m.})$  and imaginary  $W(D, E_{c.m.})$  parts of the optical potential of spinunsaturated, open *j*-shell nuclei can be calculated as a function of their separation distance *D* and relative center-of-mass energy  $E_{c.m.}$  as

$$V(D, E_{c.m.}) + iW(D, E_{c.m.})$$
  
=  $\int [H_c(\rho, \tau, J, E_{c.m.}) - H_1(\rho_1, \tau_1, J_1, E_{c.m.}) - H_2(\rho_2, \tau_2, J_2, E_{c.m.})] d^3R.$  (1)

 $H_c$ ,  $H_1$ , and  $H_2$  are the energy-dependent complex Hamiltonian densities of the composite (1 + 2) and individual systems of colliding nuclei (1) and (2). These can be obtained as a function of the matter density  $\rho$ , kinetic energy density  $\tau$ , spin density  $\vec{J}$ , and center-of-mass energy  $E_{c.m.}$  from a complex effective interaction  $v_c$  that should have a spin-orbit component.

In the present work, we have used the complex Skyrme effective interaction  $v_c$  for obtaining the complex Hamiltonian densities in Eq. (1):

$$v_c = (1 + i\gamma)v_{sky},\tag{2}$$

where

$$v_{sky} = t_0 (1 + x_0 P_{\sigma}) \delta(\vec{r}) + \frac{1}{2} t_1 [\delta(\vec{r}) K^2 + K'^2 \delta(\vec{r})] + t_2 \vec{K}' \cdot \delta(\vec{r}) \vec{K} + \frac{1}{6} t_3 (1 + P_{\sigma}) \rho \delta(\vec{r}) + i W_0 (\vec{\sigma}_1 + \vec{\sigma}_2) \cdot \vec{K}' \times \delta(\vec{r}) \vec{K}.$$
(3)

 $t_0, t_1, t_2, t_3, x_0$ , and  $W_0$  are the Skyrme interaction parameters [7].  $\vec{K} = (\vec{\nabla}_1 - \vec{\nabla}_2)/2i$  is the two-nucleon relative momentum acting on the wave function on the right and  $\vec{K'}$  is adjoint of  $\vec{K}$ .  $\vec{\sigma}_1$  and  $\vec{\sigma}_2$  are the Pauli spin matrices and  $P_{\sigma} = \frac{1}{2}(1 + \vec{\sigma}_1 \cdot \vec{\sigma}_2)$  is the spin exchange operator. The last term in Eq. (3) is the spin-orbit component of the Skyrme interaction.

The Fourier transform of the complex effective interaction  $v_c$  in Eq. (2) is given by the effective two-body matrix and the imaginary component  $\gamma$  of  $v_c$  is obtained in the forward scattering amplitude approximation [3] as

$$\gamma = -\hbar^2 k \left\langle \sigma \right\rangle / (2mJ). \tag{4}$$

In Eq. (4), *m* is the mass of the nucleon, and *k*,  $\langle \sigma \rangle$ , and *J* are the wave number of the incident nucleon, the average total nucleon-nucleon cross section inside the nucleus, and the volume integral of the two-body effective interaction  $v_{sky}$ , respectively. This is a valid approximation for the calculation of the imaginary potential *W* for a pair of heavy nuclei, where the large momentum transfers are cut down by the product of two nuclear form factors which are more forward peaked and the total energy of the projectile nucleon is scaled up due to its internal motion, which is now in an energy regime well above the Fermi energy, and the off-shell effect becomes less important [3].

In Eq. (1), the total energy

$$\int H_c d^3 R = \sum_i \langle i | \frac{p^2}{2m} | i \rangle + \frac{1}{2} \sum_{i,j} [\langle ij | v_c | ij \rangle + \langle ij | v_c | ji \rangle]$$
<sup>(5)</sup>

of the colliding system can be expressed as the sum of the kinetic energy and potential energy. Here, i and j are the pairs of nucleons interacting through  $v_c$ . p is the momentum of the nucleon.

Assuming that the subspace of the occupied single-particle states is invariant under time reversal, and using the density matrix expansion (DME) of Negele and Vautherin [20], we obtain  $H_c(\rho, \tau, J, E_{c.m.})$  in Eq. (1) as

$$H_{c}(\rho,\tau,J,E_{c.m.}) = \frac{\hbar^{2}}{2m} \left[ \frac{3}{5} K_{F}^{2} \rho + \frac{1}{36} \frac{(\nabla \rho)^{2}}{\rho} + \frac{1}{3} \nabla^{2} \rho \right] + (1+i\gamma) \left\{ \frac{3}{8} t_{0} \rho^{2} \left[ 1 - \frac{2}{3} \left( x_{0} + \frac{1}{2} \right) \alpha^{2} \right] + \frac{1}{16} t_{3} \rho^{3} (1-\alpha^{2}) \right. \\ \left. + \left\{ \frac{1}{4} (t_{1}+t_{2}) \rho + \frac{1}{32} (t_{2}-t_{1}) \rho [(1+\alpha)^{\frac{8}{3}} + (1-\alpha)^{\frac{8}{3}}] \right\} \frac{3}{5} K_{F}^{2} \rho + \frac{\rho}{16} [3t_{1}+5t_{2}+\alpha^{2} (t_{2}-t_{1})] \right. \\ \left. \times \left[ \frac{1}{36} \frac{(\nabla \rho)^{2}}{\rho} + \frac{1}{3} \nabla^{2} \rho \right] + \frac{1}{64} [5t_{2}-9t_{1}+\alpha^{2} (3t_{1}+t_{2})] \times \rho \nabla^{2} \rho + \frac{1}{16} (t_{1}-t_{2}) (\vec{J}_{n}^{2} + \vec{J}_{p}^{2}) \right. \\ \left. - \frac{1}{4} W_{0} [2\rho \vec{\nabla} \cdot \vec{J} + (1+\alpha)\rho \vec{\nabla} \cdot \vec{J}_{n} + (1-\alpha)\rho \vec{\nabla} \cdot \vec{J}_{p}] + \left[ \left( \frac{2m}{\hbar^{2}} \right)^{1/2} \left( E_{c.m.1}^{1/2} + E_{c.m.2}^{1/2} \right) \right]^{2} \right. \\ \left. \times \frac{1}{16} [3t_{1} + 5t_{2} + (t_{2}-t_{1})\alpha_{1}\alpha_{2}] \rho_{1} \rho_{2} \right\},$$

$$(6)$$

034602-2

where  $\alpha_1$ ,  $\alpha_2$ , and  $\alpha$  are the neutron excess parameters of the individual nuclei (1) and (2) and the composite system (1 + 2), respectively.  $E_{c.m.1}$  and  $E_{c.m.2}$  are the translational energies of the target and projectile nucleons, respectively. The last term of Eq. (6) arises from the preservation of Galilean invariance of the interaction plus the linear dependence of  $\tau$  on the relative center-of-mass energy  $E_{c.m.}$ . The other consequence of the relative motion, i.e., the Pauli-blocking effect, is manifested through the Fermi momentum  $K_F$  obtained in the Fermi gas model [3]:

$$K_F^2 = (1.5\pi^2)^{\frac{2}{3}} \left[ F\left(\rho_1^{\frac{5}{3}} + \rho_2^{\frac{5}{3}}\right) + (1-F)(\rho_1 + \rho_2)^{\frac{5}{3}} \right] / \rho, \quad (7)$$

where *F* is the fractional volume of the Fermi sphere that does not overlap with the other fraction. The Hamiltonian densities  $H_1$  and  $H_2$  of nuclei (1) and (2) in Eq. (1) can be obtained from Eq. (6) by deleting the last term and by replacing  $\rho$ ,  $\tau$ ,  $\vec{J}$  by  $\rho_1$ ,  $\tau_1$ ,  $\vec{J}_1$  and  $\rho_2$ ,  $\tau_2$ ,  $\vec{J}_2$ , respectively, and by substituting F = 1,  $\rho_2 = 0$  and F = 1,  $\rho_1 = 0$  in Eq. (7), respectively. Furthermore, in Eq. (6), the spin density  $\vec{J} = \vec{J}_n + \vec{J}_p$ , the nucleonic density  $\rho = \rho_n + \rho_p$ , and the kinetic energy density  $\tau = \tau_n + \tau_p$ . The subscripts *n* and *p* (*q* = *n*, *p*) refer to neutron and proton, respectively. The quantities  $\rho$ ,  $\tau$ , and  $\vec{J}$ , in turn, depend on the single-particle states  $\phi_i$ :

$$\rho_{q}(\vec{r}) = \sum_{i,\sigma} |\phi_{i}(\vec{r},\sigma,q)|^{2},$$
  

$$\tau_{q}(\vec{r}) = \sum_{i,\sigma} |\nabla\phi_{i}(\vec{r},\sigma,q)|^{2},$$
  

$$J_{q}(\vec{r}) = (-i) \sum_{i,\sigma,\sigma'} \phi_{i}^{*}(\vec{r},\sigma,q) [\vec{\nabla}\phi_{i}(\vec{r},\sigma',q) \times \langle\sigma|\vec{\sigma}|\sigma'\rangle].$$
(8)

Here,  $\vec{r}$ ,  $\sigma$ , and q are the space, spin, and isospin coordinates of the nucleon. The sums in Eq. (8) are taken over all the occupied single-particle states:

$$\phi_i(r,\sigma,q) = \frac{R_\alpha(r)}{r} Y_{ljm}(\vec{r},\sigma)\chi_q(t), \tag{9}$$

where

$$Y_{ljm}(\vec{r},\sigma) = \sum_{m_l m_s} \left\langle l \frac{1}{2} m_l m_s \middle| jm \right\rangle Y_{lm_l}(\vec{r}) \chi_{m_s}(\sigma).$$
(10)

*l*, *s*, *j*, and *m* refer to orbital angular momentum, spin, total angular momentum, and magnetic quantum number.  $\chi_q(t)$  and  $\chi_{m_s}(\sigma)$  are the isospin and spin parts of the wave function. The notation  $\alpha \equiv q, n, l$  specifies the radial part of the wave function  $R_{\alpha}(r)$  with *n* as the principal quantum number.

The contribution of  $\phi_i$  toward the spin density  $J_q(\vec{r})$  in Eq. (8) for the open *j*-shell nucleus is divided into two parts, one due to the core consisting of closed *l* or *j* shell and other due to the valence *N* nucleons in the last occupied *j* shell:

$$\vec{J}_q(\vec{r}) = \vec{J}_c(\vec{r}) + \vec{J}_N(\vec{r}),$$
 (11)

where

J

$$\vec{c}(\vec{r}) = \frac{r}{4\pi r^4} \sum_{\alpha} (2j_{\alpha} + 1) \times \left[ j_{\alpha}(j_{\alpha} + 1) - l_{\alpha}(l_{\alpha} + 1) - \frac{3}{4} \right] R_{\alpha}^2(r) \quad (12)$$

and

$$\vec{J}_N(\vec{r}) = \frac{N\vec{r}}{4\pi r^4} \left[ j(j+1) - l(l+1) - \frac{3}{4} \right] R_\alpha^2(r).$$
(13)

In Eqs. (12) and (13), j, l, and  $\alpha$  correspond to the last occupied but partially filled j shell only. For a completely filled l-shell nucleus (such as <sup>16</sup>O),  $\vec{J}_c = 0$ , and for a completely filled (closed) j-shell [N = (2j + 1)] nucleus (such as <sup>12</sup>C),  $\vec{J}_N = \vec{J}_c$ . Similar expressions for  $\rho$  and  $\tau$  can also be obtained [9,20] for the open j-shell nucleus. Instead, we have used the approximation made by Stancu and Brink [8] for  $\tau$  in Eq. (6):

$$\tau = \frac{3}{5}K_f^2\rho + \frac{1}{36}\frac{(\nabla\rho)^2}{\rho} + \frac{1}{3}\nabla^2\rho.$$
 (14)

Consequently,  $H_c$  in Eq. (6) is expressed in terms of  $\rho$  and  $\vec{J}$ .

The nucleonic densities  $\rho$  of all the spin-unsaturated and spin-saturated nuclei considered here are taken from the experimental works [16,17,21], which are supposed to contain the contributions from space, spin, and isospin parts of the wave function in Eq. (8). Any self-consistent calculation with a suitable effective interaction guarantees the reproduction of the experimental nucleonic density distribution. Furthermore, it has been shown that, in the surface region, the experimental nucleonic density gives heavy-ion potentials identical to the one obtained from the shell-model wave functions [12-15]. We have, therefore, used the normalized (shell-model) radial wave functions  $\phi_{nl} = \frac{R_{\alpha}}{r}$  based on the harmonic oscillator potential [22], with shell-model configurations of neutrons and protons presented in Table I to obtain the spin density  $J_a(J_n, J_p)$  in Eq. (8) for the spin-unsaturated closed jshell [Eq. (12)] and open *j*-shell [Eq. (13)] nuclei studied here as

$$\vec{J}_{n} = \hat{u} \frac{8}{3\pi^{\frac{3}{2}}} \frac{r}{b^{5}} \exp(-r^{2}/b^{2}) \quad (^{12}\text{C})$$

$$= \hat{u} \frac{16}{15\pi^{\frac{3}{2}}} \frac{r^{3}}{b^{7}} \exp(-r^{2}/b^{2}) \quad (^{18}\text{O},^{20}\text{ Ne})$$

$$= \hat{u} \frac{32}{15\pi^{\frac{3}{2}}} \frac{r^{3}}{b^{7}} \exp(-r^{2}/b^{2}) \quad (^{24}\text{Mg})$$

$$= \hat{u} \frac{16}{5\pi^{\frac{3}{2}}} \frac{r^{3}}{b^{7}} \exp(-r^{2}/b^{2}) \quad (^{32}\text{S})$$

$$= \hat{u} \frac{8}{5\pi^{\frac{3}{2}}} \frac{r^{3}}{b^{7}} \exp(-r^{2}/b^{2}) \quad (^{34}\text{S})$$

$$= \hat{u} \frac{16}{35\pi^{\frac{3}{2}}} \frac{r^{5}}{b^{9}} \exp(-r^{2}/b^{2}) \quad (^{42}\text{Ca})$$

$$= \hat{u} \frac{32}{35\pi^{\frac{3}{2}}} \frac{r^{5}}{b^{9}} \exp(-r^{2}/b^{2}) \quad (^{44}\text{Ca})$$

$$= \hat{u} \frac{64}{35\pi^{\frac{3}{2}}} \frac{r^{5}}{b^{9}} \exp(-r^{2}/b^{2}) \quad (^{52}\text{Cr}, ^{54}\text{ Fe})$$

$$= \hat{u} \left[ \frac{64}{35\pi^{\frac{3}{2}}} \frac{r^{5}}{b^{9}} + \frac{10}{3\pi^{\frac{3}{2}}} \frac{r}{b^{5}} \left( 1 - \frac{2}{5} \frac{r^{2}}{b^{2}} \right)^{2} \right]$$

$$\times \exp(-r^{2}/b^{2}) \quad (^{58}\text{Ni})$$

TABLE I. Shell-model configurations of protons (*p*) and neutrons (*n*) in the last  $j_{p,n} = l_{p,n} \pm \frac{1}{2}$  shells of colliding nuclei considered in the present work.

| Nucleus          | Proton state   | $l_p$  | $j_p = l_p + \frac{1}{2}$ | $j_p = l_p - \frac{1}{2}$ | Neutron state   | $l_n$  | $j_n = l_n + \frac{1}{2}$ | $j_n = l_n - \frac{1}{2}$ |
|------------------|----------------|--------|---------------------------|---------------------------|-----------------|--------|---------------------------|---------------------------|
| <sup>12</sup> C  | $(1p_{3/2})^4$ | open   | closed                    | _                         | $(1 p_{3/2})^4$ | open   | closed                    | _                         |
| <sup>16</sup> O  | $(1p_{1/2})^2$ | closed | closed                    | closed                    | $(1p_{1/2})^2$  | closed | closed                    | closed                    |
| <sup>18</sup> O  | $(1p_{1/2})^2$ | closed | closed                    | closed                    | $(1d_{5/2})^2$  | open   | open                      | _                         |
| <sup>20</sup> Ne | $(1d_{5/2})^2$ | open   | open                      | _                         | $(1d_{5/2})^2$  | open   | open                      | _                         |
| <sup>24</sup> Mg | $(1d_{5/2})^4$ | open   | open                      | _                         | $(1d_{5/2})^4$  | open   | open                      | _                         |
| <sup>32</sup> S  | $(2s_{1/2})^2$ | open   | closed                    | _                         | $(2s_{1/2})^2$  | open   | closed                    | _                         |
| <sup>34</sup> S  | $(2s_{1/2})^2$ | open   | closed                    | _                         | $(1d_{3/2})^2$  | open   | closed                    | open                      |
| <sup>36</sup> S  | $(2s_{1/2})^2$ | open   | closed                    | _                         | $(1d_{3/2})^4$  | closed | closed                    | closed                    |
| <sup>42</sup> Ca | $(1d_{3/2})^4$ | closed | closed                    | closed                    | $(1f_{7/2})^2$  | open   | open                      | _                         |
| <sup>44</sup> Ca | $(1d_{3/2})^4$ | closed | closed                    | closed                    | $(1f_{7/2})^4$  | open   | open                      | _                         |
| <sup>52</sup> Cr | $(1f_{7/2})^4$ | open   | open                      | _                         | $(1f_{7/2})^8$  | open   | closed                    | _                         |
| <sup>54</sup> Fe | $(1f_{7/2})^6$ | open   | open                      | _                         | $(1f_{7/2})^8$  | open   | closed                    | _                         |
| <sup>58</sup> Ni | $(1f_{7/2})^8$ | open   | closed                    | _                         | $(2p_{3/2})^2$  | open   | open                      | _                         |
| <sup>60</sup> Ni | $(1f_{7/2})^8$ | open   | closed                    | _                         | $(2p_{3/2})^4$  | open   | closed                    | _                         |
| <sup>62</sup> Ni | $(1f_{7/2})^8$ | open   | closed                    | _                         | $(1f_{5/2})^2$  | open   | closed                    | open                      |
| <sup>64</sup> Ni | $(1f_{7/2})^8$ | open   | closed                    | _                         | $(1f_{5/2})^4$  | open   | closed                    | open                      |
| <sup>74</sup> Ge | $(2p_{3/2})^4$ | open   | closed                    | _                         | $(1g_{9/2})^2$  | open   | open                      | _                         |
| <sup>76</sup> Ge | $(2p_{3/2})^4$ | open   | closed                    | _                         | $(1g_{9/2})^4$  | open   | open                      | _                         |
| <sup>92</sup> Zr | $(2p_{1/2})^2$ | closed | closed                    | closed                    | $(1g_{7/2})^2$  | open   | closed                    | open                      |

$$= \hat{u} \left[ \frac{64}{35\pi^{\frac{3}{2}}} \frac{r^5}{b^9} + \frac{20}{3\pi^{\frac{3}{2}}} \frac{r}{b^5} \left( 1 - \frac{2}{5} \frac{r^2}{b^2} \right)^2 \right] \\\times \exp(-r^2/b^2) \quad (^{60}\text{Ni}) \\= \hat{u} \left[ \frac{128}{105\pi^{\frac{3}{2}}} \frac{r^5}{b^9} + \frac{20}{3\pi^{\frac{3}{2}}} \frac{r}{b^5} \left( 1 - \frac{2}{5} \frac{r^2}{b^2} \right)^2 \right] \\\times \exp(-r^2/b^2) \quad (^{62}\text{Ni}) \\= \hat{u} \left[ \frac{64}{105\pi^{\frac{3}{2}}} \frac{r^5}{b^9} + \frac{20}{3\pi^{\frac{3}{2}}} \frac{r}{b^5} \left( 1 - \frac{2}{5} \frac{r^2}{b^2} \right)^2 \right] \\\times \exp(-r^2/b^2) \quad (^{64}\text{Ni}) \\= \hat{u} \frac{128}{945\pi^{\frac{3}{2}}} \frac{r^7}{b^{11}} \exp(-r^2/b^2) \quad (^{74}\text{Ge}) \\= \hat{u} \frac{256}{945\pi^{\frac{3}{2}}} \frac{r^7}{b^{11}} \exp(-r^2/b^2) \quad (^{76}\text{Ge}) \\= \hat{u} \left[ \frac{128}{189\pi^{\frac{3}{2}}} \frac{r^7}{b^{11}} + \frac{56}{15\pi^{\frac{3}{2}}} \frac{r^3}{b^7} \left( 1 - \frac{2}{7} \frac{r^2}{b^2} \right)^2 \right] \\\times \exp(-r^2/b^2) \quad (^{92}\text{Zr}), \quad (15)$$

where  $\hat{u}$  is the unit vector in the radial direction and b is the oscillator length.

From the shell-model configuration of protons inside a nucleus, presented in Table I, one can ascertain that the expression for  $\vec{J_p}$  of all the colliding nuclei can be obtained from  $\vec{J_n}$  in Eq. (15). In Eq. (1), the spin densities  $\vec{J_1}$  and  $\vec{J_2}$  for nuclei (1) and (2) are thus obtained from Eq. (15) as  $\vec{J_1} = \vec{J_{n1}} + \vec{J_{p1}}$  and  $\vec{J_2} = \vec{J_{n2}} + \vec{J_{p2}}$ , and the spin density  $\vec{J}$  of the composite system (1+2) is obtained in the sudden approximation, i.e.,  $\vec{J} = \vec{J_1} + \vec{J_2}$ .

In order to study the role of both the spin-density terms,

$$\frac{1}{16}(t_1 - t_2) \left( \vec{J}_n^2 + \vec{J}_p^2 \right) - \frac{1}{4} W_0 [2\rho \vec{\nabla} \cdot \vec{J} + (1+\alpha)\rho \vec{\nabla} \cdot \vec{J}_n + (1-\alpha)\rho \vec{\nabla} \cdot \vec{J}_p ], \quad (16)$$

of the Skyrme energy density  $H_c$  in Eq. (6) on the estimation of the potentials  $V_E$  and  $W_E$ , we have excluded these terms from  $H_c$  and computed the potentials, denoted as  $V_N$  and  $W_N$ . Then, the spin-density contributions are  $V_J = V_E - V_N$  and  $W_J =$  $W_E - W_N$ , respectively, toward the real  $V_E$  and imaginary  $W_E$  potentials. Note that the term  $\frac{1}{16}(t_2 - t_1)(\vec{J}_n^2 + \vec{J}_p^2)$  is the contribution of the central (Wigner) component of the Skyrme interaction whereas the term  $\frac{1}{4}W_0[2\rho\vec{\nabla}\cdot\vec{J} + (1+\alpha)\rho\vec{\nabla}\cdot\vec{J}_n + (1-\alpha)\rho\vec{\nabla}\cdot\vec{J}_p]$  is the contribution of the spin-orbit component of the Skyrme interaction. Both terms vanish for a spin-saturated or completely filled *l*-shell nucleus, i.e., when  $\vec{J}_n = \vec{J}_p = 0$ . These terms will contribute toward the potentials *V* and *W* in Eq. (1) only when one of the *j* shells of the last *l* shell of either one or both of the colliding nuclei are completely filled up, i.e.,  $\vec{J}_c \neq 0$ , or partially filled up, i.e.,  $\vec{J}_N \neq 0$ .

It may be mentioned that the DME of Negele and Vautherin is exact when one uses a short-range effective interaction [4]. Thus, it enables one to obtain the Skyrme-Hartree-Fock energy density in Eq. (6) exactly [9].

# **III. CALCULATIONS AND RESULTS**

# A. Optical potential of open *j*-shell nuclei

We have considered from Table I reactions of some twenty pairs of nuclei, with at least one of the interacting nuclei having an open *j* shell.

TABLE II. Numerical values of the inter-ion separation distance  $D_t$ ,  $D_{ma}$ ,  $D_s$ ,  $D_i$ , and  $D_w$ , as defined in the text, and the percentage contributions  $\Delta V_J(D_{ma})$ ,  $\Delta V_J(D_s)$ ,  $\Delta W_J(D_i)$ , and  $\Delta W_J(D_w)$  of the spin-density terms toward the potentials  $V_E$  and  $W_E$  at these distances.

| System                              | E <sub>c.m.</sub><br>(MeV) | $D_t$ (fm) | D <sub>ma</sub><br>(fm) | $\Delta V_J(D_{ma})$ | D <sub>s</sub><br>(fm) | $\Delta V_J(D_s)$ | D <sub>i</sub><br>(fm) | $\Delta W_J(D_i)$ | D <sub>w</sub><br>(fm) | $\Delta W_J(D_w)$ |
|-------------------------------------|----------------------------|------------|-------------------------|----------------------|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|
| $^{16}O + {}^{20}Ne$                | 30.88                      | 3.9        | 4.4                     | 2.52                 | 4.4                    | 1.86              | 5.7                    | 2.56              | 5.7                    | 2.56              |
| $^{16}O + {}^{42}Ca$                | 43.45                      | 4.5        | 5.5                     | 0.86                 | 5.7                    | 0.83              | 6.2                    | 1.45              | 6.7                    | 1.03              |
| $^{16}O + {}^{44}Ca$                | 44                         | 4.5        | 5.5                     | 1.67                 | 5.7                    | 1.62              | 6.2                    | 3.01              | 6.7                    | 2.02              |
| $^{16}O + {}^{52}Cr$                | 45.88                      | 4.1        | 5.3                     | 8.19                 | 5.8                    | 6.44              | 6.7                    | 5.83              | 7.0                    | 4.71              |
| $^{16}O + {}^{54}Fe$                | 46.29                      | 4.1        | 5.3                     | 9.78                 | 5.8                    | 9.40              | 6.7                    | 6.69              | 7.0                    | 5.45              |
| <sup>16</sup> O + <sup>58</sup> Ni  | 47.03                      | 4.2        | 5.3                     | 9.67                 | 5.8                    | 7.92              | 6.9                    | 8.28              | 7.2                    | 5.10              |
| <sup>16</sup> O + <sup>62</sup> Ni  | 47.69                      | 4.0        | 5.2                     | 11.96                | 6.0                    | 6.43              | 6.9                    | 5.41              | 7.2                    | 4.33              |
| <sup>16</sup> O + <sup>64</sup> Ni  | 48                         | 4.0        | 5.2                     | 9.76                 | 6.0                    | 5.15              | 6.9                    | 4.35              | 7.2                    | 3.36              |
| $^{16}O + {}^{74}Ge$                | 46.04                      | 4.1        | 5.3                     | 10.83                | 6.3                    | 4.04              | 7.1                    | 3.62              | 7.5                    | 2.53              |
| $^{16}O + {}^{76}Ge$                | 46.26                      | 4.2        | 5.4                     | 8.82                 | 6.2                    | 5.17              | 7.2                    | 4.20              | 7.5                    | 3.31              |
| $^{16}O + {}^{92}Zr$                | 47.70                      | 4.4        | 5.6                     | 9.52                 | 6.6                    | 3.77              | 7.5                    | 3.02              | 7.9                    | 2.17              |
| <sup>18</sup> O + <sup>60</sup> Ni  | 48.46                      | 4.3        | 5.5                     | 10.15                | 5.9                    | 9.02              | 6.8                    | 11.24             | 7.3                    | 8.93              |
| <sup>18</sup> O + <sup>62</sup> Ni  | 48.82                      | 4.2        | 5.5                     | 11.29                | 6.1                    | 8.14              | 6.9                    | 9.23              | 7.3                    | 8.060             |
| <sup>18</sup> O + <sup>64</sup> Ni  | 49.17                      | 4.3        | 5.5                     | 8.40                 | 6.1                    | 8.30              | 6.8                    | 9.06              | 7.3                    | 5.58              |
| $^{18}O + {}^{76}Ge$                | 45.28                      | 4.5        | 5.8                     | 7.56                 | 6.3                    | 6.23              | 7.1                    | 8.90              | 7.6                    | 5.58              |
| $^{24}Mg + ^{32}S$                  | 68.57                      | 4.1        | 5.2                     | 10.54                | 5.3                    | 10.45             | 6.1                    | 17.98             | 6.7                    | 11.31             |
| ${}^{32}S + {}^{34}S$               | 49.97                      | 4.3        | 5.5                     | 11.74                | 5.7                    | 11.32             | 6.6                    | 14.39             | 7.1                    | 9.70              |
| $^{24}Mg + {}^{36}S$                | 72                         | 4.3        | 5.2                     | 6.5                  | 5.5                    | 6.09              | 6.2                    | 12.42             | 6.8                    | 7.77              |
| ${}^{12}C + {}^{62}Ni$              | 40.22                      | 4.2        | 5.4                     | 18.06                | 5.9                    | 13.45             | 6.5                    | 19.32             | 6.9                    | 13.10             |
| <sup>58</sup> Ni + <sup>64</sup> Ni | 114.9                      | 5.1        | 6.6                     | 16.89                | 7.3                    | 12.33             | 8.4                    | 12.04             | 8.8                    | 8.86              |

- (i) In ten cases, the projectile is a spin-saturated, doubly *l*-closed shell nucleus <sup>16</sup>O, with the targets (a) having proton and neutron orbitals as *l*-closed, *j*-open <sup>42</sup>Ca, <sup>44</sup>Ca, and <sup>92</sup>Zr; (b) *l*-open (*j*-closed), *j*-open <sup>58</sup>Ni, <sup>62</sup>Ni, <sup>64</sup>Ni, <sup>74</sup>Ge, and <sup>76</sup>Ge; (c) *j*-open, *l*-open (*j*-closed) <sup>52</sup>Cr and <sup>54</sup>Fe; and (d) *j*-open, *j*-open <sup>20</sup>Ne.
- (ii) In the second type, the projectile <sup>18</sup>O has proton and neutron orbitals as *l*-closed, *j*-open and the targets are
  (a) *l*-open, *l*-open <sup>60</sup>Ni and (b) *l*-open, *j*-open shell <sup>62</sup>Ni, <sup>64</sup>Ni, <sup>74</sup>Ge, and <sup>76</sup>Ge nuclei.
- (iii) In the third type, the projectile is  ${}^{58}$ Ni and the target  ${}^{64}$ Ni is an *l*-open, *j*-open shell nucleus.
- (iv) In the fourth type, the projectiles <sup>12</sup>C and <sup>32</sup>S are doubly *l*-open shell nuclei and the targets <sup>62</sup>Ni and <sup>34</sup>S are *l*-open, *j*-open shell nuclei.
- (v) Finally, the projectile <sup>24</sup>Mg has both neutron and proton orbitals as *j*-open and the targets are (a) *l*-open, *l*-closed <sup>36</sup>S and (b) *l*-open, *l*-open shell <sup>32</sup>S nuclei.

Such a wide range of combinations of interacting nuclei, with respect to their neutron and proton spin densities  $\vec{J}_n$  and  $\vec{J}_p$  [Eq. (15)] arising from n, l, and  $j = l \pm \frac{1}{2}$  values, presented in Table I, will enable us to study systematically the role of spin-density terms of the Skyrme III energy density in their determination of the elastic scattering optical potential of open *j*-shell nuclei.

We have computed the energy-dependent real  $V_E(D, E_{c.m.})$ ,  $V_N(D, E_{c.m.})$ , and  $V_J(D, E_{c.m.})$  and imaginary  $W_E(D, E_{c.m.})$ ,  $W_N(D, E_{c.m.})$ , and  $W_J(D, E_{c.m.})$  parts of the elastic scattering optical potential derived in the previous section for all twenty pairs of open *j*-shell nuclei studied here, using the Set III parameters of the Skyrme interaction [7], the experimental nucleonic densities  $\rho_1$  and  $\rho_2$  from [16,17,21] for the nuclei (1) and (2), and  $\rho = \rho_1 + \rho_2$  for the composite system (1+2).

Table II shows the results of our calculation for all twenty pairs of open *j*-shell nuclei studied here, and Figs. 1–6 show the same for six pairs of nuclei, i.e.,  ${}^{12}\text{C} + {}^{62}\text{Ni}$  ( $E_{\text{c.m.}} = 40.22 \text{ MeV}$ ),  ${}^{16}\text{O} + {}^{54}\text{Fe}$  ( $E_{\text{c.m.}} = 46.29 \text{ MeV}$ ),  ${}^{18}\text{O} + {}^{60}\text{Ni}$  ( $E_{\text{c.m.}} = 48.46 \text{ MeV}$ ),  ${}^{24}\text{Mg} + {}^{32}\text{S}$  ( $E_{\text{c.m.}} = 68.57 \text{ MeV}$ ),  ${}^{32}\text{S} + {}^{34}\text{S}$  ( $E_{\text{c.m.}} = 49.97 \text{ MeV}$ ), and  ${}^{58}\text{Ni} + {}^{64}\text{Ni}$  ( $E_{\text{c.m.}} = 114.99 \text{ MeV}$ ). We notice in Figs. 1 and 2



FIG. 1. Effect of spin density terms on the real part of the energydependent optical potential of the colliding nuclei:  $V_E$  (solid line);  $V_N$  (dashed line).



FIG. 2. Effect of spin density terms on the real part of the energydependent optical potential of the colliding nuclei:  $V_E$  (solid line);  $V_N$  (dashed line).

that, at the smaller separation distance D, the potential  $V_E$  is more attractive than the potential  $V_N$ , but, as D increases, the potential  $V_N$  is found to be more attractive than the potential  $V_E$ . This transition from attractive to repulsive behavior, due to the spin-density potential  $V_J$ , occurs at a separation distance  $D = D_t$ , given in Table II. Beyond  $D_t$ , the potential  $V_J$ increases and reaches a maximum at  $D_{ma}$  and thereafter it decreases gradually to zero, as shown explicitly in Fig. 3. The maxima occurs inside the minima  $D_s$  of the potential  $V_E$ .

The percentage contribution  $\Delta V_J = 100V_J/V_E$  at the maximum  $D_{ma}$  of the spin-density potential  $V_J$  is always larger than at the minimum  $D_s$  of the potential  $V_E$  (presented in Table II). At the repulsive maximum  $D_{ma}$ , the contribution of the spin-density terms is found to be very large and reduces



FIG. 4. Effect of spin density terms on the imaginary part of the energy-dependent optical potential of the colliding nuclei:  $W_E$  (solid line);  $W_N$  (dashed line).

the potential  $V_E$  by up to 18% in case of  ${}^{12}\text{C} + {}^{62}\text{Ni}$  and by about 17% in case of  ${}^{58}\text{Ni} + {}^{64}\text{Ni}$ .

The values of  $D_t$ ,  $D_{ma}$ ,  $D_s$ ,  $V_J(D_t)$ ,  $V_E(D_{ma})$ , and  $V_E(D_s)$ play a very important role in determining the characteristics of transfer reactions of spin-unsaturated nuclei [13–15]. Figures 4 and 5 show that the imaginary potential  $W_E$  is absorptive for all values of D. On the other hand, Fig. 6 shows that the spin-density imaginary potential  $W_J$  is emissive at a short distance D, followed by a well and a maximum at  $D_i$ , before approaching zero at a large D. In a few cases, such as  ${}^{16}\text{O} + {}^{54}\text{Fe}$ ,  ${}^{18}\text{O} + {}^{60}\text{Ni}$ , and  ${}^{58}\text{Ni} + {}^{64}\text{Ni}$ , the pocket of  $W_J$ drops below the zero axis and becomes strongly absorptive. The maxima of  $W_J$  at  $D_i$ , in all cases, occurs inside the minimum of the potential  $W_E$  at  $D_w$ . Table II shows that the



FIG. 3. Contribution of the spin density terms toward the real part of the energy-dependent optical potential of the colliding nuclei.



FIG. 5. Effect of spin density terms on the imaginary part of the energy-dependent optical potential of the colliding nuclei:  $W_E$  (solid line);  $W_N$  (dashed line).



FIG. 6. Contribution of spin density terms toward the imaginary part of the energy-dependent optical potential of the colliding nuclei.

percentage contribution  $\Delta W_J = 100W_J/W_E$  of the potential  $W_J$  toward the potential  $W_E$  at  $D_i$  is larger than at  $D_w$ . At the emissive maximum  $D_i$ , the contribution of the spin-density terms is found to be very large and reduces the potential  $W_E$  by up to about 19% in case of  $^{12}C + ^{62}Ni$ . However, the values of  $D_t$ ,  $D_{ma}$ , and  $D_s$  are smaller than the sum of the half-density radii  $R_{12}$  of the colliding nuclei (1) and (2).

It may be noted that the potentials  $V_E$ ,  $W_E$  and  $V_N$ ,  $W_N$  and  $V_J$ ,  $W_J$ , calculated in sudden approximation ( $\rho =$  $\rho_1 + \rho_2$ ,  $\vec{J} = \vec{J}_1 + \vec{J}_2$ ), are not reliable quantitatively at the above-noted distances since, in the interior region of  $D < R_{12}$ , there will be a strong overlap of the projectile and target densities. Under the sudden approximation, the overlap density  $\rho = \rho_1 + \rho_2$  in this region exceeds the normal nuclear matter density  $\rho_{nm} = 0.17 \text{ fm}^{-3}$ , for which the Skyrme effective interaction used here is not determined. Thus, the exit channel events occurring due to the potentials in the strong overlap region  $(D < R_{12})$  may not be explained properly by the potentials calculated under such an approximation. Therefore, in the following, we have studied the role of spin-density terms of the Skyrme energy density [Eq. (16)] in the calculation of the potentials  $V_E$  and  $W_E$  in the region of weak overlap ( $D \ge R_{12}$ ) where the density  $\rho$  does not exceed the normal nuclear matter density  $\rho_{nm}$ .

The percentage contributions of the spin-density terms  $\Delta V_J$ and  $\Delta W_J$  toward the potentials  $V_E$  and  $W_E$  at  $D \ge R_{12}$  are presented in Table III. A cursory inspection of the results reveals the following: (i) For a fixed l,  $\Delta V_J$  and  $\Delta W_J$  increase when the number of valence nucleons occupying the same (fixed) orbital  $j = l + \frac{1}{2}$  increases. (ii) For a fixed l,  $\Delta V_J$ and  $\Delta W_J$  decrease when the number of valence nucleons occupying the same (fixed) orbitals  $j = l - \frac{1}{2}$  is more. The number of holes in the last  $j = l - \frac{1}{2}$  shell decreases, and the nucleus tends toward the closure of the l shell. (iii)  $\Delta V_J$  and  $\Delta W_J$  increase when the valence nucleons are at the higher n or l orbitals. (iv)  $\Delta V_J$  and  $\Delta W_J$  increase when more neutron and proton orbitals of the projectile and the target nuclei remain unsaturated. (v) For each colliding system,  $\Delta W_J$  is larger than  $\Delta V_J$  at  $D \ge R_{12}$ . In this region,  $\Delta V_J$  and  $\Delta W_J$  are repulsive and have maximum values at  $D = R_{12}$ , and they decrease gradually to zero as D increases. Among the twenty pairs of nuclei considered in this work, the pairs of doubly spinunsaturated shell nuclei ( ${}^{12}C + {}^{62}Ni$ ,  ${}^{24}Mg + {}^{32}S$ ,  ${}^{32}S + {}^{34}S$ , and  ${}^{58}Ni + {}^{64}Ni$ ) make larger spin-density contributions  $\Delta V_J$ and  $\Delta W_J$  toward their interaction potential in the region of  $D > R_{12}$ , the maximum contributions being  $\Delta V_J = 9.6\%$  and  $\Delta W_J = 17.4\%$  in the case of  ${}^{12}C + {}^{62}Ni$  at  $D = R_{12}$ . As the heavy-ion interaction potential at  $D \ge R_{12}$  causes elastic scattering and fusion of colliding nuclei in the exit channel, we investigate the effect of the spin-density potentials  $V_J$  and  $W_J$  of the aforementioned twenty pairs of open *j*-shell nuclei on these quantities in the following.

#### B. Elastic scattering

The ratios  $\sigma_{el}/\sigma_R$  of the elastic scattering cross section  $\sigma_{el}$  to Rutherford cross section  $\sigma_R$  of all the pairs of open *j*-shell nuclei are computed from the calculated optical potentials  $V_E + i W_E$  and  $V_N + i W_N$ , respectively, with and without spin-density terms. It is found that the calculated potentials  $V_E + i W_E$  reproduce nicely the experimental data on scattering cross sections [23-33] for all the pairs of nuclei studied, without any renormalization. Some of these results are shown in Figs. 7 and 8. The shape of  $\sigma_{el}/\sigma_R$  deviates from a straight line at the center-of-mass angle  $\theta = \theta_i$  and shows a number of oscillations about the Rutherford value, with increasing amplitude, up to a maxima at the angle  $\theta = \theta_m$ , followed by a sharp fall in the forward angle regime. The potential  $V_N + i W_N$ , without spin-density terms, also gives an identical shape of  $\sigma_{el}/\sigma_R$ , fitting the data equally nicely. In the angular region  $\theta_i \leq \theta \leq \theta_m$ , both sets of potentials  $V_E + i W_E$  and  $V_N + i W_N$  predict almost identical variations of  $\sigma_{el}/\sigma_R$ , including the position of the maxima at  $\theta_m$  and the height of the maxima. There are small differences, of up to about 1%, between their values of  $\sigma_{el}/\sigma_R$  at  $\theta > \theta_m$ . As the oscillating structure of the elastic scattering cross sections  $\sigma_{el}/\sigma_R$  is reminiscent of a Fresnel diffractive pattern in the forward angle regime, the dominating feature of such a collision is the strong absorption from the elastic channel within a well-defined geometrical region.

The ratio  $\sigma_{el}/\sigma_R$  defines strong absorption with different proportions and determines the radial distance *D* of this region of the optical potential, sensitive to elastic scattering,

$$D = \eta \frac{\lambda}{2\pi} \left( 1 + \operatorname{cosec} \frac{1}{2} \theta \right), \tag{17}$$

where  $\eta$  and  $\lambda$  are the Coulomb parameter and the de Broglie wavelength of the reacting partners. At the angle  $\theta = \theta_i$ , the nuclear potential starts manifesting and the elastic scattering cross section  $\sigma_{el}$  deviates from its Rutherford values  $\sigma_R$  and achieves its maximum value at the angle  $\theta = \theta_m$ . It reduces to 1/2, 1/4, and 1/100 of the Rutherford cross section at  $\theta = \theta_{1/2}$ ,  $\theta_{1/4}$ , and  $\theta_{1/100}$ . The absorption of incident flux is 50%, 75%, and 99%, respectively, in the reaction channel at these angles. Practically, there is no scattering beyond  $\theta = \theta_{1/100}$ . These TABLE III. Percentage contributions  $\Delta V_J$  and  $\Delta W_J$  of the spin-density terms toward the real  $V_E$  and imaginary  $W_E$  parts of the optical potential of the interacting systems at different values of the separation distance  $D \ge R_{12}$ .

| System                              | E <sub>c.m.</sub><br>(MeV) | <i>R</i> <sub>12</sub> (fm) | Potential    | $D=R_{12}$ | 7 fm  | 8 fm | 9 fm | 10 fm | 11 fm | 12 fm |
|-------------------------------------|----------------------------|-----------------------------|--------------|------------|-------|------|------|-------|-------|-------|
| 16O + 20Ne                          | 30.88                      | 5.46                        | $\Delta V_J$ | 2.692      | 1.91  | 1.16 | 0.54 | 0.20  | 0.06  | 0.02  |
|                                     |                            |                             | $\Delta W_J$ | 2.708      | 1.95  | 1.36 | 0.91 | 0.58  | 0.33  | 0.14  |
| $^{16}O + {}^{42}Ca$                | 43.45                      | 6.46                        | $\Delta V_J$ | 0.909      | 0.91  | 0.87 | 0.67 | 0.36  | 0.12  | 0.03  |
|                                     |                            |                             | $\Delta W_J$ | 1.154      | 0.93  | 0.87 | 0.86 | 0.81  | 0.69  | 0.54  |
| $^{16}O + {}^{44}Ca$                | 44                         | 6.52                        | $\Delta V_J$ | 1.743      | 1.74  | 1.65 | 1.30 | 0.70  | 0.24  | 0.05  |
|                                     |                            |                             | $\Delta W_J$ | 2.233      | 1.82  | 1.72 | 1.63 | 1.54  | 1.33  | 0.96  |
| $^{16}O + {}^{52}Cr$                | 45.88                      | 6.64                        | $\Delta V_J$ | 4.075      | 3.30  | 1.77 | 0.87 | 0.38  | 0.14  | 0.04  |
|                                     |                            |                             | $\Delta W_J$ | 6.046      | 4.71  | 2.10 | 1.07 | 0.59  | 0.35  | 0.24  |
| $^{16}O + {}^{54}Fe$                | 46.28                      | 6.73                        | $\Delta V_J$ | 4.483      | 3.87  | 2.14 | 0.99 | 0.33  | 0.06  | 0.003 |
|                                     |                            |                             | $\Delta W_J$ | 6.558      | 5.45  | 2.64 | 1.27 | 0.55  | 0.22  | 0.06  |
| <sup>16</sup> O + <sup>58</sup> Ni  | 47.03                      | 6.93                        | $\Delta V_J$ | 4.227      | 4.05  | 2.09 | 1.01 | 0.45  | 0.17  | 0.06  |
|                                     |                            |                             | $\Delta W_J$ | 6.169      | 5.90  | 2.56 | 1.21 | 0.61  | 0.33  | 0.21  |
| $^{16}O + {}^{62}Ni$                | 47.69                      | 6.92                        | $\Delta V_J$ | 3.558      | 3.38  | 1.74 | 0.77 | 0.25  | 0.05  | 0.00  |
|                                     |                            |                             | $\Delta W_J$ | 5.342      | 5.04  | 2.27 | 0.99 | 0.39  | 0.14  | 0.07  |
| <sup>16</sup> O + <sup>64</sup> Ni  | 48                         | 6.87                        | $\Delta V_J$ | 2.746      | 2.49  | 1.17 | 0.52 | 0.22  | 0.08  | 0.02  |
|                                     |                            |                             | $\Delta W_J$ | 4.442      | 4.02  | 1.52 | 0.64 | 0.30  | 0.15  | 0.09  |
| $^{16}O + {}^{74}Ge$                | 46.04                      | 7.10                        | $\Delta V_J$ | 2.122      | _     | 1.03 | 0.46 | 0.19  | 0.08  | 0.02  |
|                                     |                            |                             | $\Delta W_J$ | 3.624      | _     | 1.50 | 0.60 | 0.27  | 0.13  | 0.06  |
| $^{16}O + {}^{76}Ge$                | 46.26                      | 7.28                        | $\Delta V_J$ | 2.434      | _     | 1.43 | 0.67 | 0.30  | 0.12  | 0.04  |
|                                     |                            |                             | $\Delta W_J$ | 3.969      | _     | 2.04 | 0.85 | 0.40  | 0.20  | 0.10  |
| $^{16}O + {}^{92}Zr$                | 47.70                      | 7.54                        | $\Delta V_J$ | 1.861      | _     | 1.31 | 0.56 | 0.19  | 0.05  | 0.00  |
|                                     |                            |                             | $\Delta W_J$ | 2.927      | _     | 1.97 | 0.77 | 0.27  | 0.07  | 0.00  |
| $^{18}O + {}^{60}Ni$                | 48.46                      | 7.01                        | $\Delta V_J$ | 5.849      | _     | 3.85 | 2.50 | 1.56  | 0.88  | 0.44  |
|                                     |                            |                             | $\Delta W_J$ | 9.365      | _     | 4.56 | 2.78 | 1.93  | 1.43  | 1.09  |
| $^{18}O + {}^{62}Ni$                | 48.83                      | 6.95                        | $\Delta V_J$ | 5.453      | 5.33  | 3.50 | 2.30 | 1.40  | 0.75  | 0.34  |
|                                     |                            |                             | $\Delta W_J$ | 8.817      | 8.44  | 4.08 | 2.58 | 1.83  | 1.34  | 0.98  |
| $^{18}O + {}^{64}Ni$                | 49.17                      | 6.90                        | $\Delta V_J$ | 4.929      | 4.24  | 2.83 | 1.92 | 1.25  | 0.75  | 0.40  |
|                                     |                            |                             | $\Delta W_J$ | 8.093      | 7.31  | 3.38 | 2.14 | 1.56  | 1.20  | 0.95  |
| $^{18}O + {}^{76}Ge$                | 45.28                      | 7.31                        | $\Delta V_J$ | 4.156      | -     | 3.18 | 2.20 | 1.47  | 0.90  | 0.49  |
|                                     |                            |                             | $\Delta W_J$ | 7.168      | _     | 4.15 | 2.46 | 1.74  | 1.32  | 1.02  |
| $^{24}Mg + ^{32}S$                  | 68.57                      | 6.24                        | $\Delta V_J$ | 9.40       | 7.55  | 5.24 | 3.41 | 2.06  | 1.12  | 0.55  |
|                                     |                            |                             | $\Delta W_J$ | 15.673     | 9.43  | 5.75 | 3.93 | 2.83  | 2.09  | 1.57  |
| ${}^{32}S + {}^{34}S$               | 49.97                      | 6.63                        | $\Delta V_J$ | 8.545      | 7.42  | 4.87 | 3.09 | 1.89  | 1.08  | 0.55  |
|                                     |                            |                             | $\Delta W_J$ | 16.625     | 11.61 | 5.80 | 3.48 | 2.31  | 1.64  | 1.24  |
| $^{24}Mg + {}^{36}S$                | 72                         | 6.44                        | $\Delta V_J$ | 6.109      | 5.37  | 3.94 | 2.67 | 1.67  | 0.94  | 0.47  |
| -                                   |                            |                             | $\Delta W_J$ | 9.880      | 6.93  | 4.28 | 2.98 | 2.18  | 1.63  | 1.22  |
| ${}^{12}C + {}^{62}Ni$              | 40.22                      | 6.60                        | $\Delta V_J$ | 9.645      | 8.19  | 5.73 | 3.94 | 2.40  | 1.25  | 0.56  |
|                                     |                            |                             | $\Delta W_J$ | 17.418     | 11.99 | 6.72 | 5.05 | 4.14  | 3.41  | 2.87  |
| <sup>58</sup> Ni + <sup>64</sup> Ni | 114.99                     | 8.49                        | $\Delta V_J$ | 8.958      | -     | -    | 5.37 | 3.24  | 1.98  | 1.20  |
|                                     |                            |                             | $\Delta V_J$ | 14.224     | _     | _    | 7.61 | 3.81  | 2.26  | 1.47  |

angles are used in Eq. (17) to obtain the corresponding radial distances  $D_i$ ,  $D_m$ ,  $D_{1/2}$ ,  $D_{1/4}$ , and  $D_{1/100}$ . Our results show that  $D_i > D_m > D_{1/2} > D_{1/4} > D_{1/100} > R_{12}$ . As the colliding nuclei approach each other, there is more absorption from the incident channel and their elastic scattering cross section  $\sigma_{el}$  decreases. The scattering disappears just after  $D_{1/100}$  before the colliding nuclei touch each other at  $R_{12}$ . The geometrical region  $D_i > D > D_{1/100}$  of the optical potential, sensitive to elastic scattering, is found to be about 6 fm wide whereas the strong absorption from the elastic channel corresponds to a radial region  $D_m > D > D_{1/100}$  of about 4 fm.

We have also calculated the contributions of  $\Delta V_J$  and  $\Delta W_J$  of the spin-density terms in the well-defined geometrical

region  $D_i > D > D_{1/100}$ . Our results, presented in Table IV, reveal that the contributions in this geometrical region are appreciable for several pairs of open *j*-shell nuclei. In case of  ${}^{12}C + {}^{62}Ni$ ,  $\Delta V_J$  and  $\Delta W_J$  at  $D_{1/100}$  are found to be 6% and 7%, respectively, but the contribution varies with the distance *D*. When the scattering is dominant at  $\theta_m$ , these contributions are small at the corresponding distance  $D = D_m$ . The contribution increases slowly in the region  $D < D_m$  with rapid depletion of the scattering cross section. It achieves maximum value at  $D = D_{1/100}$  where there is almost complete 99% absorption from the elastic channel. Apparently, this occurs because the contributions  $\Delta V_J$  and  $\Delta W_J$  of the spin-density terms have no appreciable effect on the elastic



FIG. 7. Comparison of ratios of the elastic scattering cross section to Rutherford cross sections,  $\sigma_{EI}/\sigma_R$ , of <sup>18</sup>O + <sup>60</sup>Ni at  $E_{c.m.} = 48.46$  MeV computed from the optical potentials with the experimental data.

scattering cross section of spin-unsaturated open j-shell nuclei considered in the present work.

# **IV. SUB-BARRIER FUSION**

It is evident from the analysis of elastic scattering results presented in Table IV that, when the colliding nuclei are at a distance  $D < D_{1/100}$ , the outgoing elastic channel is completely unpopulated. The reaction proceeds in the



FIG. 8. Comparison of ratios of the elastic scattering cross section to Rutherford cross sections,  $\sigma_{El}/\sigma_R$ , of  ${}^{32}\text{S} + {}^{34}\text{S}$  at  $E_{\text{c.m.}} = 49.97$  MeV computed from the optical potentials with the experimental data.

nonelastic channels, including fusion; i.e., before the colliding nuclei touch each other at  $R_{12} < D < D_{1/100}$ , they encounter the fusion barrier. As the absorption into the compound nucleus is confined to a well-defined radial region,  $D_m > D > D_{1/100}$ , in the reaction processes, the absorption under the barrier is not needed for explaining the sub-barrier fusion data. In other words, the sub-barrier fusion data are well described by the real part of the optical potential since the absorption becomes very insensitive to the strength and other details of the imaginary

TABLE IV. Numerical values of the scattering angles  $\theta_m$  and  $\theta_{1/100}$ , the separation distances  $D_m$  and  $D_{1/100}$ , and the percentage contributions  $\Delta V_J$  and  $\Delta W_J$  of the spin-density terms toward the optical potential  $V_E + i W_E$  at these distances.

| System                              | $(\mathrm{fm}^{\frac{2\pi}{\lambda}})$ | $\theta_m$ (deg) | D <sub>m</sub><br>(fm) | $\Delta V_J(D_m)$ | $\Delta W_J(D_m)$ | $	heta_{1/100}$ (deg) | D <sub>1/100</sub><br>(fm) | $\Delta V_J(D_{1/100})$ | $\Delta W_J(D_{1/100})$ |
|-------------------------------------|----------------------------------------|------------------|------------------------|-------------------|-------------------|-----------------------|----------------------------|-------------------------|-------------------------|
| $^{16}O + {}^{20}Ne$                | 3.64                                   | 16               | 13.4                   | 0.01              | 1.02              | 55.3                  | 7.88                       | 2.63                    | 2.57                    |
| $^{16}O + {}^{42}Ca$                | 4.93                                   | 30               | 12.88                  | 0.02              | 0.84              | 52                    | 8.69                       | 0.75                    | 0.86                    |
| $^{16}O + {}^{44}Ca$                | 4.99                                   | 30               | 12.73                  | 0.02              | 0.57              | 50                    | 8.81                       | 1.39                    | 1.63                    |
| $^{16}O + {}^{52}Cr$                | 5.20                                   | 36               | 12.76                  | 0.01              | 0.23              | 57.3                  | 9.3                        | 0.7                     | 0.9                     |
| $^{16}O + {}^{54}Fe$                | 5.25                                   | 40               | 11.72                  | 0.01              | 0.1               | 63.5                  | 8.66                       | 1.33                    | 1.65                    |
| <sup>16</sup> O + <sup>58</sup> Ni  | 5.33                                   | 42               | 12.99                  | 0.02              | 0.18              | 65.5                  | 9.77                       | 0.54                    | 0.71                    |
| <sup>16</sup> O + <sup>62</sup> Ni  | 5.41                                   | 42               | 12.82                  | 0.00              | 0.06              | 65.5                  | 9.63                       | 0.4                     | 0.56                    |
| $^{16}O + {}^{64}Ni$                | 5.44                                   | 40               | 13.18                  | 0.01              | 0.09              | 62.6                  | 9.83                       | 0.26                    | 0.34                    |
| $^{16}O + {}^{74}Ge$                | 5.41                                   | 52               | 13.13                  | 0.00              | 0.01              | 79.3                  | 10.28                      | 0.15                    | 0.22                    |
| $^{16}O + {}^{76}Ge$                | 5.43                                   | 52               | 13.09                  | 0.01              | 0.03              | 77.5                  | 10.35                      | 0.22                    | 0.31                    |
| $^{16}O + {}^{92}Zr$                | 5.80                                   | 64               | 13.01                  | 0.00              | 0.06              | 94.6                  | 10.64                      | 0.08                    | 0.12                    |
| <sup>18</sup> O + <sup>60</sup> Ni  | 5.69                                   | 38               | 13.55                  | 0.12              | 0.78              | 71.5                  | 9.02                       | 2.48                    | 2.76                    |
| $^{18}O + {}^{62}Ni$                | 5.73                                   | 40               | 12.96                  | 0.14              | 0.75              | 73                    | 8.95                       | 2.45                    | 2.74                    |
| <sup>18</sup> O + <sup>64</sup> Ni  | 5.77                                   | 38               | 13.35                  | 0.14              | 0.76              | 69.5                  | 9.03                       | 1.9                     | 2.11                    |
| $^{18}O + {}^{76}Ge$                | 5.64                                   | 52               | 13.35                  | 0.18              | 0.69              | 91                    | 9.78                       | 1.62                    | 1.86                    |
| $^{24}Mg + {}^{32}S$                | 6.74                                   | 18               | 14.90                  | 0.06              | 0.61              | 39.7                  | 7.95                       | 5.35                    | 5.87                    |
| ${}^{32}S + {}^{34}S$               | 6.30                                   | 18               | 12.42                  | 0.41              | 1.12              | 85                    | 9.15                       | 2.88                    | 3.26                    |
| $^{24}Mg + {}^{36}S$                | 7.07                                   | 50               | 14.19                  | 0.07              | 0.76              | 37                    | 7.97                       | 3.98                    | 4.33                    |
| ${}^{12}C + {}^{62}Ni$              | 4.42                                   | 34               | 13.29                  | 0.17              | 2.91              | 76.6                  | 8.86                       | 6.01                    | 7.1                     |
| <sup>58</sup> Ni + <sup>64</sup> Ni | 12.99                                  | 52               | 16.10                  | 0.06              | 0.33              | 92                    | 11.73                      | 1.37                    | 1.64                    |

TABLE V. Numerical values of the positions  $R_{BE}$  and  $R_{BN}$  and heights  $V_{BE}$  and  $V_{BN}$  of the fusion barrier and the fusion cross sections  $\sigma_{fE}$  and  $\sigma_{fN}$  calculated from the potentials  $V_E$  and  $V_N$ .

| System                              | E <sub>c.m.</sub><br>(MeV) | <i>R</i> <sub><i>BE</i></sub> (fm) | $V_{BE}$ (MeV) | $\sigma_{fE}$ (mb) | <i>R</i> <sub><i>BN</i></sub> (fm) | $V_{BN}$ (MeV) | $\sigma_{fN}$ (mb) |
|-------------------------------------|----------------------------|------------------------------------|----------------|--------------------|------------------------------------|----------------|--------------------|
| $\frac{160 + 20}{160}$ Ne           | 30.88                      | 7.20                               | 8.62           | 1170.5             | 7.23                               | 8.676          | 1177.5             |
| $^{16}O + {}^{42}Ca$                | 43.45                      | 8.13                               | 21.46          | 1049.0             | 8.14                               | 21.46          | 1051.77            |
| $^{16}O + {}^{44}Ca$                | 44                         | 8.17                               | 21.20          | 1087.95            | 8.20                               | 21.20          | 1093.29            |
| $^{16}O + {}^{52}Cr$                | 45.88                      | 8.49                               | 25.47          | 1005.9             | 8.51                               | 25.48          | 1010.28            |
| $^{16}O + {}^{54}Fe$                | 46.29                      | 8.58                               | 28.38          | 893.3              | 8.61                               | 28.41          | 897.80             |
| $^{16}O + {}^{58}Ni$                | 47.03                      | 8.85                               | 29.68          | 906.2              | 8.87                               | 29.68          | 910.15             |
| $^{16}O + {}^{62}Ni$                | 47.69                      | 8.83                               | 30.00          | 907.2              | 8.85                               | 30.03          | 910.14             |
| $^{16}O + {}^{64}Ni$                | 48                         | 8.88                               | 29.32          | 962.9              | 8.90                               | 29.36          | 964.95             |
| $^{16}O + {}^{74}Ge$                | 46.04                      | 9.30                               | 34.04          | 707.1              | 9.31                               | 34.04          | 708.26             |
| $^{16}O + ^{76}Ge$                  | 46.26                      | 9.39                               | 33.62          | 755.5              | 9.40                               | 33.62          | 757.16             |
| $^{16}O + ^{92}Zr$                  | 47.70                      | 9.88                               | 41.867         | 374.1              | 9.89                               | 41.87          | 374.75             |
| $^{18}O + {}^{60}Ni$                | 48.46                      | 9.02                               | 28.37          | 1058.5             | 9.06                               | 28.37          | 1067.78            |
| $^{18}O + {}^{62}Ni$                | 48.83                      | 8.93                               | 29.08          | 1011.9             | 8.96                               | 29.09          | 1020.24            |
| $^{18}O + {}^{64}Ni$                | 49.17                      | 9.01                               | 28.27          | 1082.9             | 9.04                               | 28.27          | 1090.19            |
| $^{18}O + {}^{76}Ge$                | 45.28                      | 9.59                               | 32.83          | 792.8              | 9.62                               | 32.83          | 798.98             |
| $^{24}Mg + ^{32}S$                  | 68.57                      | 7.28                               | 14.24          | 1329.9             | 7.58                               | 17.18          | 1350.23            |
| ${}^{32}S + {}^{34}S$               | 49.97                      | 8.92                               | 33.69          | 813.5              | 8.98                               | 33.71          | 825.24             |
| $^{24}Mg + {}^{36}S$                | 72                         | 7.53                               | 13.48          | 1446.6             | 7.71                               | 15.25          | 1470.42            |
| ${}^{12}C + {}^{62}Ni$              | 40.22                      | 8.41                               | 22.74          | 963.9              | 8.48                               | 22.75          | 979.46             |
| <sup>58</sup> Ni + <sup>64</sup> Ni | 114.99                     | 10.42                              | 94.73          | 600.7              | 10.47                              | 94.75          | 610.9              |

potential. Thus, we examine here the question of to what extent the spin-density contribution affects the sub-barrier fusion data at an energy  $E_{c.m.}$  where the calculated optical potential  $V_E + i W_E$  reproduces the elastic scattering data of the colliding open-*j* shell nuclei, without any renormalization.

The heavy-ion fusion cross section  $\sigma_f$ , for a targetprojectile spin-independent interaction, is obtained in terms of the partial-wave expansion as

$$\sigma_f = \frac{\lambda^2}{4\pi} \sum_L (2L+1)P_L, \qquad (18)$$

where  $P_L$  is the transmission coefficient which describes the probability of compound nucleus formation by an incident partial wave with orbital angular momentum *L*. By taking the nuclear potential to be real and approximating the potential near the barrier by a parabola, one obtains  $P_L$  in the WKB approximation as

$$P_{L} = \left\{ 1 + \exp\left[2\pi(\mu/\hbar^{2}|V''(R_{B})|)^{\frac{1}{2}}(V(R_{B}) - E_{\text{c.m.}})\right] \right\}^{-1},$$
(19)

where

$$V(R_B) = [V_C(D) + V_N(D) + V_L(D)]|_{D=R_B},$$
 (20)

$$V''(R_B) = \frac{d^2}{dD^2} [V_C(D) + V_N(D) + V_L(D)]|_{D=R_B},$$
(21)

and  $V_C(D)$ ,  $V_N(D)$ , and  $V_L(D)$  are the Coulomb, nuclear, and centrifugal potentials of the colliding nuclei. The position  $D = R_B$  is calculated from the following relations:

$$[V_C(D) + V_N(D) + V_L(D)]|_{D=R_B} = E_{\text{c.m.}}, \quad (22)$$

$$\frac{d}{dD}[V_C(D) + V_N(D) + V_L(D)]|_{D=R_B} = 0,$$
(23)

$$\frac{d^2}{dD^2}[V_C(D) + V_N(D) + V_L(D)]|_{D=R_B} < 0.$$
(24)

Thus, the barrier penetration model, Eqs. (18)–(24), does not contain any free parameter except those entering through the two-body Skyrme effective interaction  $v_{sky}$ .

We have calculated the fusion barrier positions  $R_{BE}$  and  $R_{BN}$ , heights  $V_{BE}$  and  $V_{BN}$ , and fusion cross sections  $\sigma_{fE}$ ,  $\sigma_{fN}$  of all the pairs of colliding open-*j* shell nuclei at specified energy, using the real potentials  $V_E$  and  $V_N$  in Eqs. (18)–(24). These results are presented in Table V.

Table V shows that the fusion barrier occurs 0.5 fm inside of the distance  $D_{1/100}$  of complete absorption. The contribution of spin-density terms around the position  $R_{BE}$ of the fusion barrier is repulsive and enhances the values of the position  $R_{BE}$  and height  $V_{BE}$  of the fusion barrier and the fusion cross section  $\sigma_{fE}$  as well. Among all the pairs of colliding nuclei considered here, the percentage contribution of the spin-density terms toward  $V_E$ ,  $R_{BE}$ ,  $V_{BE}$ , and  $\sigma_{fE}$  are appreciable for the doubly spin-unsaturated colliding nuclei. In case of <sup>24</sup>Mg + <sup>32</sup>S, at  $E_{\ell} = 68.57$  MeV, the spin-density terms affect the potential at the fusion barrier by about 7% and the height of the fusion barrier by 21%. However, the corresponding fusion cross section is affected by only about 1.5%, since the fusion cross section is determined not only by the potential  $V(R_B)$  but also by  $V''(R_B)$ .

## V. CONCLUSION

We have calculated both the energy-dependent real  $V_E$  and imaginary  $W_E$  parts of the optical potential of some twenty pairs of spin-unsaturated, open *j*-shell nuclei in the energy density model, using the complex Skyrme III energy density. These colliding nuclei have a wide range of combinations of neutron and proton spin densities arising from their n, l, and j values of the last unfilled l shell. Our systematic study on the role of spin-density terms of Skyrme III energy density reveals that the spin-density contribution toward the imaginary potential  $W_E$  is always larger than it is toward the real potential  $V_E$ . The contributions in both the real and imaginary potentials increase with greater number of valence nucleons in a fixed orbital j = l + 1/2 or when the valence nucleons are at higher n or l orbitals or when number of neutron and proton orbitals of the projectile and target nucleon remain unsaturated. The pairs of doubly spin-unsaturated shell nuclei make a larger spindensity contribution. Among the twenty pairs of open *j*-shell nuclei considered in this work, the spin-density contributions are found to be as high as 18%–19% at the repulsive maxima. However, the contribution gradually decreases to zero as the separation distance D increases beyond the maxima.

The elastic scattering cross sections of all the pairs of nuclei exhibit a Fresnel diffractive pattern of angular distributions. This type of scattering data is very much sensitive to the variation of the real and imaginary potentials [4–6]. It is found that the calculated optical potential  $V_E + i W_E$ , without any variation or renormalization, nicely reproduces the experimental data on elastic scattering cross sections for all pairs of nuclei studied here. The elastic scattering data are found to be sensitive to the potential  $V_E + i W_E$  in a wide radial range  $D_i \ge D \ge D_{1/100}$  of about 6 fm in the surface region. In this region, the contributions of the spin-density terms toward the potentials  $V_E$  and  $W_E$  are found to be up to 6% and 7%, respectively.

Next, in the barrier penetration model we have calculated the fusion barrier positions and heights and the fusion cross sections of all pairs of nuclei, using the same potential  $V_E$ . The percentage contributions of the spin-density terms toward these quantities of fusion of the colliding open *j*-shell nuclei are found to be larger than that of closed *j*-shell nuclei. The differences in the heights of the fusion barriers can be up to 21%. However, in our systematic study of the role of spindensity terms in the sub-barrier fusion, we have not taken into account the coupled-channel effects of vibrational and rotational excited states of the projectile and target nuclei, even though the experimental consequences of these effects are important [34–38].

Finally, we note that both the elastic scattering and subbarrier fusion of all the pairs of open *j*-shell nuclei considered at a specific energy occur when the colliding nuclei are at a distance  $D_i \ge D \ge R_{BE}$ . The position  $R_{BE}$  of the fusion barrier is about 2 fm larger than the sum of their half-density radii  $R_{12}$ . In this region, the overlap density  $\rho$  is always smaller than the nuclear matter density  $\rho_{nm}$ . The maximum overlap of the densities of projectile and target nuclei among all the pairs is found to be 56% of the nuclear matter density  $\rho_{nm}$  in case of sub-barrier fusion of  ${}^{24}Mg + {}^{32}S$  at  $R_B$ . Such an overlap can be considered as a weak overlap and the use of the sudden approximation for the composite density  $\rho$  and the spin density  $\vec{J}$  and the use of Skyrme effective interaction are valid. Therefore, the numerical values of the calculated optical potential in the radial region  $D_i \ge D \ge R_B$  are qualitatively correct. In this region, although the contribution of spin-density terms are found to be appreciable toward the optical potential of several pairs of open *i*-shell nuclei, the exit channel events such as the Fresnel diffractive pattern of elastic scattering cross section and the sub-barrier fusion cross section are not affected much by the contribution of the spin-density terms. On the other hand, the contribution of the spin-density terms becomes very large as the separation distance D between the colliding nuclei further decreases from  $R_B$  to  $R_{12}$  and  $R_{12}$  to  $D_{ma}$ . It may, therefore, play a crucial role in determining the exit channel events such as rainbow scattering [39–45] and transfer reactions [12–15], which are sensitive to the potential in this interior region. For such an analysis, however, one has to obtain microscopically the reliable potential. This is being attempted.

#### ACKNOWLEDGMENTS

The authors would like to acknowledge with thanks the computational facilities provided by Dr. S. Kailas, BARC, Mumbai, India, and Dr. S. Mandal, GSI, Germany, for the calculation of the heavy-ion elastic scattering cross sections reported in this paper. This work was supported by the Department of Science and Technology, Government of India, under Grants No. SP/S2/K-23/97 and No. SP/S2/K-02/2000.

- [1] S. Kaur and P. Chattopadhyay, Phys. Rev. C 36, 1016 (1987).
- [2] K. C. Panda, Phys. Rev. C 42, 1155 (1990).
- [3] K. C. Panda, J. Phys. G: Nucl. Phys. 11, 1323 (1985).
- [4] K. C. Panda and T. Patra, J. Phys. G: Nucl. Phys. 14, 1489 (1988).
- [5] K. C. Panda and T. Patra, J. Phys. G: Nucl. Part. Phys. 17, 185 (1991).
- [6] K. C. Panda and T. Patra, J. Phys. G: Nucl. Part. Phys. 16, 593 (1990).
- [7] M. Beiner, H. Flocard, N. Van Giai, and P. Quentin, Nucl. Phys. A 238, 29 (1975).
- [8] F. L. Stancu and D. M. Brink, Nucl. Phys. A 270, 236 (1976).
- [9] D. Vautherin and D. M. Brink, Phys. Rev. C 5, 626 (1972).

- [10] R. K. Puri and R. K. Gupta, J. Phys. G: Nucl. Part. Phys. 17, 1933 (1991).
- [11] R. K. Puri and R. K. Gupta, Phys. Rev. C **45**, 1837 (1992).
- [12] R. K. Puri, P. Chattopadhyay, and R. K. Gupta, Phys. Rev. C 43, 315 (1991).
- [13] R. K. Puri and R. K. Gupta, Int. J. Mod. Phys. E 1, 269 (1992).
- [14] M. K. Sharma, H. Kumar, R. K. Puri, and R. K. Gupta, Phys. Rev. C 56, 1175 (1997).
- [15] R. K. Puri, R. Arora, and R. K. Gupta, Phys. Rev. C 60, 054619 (1999).
- [16] H. De Vries, C. W. De Jäger, and C. De Vries, At. Data and Nucl. Data Tables 36, 495 (1987).

- [17] L. R. B. Elton, *Nuclear Sizes* (Oxford University Press, London, 1961).
- [18] P. Chattopadhyay and R. K. Gupta, Phys. Rev. C 30, 1191 (1984).
- [19] M. Hugi, L. Jarczyk, B. Kamys, J. Lang, R. Müller, E. Ungricht, and W. Zipper, J. Phys. G: Nucl. Phys. 6, 1257 (1980); B. T. Kim, W. Y. So, S. W. Hong, and T. Udagawa, Phys. Rev. C 65, 044616 (2002).
- [20] J. W. Negele and D. Vautherin, Phys. Rev. C 5, 1472 (1975).
- [21] R. Hofstädter, Annu. Rev. Nucl. Sci. 7, 231 (1957).
- [22] A. G. Sitenko and V. K. Tartakovskii, *Lectures on the Theory of the Nucleus* (Pergamon, New York, 1975), p. 113.
- [23] K. E. Rehm, W. Henning, J. R. Erskine, D. G. Kovar, M. H. Macfarlane, S. C. Pieper, and M. Rhoades-Brown, Phys. Rev. C 25, 1915 (1982).
- [24] H. H. Gutbrod, M. Blann, and W. G. Winn, Nucl. Phys. A 213, 285 (1973).
- [25] E. M. Takagui, G. R. Satchler, H. Takai, K. Koide, and O. Dietzsch, Nucl. Phys. A 514, 120 (1990).
- [26] M. C. Mermaz, Phys. Rev. C 36, 1192 (1987).
- [27] N. Goncalves, Ph.D. thesis, University of Paris, 1980.
- [28] F. D. Becchetti, P. R. Christensen, V. I. Manko, and R. J. Nickles, Nucl. Phys. A 203, 1 (1973).
- [29] M. Gai, G. M. Berkowitz, P. Braun-Muzinger, C. M. Jachcinski, C. E. Ordoriez, T. R. Renner, and C. D. Uhlhorn, Phys. Rev. C 30, 925 (1984).
- [30] J. A. Ruiz, J. L. Ferrero, B. Bilwes, and R. Bilewes, Nucl. Phys. A 548, 510 (1992).

- [31] K. E. Rehm, H. J. Korner, M. Richter, H. P. Rother, J. P. Schiffer, and H. Spieler, Phys. Rev. C 12, 1945 (1975).
- [32] P. R. Christensen, I. Chernov, E. E. Gross, R. Stokstad, and F. Videbek, Nucl. Phys. A 207, 433 (1973).
- [33] K. E. Rehm, F. L. H. Wolfs, A. M. van den Berg, and W. Henning, Phys. Rev. Lett. 55, 280 (1985).
- [34] H. Esbensen and S. Landowne, Phys. Rev. C 35, 2090 (1987).
- [35] H. Esbensen, S. H. Fricke, and S. Landowne, Phys. Rev. C 40, 2046 (1989).
- [36] H. Esbensen, Phys. Rev. C 81, 034606 (2010).
- [37] J. J. Kolata et al., Phys. Rev. C 85, 054603 (2012).
- [38] H. M. Jia, C. J. Lin, F. Yang, X. X. Xu, H. Q. Zhang, Z. H. Liu, L. Yang, S. T. Zhang, P. F. Bao, and L. J. Sun, Phys. Rev. C 86, 044621 (2012).
- [39] D. T. Khoa and W. von Oertzen, Phys. Lett. B **342**, 6 (1995).
- [40] M. A. Candido Ribeiro, L. C. Chamon, D. Pereira, M. S. Hussein, and D. Galetti, Phys. Rev. Lett. 78, 3270 (1997).
- [41] D. T. Khoa, W. von Oertzen, H. G. Bohlen, and F. Nuoffer, Nucl. Phys. A 672, 387 (1999).
- [42] A. A. Ogloblin et al., Phys. Rev. C 62, 044601 (2000).
- [43] D. T. Khoa, Phys. Rev. C 63, 034007 (2001).
- [44] S. Szilner, M. P. Nicoli, Z. Basrak, R. M. Freeman, F. Haas, A. Morsad, M. E. Brandan, and G. R. Satchler, Phys. Rev. C 64, 064614 (2001).
- [45] W. von Oertzen, H. G. Bohlen, V. Subotin, and D. T. Khoa, Acta Phys. Pol. B 33, 93 (2002).