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Spin-density contribution in the optical potential of open j -shell nuclei
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The energy-dependent real and imaginary parts of the optical potential of some twenty pairs of spin-unsaturated,
open j -shell nuclei are calculated in the energy density model, using the complex Skyrme III energy density. The
calculated potentials, without any renormalization, reproduce the experimental data on elastic scattering cross
sections of all the pairs of nuclei studied. The contribution of the spin density terms, of the Skyrme III energy
density, toward such potentials and toward the corresponding elastic scattering cross sections and sub-barrier
fusion cross sections are investigated.
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I. INTRODUCTION

In heavy-ion reactions, rich varieties of novel manifesta-
tions take place in the exit channel due to the strong interaction
between the heavy ions. These events, characterized by the
incident energy, mass, and structural properties of the colliding
ions, are expected to add significantly to our present knowledge
of nuclear properties. The understanding of these events
requires the microscopic heavy-ion interaction potential that
properly contains the effects of relative motion and structural
properties of colliding nuclei. Therefore, gaining knowledge
of such an interaction potential has been one of the major
problems in nuclear physics.

In the recent past, initial efforts were made by Kaur and
Chattopadhyay [1] and Panda [2] to illustrate the structural
effects of the spin density of unsaturated, closed j -shell nuclei
on the microscopic calculation of their interaction potential.
Since the spin density arises from the nucleonic configuration
of the last unfilled l shell of the nucleus, it is expected to
play an important role in the heavy-ion reactions involving
weak to strong overlap of the projectile and target densities.
In the region of weak overlap, elastic scattering occurs and it
is observed that the heavy-ion elastic scattering cross sections
of spin-saturated nuclei are nicely described by a microscopic
optical potential [3–5] that does not contain any adjustable
parameter or need renormalization. The microscopic calcu-
lation of the energy-dependent real and imaginary parts of
such an optical potential requires only a two-body effective
interaction and the density distributions of the projectile
and target nuclei as inputs. Panda and Patra [6] extended
this technique to spin-unsaturated, closed j -shell nuclei,
and they showed the structural effects of the spin densities
on their potential and the corresponding elastic scattering
cross sections. The real and imaginary parts of the optical
potential were calculated [6] by taking (i) the Skyrme III
effective interaction [7], (ii) the parametrized self-consistent
matter densities [8], and (iii) the spin densities obtained from
the shell-model wave functions by using the prescription of

Vautherin and Brink [9] as inputs in the energy density model
(EDM). The calculated optical potential also reproduced nicely
the elastic scattering data of spin-unsaturated, closed j -shell
nuclei, without any renormalization. However, the contribution
of the spin density toward the real and imaginary potentials, in
the region sensitive to elastic scattering, was not appreciable
and essentially had no effect on the elastic scattering angular
distributions. Also, the effects of spin density on sub-barrier
fusion, which involves more overlap of the densities of spin-
unsaturated, closed j -shell nuclei, were investigated by Puri
and Gupta [10,11], by using the real part of the optical potential
in the barrier penetration model. They found that the positions
and heights of the fusion barriers and the fusion cross sections
are affected within ∼1% only, since the closed j -shell nuclei
are very weakly spin-unsaturated.

Recently, Gupta and collaborators [12–15] have also in-
vestigated the contribution of spin density on the energy-
independent real part of the interaction potential of highly
spin unsaturated, open j -shell, even-even nuclei. They have
calculated the real potential by using the Skyrme II effective
interaction [7], the experimental nucleonic densities of the
target and projectile [16,17], and the spin density obtained
from the shell-model wave functions in the proximity model
approximation [18]. This calculation shows that the contribu-
tion of spin density is rather large. In the relevant region, the
contribution is repulsive and reduces the energy-independent
real potential by as much as 5–7 MeV at the repulsive maxima
of the spin-density potential. A similar contribution toward
the imaginary part of the optical potential is highly expected
since, from our previous analysis [4–6], it is evident that the
elastic scattering data are very much sensitive to the variation
of both the real and imaginary potentials. Hence, the role
of spin density of open j -shell even-even nuclei might be
important in determining the elastic scattering optical potential
and the corresponding elastic scattering cross section and
sub-barrier fusion cross section [3,19]. This enables one to test
the accuracy of the radial dependence of the same potential in
different regions of nuclear reaction data and to provide new
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information on the physics taking place when two nuclei come
together. We investigate these aspects in the present paper.

The aim of the present paper is at least threefold: 1. to
properly calculate the energy-dependent real and imaginary
parts of the optical potential of those pairs of nuclei having at
least one being an open j -shell nucleus, 2. to study the effect
of the spin-density terms on the real and imaginary parts of
the calculated energy-dependent potentials in different radial
regions, and 3. to study the role of spin density on the elastic
scattering and sub-barrier fusion cross sections of the chosen
pairs of nuclei and to estimate the percentage contribution of
the spin density in the relevant region of the potential sensitive
to these nuclear reactions.

The paper is organized as follows: In Sec. II, we present
our derivation of the energy-dependent real and imaginary
potentials for spin-unsaturated, open j -shell even-even nuclei
in the energy density model. In Sec. III, we discuss the role
of spin density on our calculations of the optical potential,
elastic scattering, and sub-barrier fusion. Finally, in Sec. IV,
we present a summary of our conclusions.

II. DERIVATION OF ENERGY-DEPENDENT REAL AND
IMAGINARY PARTS OF OPTICAL POTENTIAL FOR

SPIN-UNSATURATED, OPEN j -SHELL NUCLEI

In the EDM, the energy-dependent real V (D,Ec.m.) and
imaginary W (D,Ec.m.) parts of the optical potential of spin-
unsaturated, open j -shell nuclei can be calculated as a function
of their separation distance D and relative center-of-mass
energy Ec.m. as

V (D,Ec.m.) + iW (D,Ec.m.)

=
∫

[Hc(ρ, τ, J,Ec.m.) − H1(ρ1, τ1, J1, Ec.m.)

−H2(ρ2, τ2, J2, Ec.m.)]d
3R. (1)

Hc, H1, and H2 are the energy-dependent complex Hamilto-
nian densities of the composite (1 + 2) and individual systems
of colliding nuclei (1) and (2). These can be obtained as a
function of the matter density ρ, kinetic energy density τ , spin
density �J , and center-of-mass energy Ec.m. from a complex ef-
fective interaction vc that should have a spin-orbit component.

In the present work, we have used the complex Skyrme
effective interaction vc for obtaining the complex Hamiltonian
densities in Eq. (1):

vc = (1 + iγ )vsky, (2)

where

vsky = t0(1 + x0Pσ )δ(�r) + 1
2 t1[δ(�r) �K2 + �K ′2δ(�r)]

+ t2 �K ′.δ(�r) �K + 1
6 t3(1 + Pσ )ρδ(�r)

+ iW0( �σ1 + �σ2) · �K ′ × δ(�r) �K. (3)

t0, t1, t2, t3, x0, and W0 are the Skyrme interaction parameters
[7]. �K = ( �∇1 − �∇2)/2i is the two-nucleon relative momentum
acting on the wave function on the right and �K ′ is adjoint of �K .
�σ1 and �σ2 are the Pauli spin matrices and Pσ = 1

2 (1 + �σ1 · �σ2)
is the spin exchange operator. The last term in Eq. (3) is the
spin-orbit component of the Skyrme interaction.

The Fourier transform of the complex effective interaction
vc in Eq. (2) is given by the effective two-body matrix and
the imaginary component γ of vc is obtained in the forward
scattering amplitude approximation [3] as

γ = −h̄2k 〈σ 〉 /(2mJ ). (4)

In Eq. (4), m is the mass of the nucleon, and k, 〈σ 〉, and J
are the wave number of the incident nucleon, the average
total nucleon-nucleon cross section inside the nucleus, and
the volume integral of the two-body effective interaction vsky ,
respectively. This is a valid approximation for the calculation
of the imaginary potential W for a pair of heavy nuclei, where
the large momentum transfers are cut down by the product
of two nuclear form factors which are more forward peaked
and the total energy of the projectile nucleon is scaled up due
to its internal motion, which is now in an energy regime well
above the Fermi energy, and the off-shell effect becomes less
important [3].

In Eq. (1), the total energy∫
Hcd

3R =
∑

i

〈i| p2

2m
|i〉 + 1

2

∑
i,j

[〈ij |vc|ij 〉 + 〈ij |vc|ji〉]

(5)

of the colliding system can be expressed as the sum of the
kinetic energy and potential energy. Here, i and j are the pairs
of nucleons interacting through vc. p is the momentum of the
nucleon.

Assuming that the subspace of the occupied single-particle
states is invariant under time reversal, and using the density
matrix expansion (DME) of Negele and Vautherin [20], we
obtain Hc(ρ, τ, J,Ec.m.) in Eq. (1) as

Hc(ρ, τ, J,Ec.m.) = h̄2

2m

[
3

5
K2

F ρ + 1

36

(∇ρ)2

ρ
+ 1

3
∇2ρ

]
+ (1 + iγ )

{
3

8
t0ρ

2

[
1 − 2

3

(
x0 + 1

2

)
α2

]
+ 1

16
t3ρ

3(1 − α2)

+
{

1

4
(t1 + t2)ρ + 1

32
(t2 − t1)ρ[(1 + α)

8
3 + (1 − α)

8
3 ]

}
3

5
K2

F ρ + ρ

16
[3t1 + 5t2 + α2(t2 − t1)]

×
[

1

36

(∇ρ)2

ρ
+ 1

3
∇2ρ

]
+ 1

64
[5t2 − 9t1 + α2(3t1 + t2)] × ρ∇2ρ + 1

16
(t1 − t2)

( �J 2
n + �J 2

p

)

− 1

4
W0

[
2ρ �∇ · �J + (1 + α)ρ �∇ · �Jn + (1 − α)ρ �∇ · �Jp

] +
[(

2m

h̄2

)1/2(
E

1/2
c.m.1 + E

1/2
c.m.2

)]2

× 1

16
[3t1 + 5t2 + (t2 − t1)α1α2]ρ1ρ2

}
, (6)
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where α1, α2, and α are the neutron excess parameters of the
individual nuclei (1) and (2) and the composite system (1 + 2),
respectively. Ec.m.1 and Ec.m.2 are the translational energies of
the target and projectile nucleons, respectively. The last term
of Eq. (6) arises from the preservation of Galilean invariance of
the interaction plus the linear dependence of τ on the relative
center-of-mass energy Ec.m.. The other consequence of the
relative motion, i.e., the Pauli-blocking effect, is manifested
through the Fermi momentum KF obtained in the Fermi gas
model [3]:

K2
F = (1.5π2)

2
3
[
F

(
ρ

5
3

1 + ρ
5
3

2

) + (1 − F )(ρ1 + ρ2)
5
3
]/

ρ, (7)

where F is the fractional volume of the Fermi sphere that does
not overlap with the other fraction. The Hamiltonian densities
H1 and H2 of nuclei (1) and (2) in Eq. (1) can be obtained
from Eq. (6) by deleting the last term and by replacing ρ, τ ,
�J by ρ1, τ1, �J1 and ρ2, τ2, �J2, respectively, and by substituting
F = 1, ρ2 = 0 and F = 1, ρ1 = 0 in Eq. (7), respectively.
Furthermore, in Eq. (6), the spin density �J = �Jn + �Jp, the
nucleonic density ρ = ρn + ρp, and the kinetic energy density
τ = τn + τp. The subscripts n and p (q = n, p) refer to
neutron and proton, respectively. The quantities ρ, τ , and �J ,
in turn, depend on the single-particle states φi :

ρq(�r) =
∑
i,σ

|φi(�r, σ, q)|2,

τq(�r) =
∑
i,σ

|∇φi(�r, σ, q)|2, (8)

�Jq(r) = (−i)
∑
i,σ,σ ′

φ∗
i (�r, σ, q)[ �∇φi(�r, σ ′, q) × 〈σ |�σ |σ ′〉].

Here, �r , σ , and q are the space, spin, and isospin coordinates
of the nucleon. The sums in Eq. (8) are taken over all the
occupied single-particle states:

φi(r, σ, q) = Rα(r)

r
Yljm(�r, σ )χq(t), (9)

where

Yljm(�r, σ ) =
∑
mlms

〈
l
1

2
mlms

∣∣∣∣jm

〉
Ylml

(�r)χms
(σ ). (10)

l, s, j , and m refer to orbital angular momentum, spin, total
angular momentum, and magnetic quantum number. χq(t) and
χms

(σ ) are the isospin and spin parts of the wave function.
The notation α ≡ q, n, l specifies the radial part of the wave
function Rα(r) with n as the principal quantum number.

The contribution of φi toward the spin density �Jq(�r) in
Eq. (8) for the open j -shell nucleus is divided into two parts,
one due to the core consisting of closed l or j shell and other
due to the valence N nucleons in the last occupied j shell:

�Jq(�r) = �Jc(�r) + �JN (�r), (11)

where

�JC(�r) = �r
4πr4

∑
α

(2jα + 1)

×
[
jα(jα + 1) − lα(lα + 1) − 3

4

]
R2

α(r) (12)

and

�JN (�r) = N�r
4πr4

[
j (j + 1) − l(l + 1) − 3

4

]
R2

α(r). (13)

In Eqs. (12) and (13), j , l, and α correspond to the last
occupied but partially filled j shell only. For a completely filled
l-shell nucleus (such as 16O), �Jc = 0, and for a completely
filled (closed) j -shell [N = (2j + 1)] nucleus (such as 12C),
�JN = �Jc. Similar expressions for ρ and τ can also be obtained

[9,20] for the open j -shell nucleus. Instead, we have used
the approximation made by Stancu and Brink [8] for τ in
Eq. (6):

τ = 3

5
K2

f ρ + 1

36

(∇ρ)2

ρ
+ 1

3
∇2ρ. (14)

Consequently, Hc in Eq. (6) is expressed in terms of ρ

and �J .
The nucleonic densities ρ of all the spin-unsaturated and

spin-saturated nuclei considered here are taken from the
experimental works [16,17,21], which are supposed to contain
the contributions from space, spin, and isospin parts of the
wave function in Eq. (8). Any self-consistent calculation with
a suitable effective interaction guarantees the reproduction of
the experimental nucleonic density distribution. Furthermore,
it has been shown that, in the surface region, the experimental
nucleonic density gives heavy-ion potentials identical to the
one obtained from the shell-model wave functions [12–15].
We have, therefore, used the normalized (shell-model) radial
wave functions φnl = Rα

r
based on the harmonic oscillator

potential [22], with shell-model configurations of neutrons
and protons presented in Table I to obtain the spin density
�Jq( �Jn, �Jp) in Eq. (8) for the spin-unsaturated closed j -

shell [Eq. (12)] and open j -shell [Eq. (13)] nuclei studied
here as

�Jn = û
8

3π
3
2

r

b5
exp(−r2/b2) (12C)

= û
16

15π
3
2

r3

b7
exp(−r2/b2) (18O,20 Ne)

= û
32

15π
3
2

r3

b7
exp(−r2/b2) (24Mg)

= û
16

5π
3
2

r3

b7
exp(−r2/b2) (32S)

= û
8

5π
3
2

r3

b7
exp(−r2/b2) (34S)

= û
16

35π
3
2

r5

b9
exp(−r2/b2) (42Ca)

= û
32

35π
3
2

r5

b9
exp(−r2/b2) (44Ca)

= û
64

35π
3
2

r5

b9
exp(−r2/b2) (52Cr,54 Fe)

= û

[
64

35π
3
2

r5

b9
+ 10

3π
3
2

r

b5

(
1 − 2

5

r2

b2

)2
]

× exp(−r2/b2) (58Ni)
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TABLE I. Shell-model configurations of protons (p) and neutrons (n) in the last jp,n = lp,n ± 1
2 shells of colliding nuclei considered in the

present work.

Nucleus Proton state lp jp = lp + 1
2 jp = lp − 1

2 Neutron state ln jn = ln + 1
2 jn = ln − 1

2

12C (1p3/2)4 open closed – (1p3/2)4 open closed –
16O (1p1/2)2 closed closed closed (1p1/2)2 closed closed closed
18O (1p1/2)2 closed closed closed (1d5/2)2 open open –
20Ne (1d5/2)2 open open – (1d5/2)2 open open –
24Mg (1d5/2)4 open open – (1d5/2)4 open open –
32S (2s1/2)2 open closed – (2s1/2)2 open closed –
34S (2s1/2)2 open closed – (1d3/2)2 open closed open
36S (2s1/2)2 open closed – (1d3/2)4 closed closed closed
42Ca (1d3/2)4 closed closed closed (1f7/2)2 open open –
44Ca (1d3/2)4 closed closed closed (1f7/2)4 open open –
52Cr (1f7/2)4 open open – (1f7/2)8 open closed –
54Fe (1f7/2)6 open open – (1f7/2)8 open closed –
58Ni (1f7/2)8 open closed – (2p3/2)2 open open –
60Ni (1f7/2)8 open closed – (2p3/2)4 open closed –
62Ni (1f7/2)8 open closed – (1f5/2)2 open closed open
64Ni (1f7/2)8 open closed – (1f5/2)4 open closed open
74Ge (2p3/2)4 open closed – (1g9/2)2 open open –
76Ge (2p3/2)4 open closed – (1g9/2)4 open open –
92Zr (2p1/2)2 closed closed closed (1g7/2)2 open closed open

= û

[
64

35π
3
2

r5

b9
+ 20

3π
3
2

r

b5

(
1 − 2

5

r2

b2

)2
]

× exp(−r2/b2) (60Ni)

= û

[
128

105π
3
2

r5

b9
+ 20

3π
3
2

r

b5

(
1 − 2

5

r2

b2

)2
]

× exp(−r2/b2) (62Ni)

= û

[
64

105π
3
2

r5

b9
+ 20

3π
3
2

r

b5

(
1 − 2

5

r2

b2

)2
]

× exp(−r2/b2) (64Ni)

= û
128

945π
3
2

r7

b11
exp(−r2/b2) (74Ge)

= û
256

945π
3
2

r7

b11
exp(−r2/b2) (76Ge)

= û

[
128

189π
3
2

r7

b11
+ 56

15π
3
2

r3

b7

(
1 − 2

7

r2

b2

)2
]

× exp(−r2/b2) (92Zr), (15)

where û is the unit vector in the radial direction and b is the
oscillator length.

From the shell-model configuration of protons inside a
nucleus, presented in Table I, one can ascertain that the
expression for �Jp of all the colliding nuclei can be obtained
from �Jn in Eq. (15). In Eq. (1), the spin densities �J1 and
�J2 for nuclei (1) and (2) are thus obtained from Eq. (15) as
�J1 = �Jn1 + �Jp1 and �J2 = �Jn2 + �Jp2, and the spin density �J
of the composite system (1 + 2) is obtained in the sudden
approximation, i.e., �J = �J1 + �J2.

In order to study the role of both the spin-density terms,

1
16 (t1 − t2)

( �J 2
n + �J 2

p

) − 1
4W0[2ρ �∇ · �J

+ (1 + α)ρ �∇ · �Jn + (1 − α)ρ �∇ · �Jp], (16)

of the Skyrme energy density Hc in Eq. (6) on the estimation of
the potentials VE and WE , we have excluded these terms from
Hc and computed the potentials, denoted as VN and WN . Then,
the spin-density contributions are VJ = VE − VN and WJ =
WE − WN , respectively, toward the real VE and imaginary
WE potentials. Note that the term 1

16 (t2 − t1)( �J 2
n + �J 2

p ) is the
contribution of the central (Wigner) component of the Skyrme
interaction whereas the term 1

4W0[2ρ �∇ · �J + (1 + α)ρ �∇ ·
�Jn + (1 − α)ρ �∇ · �Jp] is the contribution of the spin-orbit
component of the Skyrme interaction. Both terms vanish for a
spin-saturated or completely filled l-shell nucleus, i.e., when
�Jn = �Jp = 0. These terms will contribute toward the potentials
V and W in Eq. (1) only when one of the j shells of the last l
shell of either one or both of the colliding nuclei are completely
filled up, i.e., �Jc 
= 0, or partially filled up, i.e., �JN 
= 0.

It may be mentioned that the DME of Negele and Vautherin
is exact when one uses a short-range effective interaction [4].
Thus, it enables one to obtain the Skyrme-Hartree-Fock energy
density in Eq. (6) exactly [9].

III. CALCULATIONS AND RESULTS

A. Optical potential of open j -shell nuclei

We have considered from Table I reactions of some twenty
pairs of nuclei, with at least one of the interacting nuclei having
an open j shell.
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TABLE II. Numerical values of the inter-ion separation distance Dt , Dma , Ds , Di , and Dw , as defined in the text, and the percentage
contributions �VJ (Dma), �VJ (Ds), �WJ (Di), and �WJ (Dw) of the spin-density terms toward the potentials VE and WE at these distances.

System Ec.m. Dt Dma �VJ (Dma) Ds �VJ (Ds) Di �WJ (Di) Dw �WJ (Dw)
(MeV) (fm) (fm) (fm) (fm) (fm)

16O + 20Ne 30.88 3.9 4.4 2.52 4.4 1.86 5.7 2.56 5.7 2.56
16O + 42Ca 43.45 4.5 5.5 0.86 5.7 0.83 6.2 1.45 6.7 1.03
16O + 44Ca 44 4.5 5.5 1.67 5.7 1.62 6.2 3.01 6.7 2.02
16O + 52Cr 45.88 4.1 5.3 8.19 5.8 6.44 6.7 5.83 7.0 4.71
16O + 54Fe 46.29 4.1 5.3 9.78 5.8 9.40 6.7 6.69 7.0 5.45
16O + 58Ni 47.03 4.2 5.3 9.67 5.8 7.92 6.9 8.28 7.2 5.10
16O + 62Ni 47.69 4.0 5.2 11.96 6.0 6.43 6.9 5.41 7.2 4.33
16O + 64Ni 48 4.0 5.2 9.76 6.0 5.15 6.9 4.35 7.2 3.36
16O + 74Ge 46.04 4.1 5.3 10.83 6.3 4.04 7.1 3.62 7.5 2.53
16O + 76Ge 46.26 4.2 5.4 8.82 6.2 5.17 7.2 4.20 7.5 3.31
16O + 92Zr 47.70 4.4 5.6 9.52 6.6 3.77 7.5 3.02 7.9 2.17
18O + 60Ni 48.46 4.3 5.5 10.15 5.9 9.02 6.8 11.24 7.3 8.93
18O + 62Ni 48.82 4.2 5.5 11.29 6.1 8.14 6.9 9.23 7.3 8.060
18O + 64Ni 49.17 4.3 5.5 8.40 6.1 8.30 6.8 9.06 7.3 5.58
18O + 76Ge 45.28 4.5 5.8 7.56 6.3 6.23 7.1 8.90 7.6 5.58
24Mg + 32S 68.57 4.1 5.2 10.54 5.3 10.45 6.1 17.98 6.7 11.31
32S + 34S 49.97 4.3 5.5 11.74 5.7 11.32 6.6 14.39 7.1 9.70
24Mg + 36S 72 4.3 5.2 6.5 5.5 6.09 6.2 12.42 6.8 7.77
12C + 62Ni 40.22 4.2 5.4 18.06 5.9 13.45 6.5 19.32 6.9 13.10
58Ni + 64Ni 114.9 5.1 6.6 16.89 7.3 12.33 8.4 12.04 8.8 8.86

(i) In ten cases, the projectile is a spin-saturated, doubly
l-closed shell nucleus 16O, with the targets (a) having
proton and neutron orbitals as l-closed, j -open 42Ca,
44Ca, and 92Zr; (b) l-open (j -closed), j -open 58Ni, 62Ni,
64Ni, 74Ge, and 76Ge; (c) j -open, l-open (j -closed) 52Cr
and 54Fe; and (d) j -open, j -open 20Ne.

(ii) In the second type, the projectile 18O has proton and
neutron orbitals as l-closed, j -open and the targets are
(a) l-open, l-open 60Ni and (b) l-open, j -open shell
62Ni, 64Ni, 74Ge, and 76Ge nuclei.

(iii) In the third type, the projectile is 58Ni and the target
64Ni is an l-open, j -open shell nucleus.

(iv) In the fourth type, the projectiles 12C and 32S are doubly
l-open shell nuclei and the targets 62Ni and 34S are
l-open, j -open shell nuclei.

(v) Finally, the projectile 24Mg has both neutron and proton
orbitals as j -open and the targets are (a) l-open, l-closed
36S and (b) l-open, l-open shell 32S nuclei.

Such a wide range of combinations of interacting nuclei,
with respect to their neutron and proton spin densities �Jn and
�Jp [Eq. (15)] arising from n, l, and j = l ± 1

2 values, presented
in Table I, will enable us to study systematically the role of
spin-density terms of the Skyrme III energy density in their
determination of the elastic scattering optical potential of open
j -shell nuclei.

We have computed the energy-dependent real VE(D,Ec.m.),
VN (D,Ec.m.), and VJ (D,Ec.m.) and imaginary WE(D,Ec.m.),
WN (D,Ec.m.), and WJ (D,Ec.m.) parts of the elastic scattering
optical potential derived in the previous section for all twenty
pairs of open j -shell nuclei studied here, using the Set III
parameters of the Skyrme interaction [7], the experimental
nucleonic densities ρ1 and ρ2 from [16,17,21] for the nuclei

(1) and (2), and ρ = ρ1 + ρ2 for the composite system
(1 + 2).

Table II shows the results of our calculation for
all twenty pairs of open j -shell nuclei studied here,
and Figs. 1–6 show the same for six pairs of nuclei,
i.e., 12C + 62Ni (Ec.m. = 40.22 MeV), 16O + 54Fe (Ec.m. =
46.29 MeV), 18O + 60Ni (Ec.m. = 48.46 MeV), 24Mg + 32S
(Ec.m. = 68.57 MeV), 32S + 34S (Ec.m. = 49.97 MeV), and
58Ni + 64Ni (Ec.m. = 114.99 MeV). We notice in Figs. 1 and 2
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FIG. 1. Effect of spin density terms on the real part of the energy-
dependent optical potential of the colliding nuclei: VE (solid line);
VN (dashed line).
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FIG. 2. Effect of spin density terms on the real part of the energy-
dependent optical potential of the colliding nuclei: VE (solid line);
VN (dashed line).

that, at the smaller separation distance D, the potential VE is
more attractive than the potential VN , but, as D increases, the
potential VN is found to be more attractive than the potential
VE . This transition from attractive to repulsive behavior, due
to the spin-density potential VJ , occurs at a separation distance
D = Dt , given in Table II. Beyond Dt , the potential VJ

increases and reaches a maximum at Dma and thereafter it
decreases gradually to zero, as shown explicitly in Fig. 3. The
maxima occurs inside the minima Ds of the potential VE .

The percentage contribution �VJ = 100VJ /VE at the
maximum Dma of the spin-density potential VJ is always larger
than at the minimum Ds of the potential VE (presented in
Table II). At the repulsive maximum Dma , the contribution of
the spin-density terms is found to be very large and reduces
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FIG. 3. Contribution of the spin density terms toward the real part
of the energy-dependent optical potential of the colliding nuclei.
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FIG. 4. Effect of spin density terms on the imaginary part of the
energy-dependent optical potential of the colliding nuclei: WE (solid
line); WN (dashed line).

the potential VE by up to 18% in case of 12C + 62Ni and by
about 17% in case of 58Ni + 64Ni.

The values of Dt , Dma , Ds , VJ (Dt ), VE(Dma), and VE(Ds)
play a very important role in determining the characteristics of
transfer reactions of spin-unsaturated nuclei [13–15]. Figures 4
and 5 show that the imaginary potential WE is absorptive for
all values of D. On the other hand, Fig. 6 shows that the
spin-density imaginary potential WJ is emissive at a short
distance D, followed by a well and a maximum at Di , before
approaching zero at a large D. In a few cases, such as
16O + 54Fe, 18O + 60Ni, and 58Ni + 64Ni, the pocket of WJ

drops below the zero axis and becomes strongly absorptive.
The maxima of WJ at Di , in all cases, occurs inside the
minimum of the potential WE at Dw. Table II shows that the
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FIG. 5. Effect of spin density terms on the imaginary part of the
energy-dependent optical potential of the colliding nuclei: WE (solid
line); WN (dashed line).
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FIG. 6. Contribution of spin density terms toward the imaginary
part of the energy-dependent optical potential of the colliding nuclei.

percentage contribution �WJ = 100WJ /WE of the potential
WJ toward the potential WE at Di is larger than at Dw. At the
emissive maximum Di , the contribution of the spin-density
terms is found to be very large and reduces the potential WE

by up to about 19% in case of 12C + 62Ni. However, the values
of Dt , Dma , and Ds are smaller than the sum of the half-density
radii R12 of the colliding nuclei (1) and (2).

It may be noted that the potentials VE , WE and VN ,
WN and VJ , WJ , calculated in sudden approximation (ρ =
ρ1 + ρ2, �J = �J1 + �J2), are not reliable quantitatively at the
above-noted distances since, in the interior region of D < R12,
there will be a strong overlap of the projectile and target
densities. Under the sudden approximation, the overlap density
ρ = ρ1 + ρ2 in this region exceeds the normal nuclear matter
density ρnm = 0.17 fm−3, for which the Skyrme effective
interaction used here is not determined. Thus, the exit channel
events occurring due to the potentials in the strong overlap
region (D < R12) may not be explained properly by the
potentials calculated under such an approximation. Therefore,
in the following, we have studied the role of spin-density terms
of the Skyrme energy density [Eq. (16)] in the calculation of the
potentials VE and WE in the region of weak overlap (D � R12)
where the density ρ does not exceed the normal nuclear matter
density ρnm.

The percentage contributions of the spin-density terms �VJ

and �WJ toward the potentials VE and WE at D � R12 are
presented in Table III. A cursory inspection of the results
reveals the following: (i) For a fixed l, �VJ and �WJ increase
when the number of valence nucleons occupying the same
(fixed) orbital j = l + 1

2 increases. (ii) For a fixed l, �VJ

and �WJ decrease when the number of valence nucleons
occupying the same (fixed) orbitals j = l − 1

2 is more. The
number of holes in the last j = l − 1

2 shell decreases, and the
nucleus tends toward the closure of the l shell. (iii) �VJ and
�WJ increase when the valence nucleons are at the higher n or
l orbitals. (iv) �VJ and �WJ increase when more neutron and
proton orbitals of the projectile and the target nuclei remain

unsaturated. (v) For each colliding system, �WJ is larger than
�VJ at D � R12. In this region, �VJ and �WJ are repulsive
and have maximum values at D = R12, and they decrease
gradually to zero as D increases. Among the twenty pairs
of nuclei considered in this work, the pairs of doubly spin-
unsaturated shell nuclei (12C + 62Ni, 24Mg + 32S, 32S + 34S,
and 58Ni + 64Ni) make larger spin-density contributions �VJ

and �WJ toward their interaction potential in the region of
D > R12, the maximum contributions being �VJ = 9.6% and
�WJ = 17.4% in the case of 12C + 62Ni at D = R12. As
the heavy-ion interaction potential at D � R12 causes elastic
scattering and fusion of colliding nuclei in the exit channel,
we investigate the effect of the spin-density potentials VJ and
WJ of the aforementioned twenty pairs of open j -shell nuclei
on these quantities in the following.

B. Elastic scattering

The ratios σel/σR of the elastic scattering cross section
σel to Rutherford cross section σR of all the pairs of open
j -shell nuclei are computed from the calculated optical
potentials VE + iWE and VN + iWN , respectively, with and
without spin-density terms. It is found that the calculated
potentials VE + iWE reproduce nicely the experimental data
on scattering cross sections [23–33] for all the pairs of nuclei
studied, without any renormalization. Some of these results
are shown in Figs. 7 and 8. The shape of σel/σR deviates from
a straight line at the center-of-mass angle θ = θi and shows
a number of oscillations about the Rutherford value, with
increasing amplitude, up to a maxima at the angle θ = θm,
followed by a sharp fall in the forward angle regime. The
potential VN + iWN , without spin-density terms, also gives
an identical shape of σel/σR , fitting the data equally nicely.
In the angular region θi � θ � θm, both sets of potentials
VE + iWE and VN + iWN predict almost identical variations
of σel/σR , including the position of the maxima at θm and
the height of the maxima. There are small differences, of
up to about 1%, between their values of σel/σR at θ > θm.
As the oscillating structure of the elastic scattering cross
sections σel/σR is reminiscent of a Fresnel diffractive pattern
in the forward angle regime, the dominating feature of such
a collision is the strong absorption from the elastic channel
within a well-defined geometrical region.

The ratio σel/σR defines strong absorption with different
proportions and determines the radial distance D of this region
of the optical potential, sensitive to elastic scattering,

D = η
λ

2π

(
1 + cosec

1

2
θ

)
, (17)

where η and λ are the Coulomb parameter and the de Broglie
wavelength of the reacting partners. At the angle θ = θi , the
nuclear potential starts manifesting and the elastic scattering
cross section σel deviates from its Rutherford values σR and
achieves its maximum value at the angle θ = θm. It reduces to
1/2, 1/4, and 1/100 of the Rutherford cross section at θ = θ1/2,
θ1/4, and θ1/100. The absorption of incident flux is 50%, 75%,
and 99%, respectively, in the reaction channel at these angles.
Practically, there is no scattering beyond θ = θ1/100. These
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TABLE III. Percentage contributions �VJ and �WJ of the spin-density terms toward the real VE and imaginary WE parts of the optical
potential of the interacting systems at different values of the separation distance D � R12.

System Ec.m. R12 Potential D = R12 7 fm 8 fm 9 fm 10 fm 11 fm 12 fm
(MeV) (fm)

16O + 20Ne 30.88 5.46 �VJ 2.692 1.91 1.16 0.54 0.20 0.06 0.02
�WJ 2.708 1.95 1.36 0.91 0.58 0.33 0.14

16O + 42Ca 43.45 6.46 �VJ 0.909 0.91 0.87 0.67 0.36 0.12 0.03
�WJ 1.154 0.93 0.87 0.86 0.81 0.69 0.54

16O + 44Ca 44 6.52 �VJ 1.743 1.74 1.65 1.30 0.70 0.24 0.05
�WJ 2.233 1.82 1.72 1.63 1.54 1.33 0.96

16O + 52Cr 45.88 6.64 �VJ 4.075 3.30 1.77 0.87 0.38 0.14 0.04
�WJ 6.046 4.71 2.10 1.07 0.59 0.35 0.24

16O + 54Fe 46.28 6.73 �VJ 4.483 3.87 2.14 0.99 0.33 0.06 0.003
�WJ 6.558 5.45 2.64 1.27 0.55 0.22 0.06

16O + 58Ni 47.03 6.93 �VJ 4.227 4.05 2.09 1.01 0.45 0.17 0.06
�WJ 6.169 5.90 2.56 1.21 0.61 0.33 0.21

16O + 62Ni 47.69 6.92 �VJ 3.558 3.38 1.74 0.77 0.25 0.05 0.00
�WJ 5.342 5.04 2.27 0.99 0.39 0.14 0.07

16O + 64Ni 48 6.87 �VJ 2.746 2.49 1.17 0.52 0.22 0.08 0.02
�WJ 4.442 4.02 1.52 0.64 0.30 0.15 0.09

16O + 74Ge 46.04 7.10 �VJ 2.122 – 1.03 0.46 0.19 0.08 0.02
�WJ 3.624 – 1.50 0.60 0.27 0.13 0.06

16O + 76Ge 46.26 7.28 �VJ 2.434 – 1.43 0.67 0.30 0.12 0.04
�WJ 3.969 – 2.04 0.85 0.40 0.20 0.10

16O + 92Zr 47.70 7.54 �VJ 1.861 – 1.31 0.56 0.19 0.05 0.00
�WJ 2.927 – 1.97 0.77 0.27 0.07 0.00

18O + 60Ni 48.46 7.01 �VJ 5.849 – 3.85 2.50 1.56 0.88 0.44
�WJ 9.365 – 4.56 2.78 1.93 1.43 1.09

18O + 62Ni 48.83 6.95 �VJ 5.453 5.33 3.50 2.30 1.40 0.75 0.34
�WJ 8.817 8.44 4.08 2.58 1.83 1.34 0.98

18O + 64Ni 49.17 6.90 �VJ 4.929 4.24 2.83 1.92 1.25 0.75 0.40
�WJ 8.093 7.31 3.38 2.14 1.56 1.20 0.95

18O + 76Ge 45.28 7.31 �VJ 4.156 – 3.18 2.20 1.47 0.90 0.49
�WJ 7.168 – 4.15 2.46 1.74 1.32 1.02

24Mg + 32S 68.57 6.24 �VJ 9.40 7.55 5.24 3.41 2.06 1.12 0.55
�WJ 15.673 9.43 5.75 3.93 2.83 2.09 1.57

32S + 34S 49.97 6.63 �VJ 8.545 7.42 4.87 3.09 1.89 1.08 0.55
�WJ 16.625 11.61 5.80 3.48 2.31 1.64 1.24

24Mg + 36S 72 6.44 �VJ 6.109 5.37 3.94 2.67 1.67 0.94 0.47
�WJ 9.880 6.93 4.28 2.98 2.18 1.63 1.22

12C + 62Ni 40.22 6.60 �VJ 9.645 8.19 5.73 3.94 2.40 1.25 0.56
�WJ 17.418 11.99 6.72 5.05 4.14 3.41 2.87

58Ni + 64Ni 114.99 8.49 �VJ 8.958 – – 5.37 3.24 1.98 1.20
�VJ 14.224 – – 7.61 3.81 2.26 1.47

angles are used in Eq. (17) to obtain the corresponding radial
distances Di , Dm, D1/2, D1/4, and D1/100. Our results show that
Di > Dm > D1/2 > D1/4 > D1/100 > R12. As the colliding
nuclei approach each other, there is more absorption from the
incident channel and their elastic scattering cross section σel

decreases. The scattering disappears just after D1/100 before
the colliding nuclei touch each other at R12. The geometrical
region Di > D > D1/100 of the optical potential, sensitive to
elastic scattering, is found to be about 6 fm wide whereas the
strong absorption from the elastic channel corresponds to a
radial region Dm > D > D1/100 of about 4 fm.

We have also calculated the contributions of �VJ and
�WJ of the spin-density terms in the well-defined geometrical

region Di > D > D1/100. Our results, presented in Table IV,
reveal that the contributions in this geometrical region are
appreciable for several pairs of open j -shell nuclei. In case
of 12C + 62Ni, �VJ and �WJ at D1/100 are found to be
6% and 7%, respectively, but the contribution varies with
the distance D. When the scattering is dominant at θm,
these contributions are small at the corresponding distance
D = Dm. The contribution increases slowly in the region
D < Dm with rapid depletion of the scattering cross section. It
achieves maximum value at D = D1/100 where there is almost
complete 99% absorption from the elastic channel. Apparently,
this occurs because the contributions �VJ and �WJ of the
spin-density terms have no appreciable effect on the elastic
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FIG. 7. Comparison of ratios of the elastic scattering cross
section to Rutherford cross sections, σEl/σR , of 18O + 60Ni at
Ec.m. = 48.46 MeV computed from the optical potentials with the
experimental data.

scattering cross section of spin-unsaturated open j -shell nuclei
considered in the present work.

IV. SUB-BARRIER FUSION

It is evident from the analysis of elastic scattering results
presented in Table IV that, when the colliding nuclei
are at a distance D < D1/100, the outgoing elastic channel
is completely unpopulated. The reaction proceeds in the
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FIG. 8. Comparison of ratios of the elastic scattering cross
section to Rutherford cross sections, σEl/σR , of 32S + 34S at
Ec.m. = 49.97 MeV computed from the optical potentials with the
experimental data.

nonelastic channels, including fusion; i.e., before the colliding
nuclei touch each other at R12 < D < D1/100, they encounter
the fusion barrier. As the absorption into the compound nucleus
is confined to a well-defined radial region, Dm > D > D1/100,
in the reaction processes, the absorption under the barrier is
not needed for explaining the sub-barrier fusion data. In other
words, the sub-barrier fusion data are well described by the real
part of the optical potential since the absorption becomes very
insensitive to the strength and other details of the imaginary

TABLE IV. Numerical values of the scattering angles θm and θ1/100, the separation distances Dm and D1/100, and the percentage contributions
�VJ and �WJ of the spin-density terms toward the optical potential VE + iWE at these distances.

System 2π
λ

θm Dm �VJ (Dm) �WJ (Dm) θ1/100 D1/100 �VJ (D1/100) �WJ (D1/100)
(fm−1) (deg) (fm) (deg) (fm)

16O + 20Ne 3.64 16 13.4 0.01 1.02 55.3 7.88 2.63 2.57
16O + 42Ca 4.93 30 12.88 0.02 0.84 52 8.69 0.75 0.86
16O + 44Ca 4.99 30 12.73 0.02 0.57 50 8.81 1.39 1.63
16O + 52Cr 5.20 36 12.76 0.01 0.23 57.3 9.3 0.7 0.9
16O + 54Fe 5.25 40 11.72 0.01 0.1 63.5 8.66 1.33 1.65
16O + 58Ni 5.33 42 12.99 0.02 0.18 65.5 9.77 0.54 0.71
16O + 62Ni 5.41 42 12.82 0.00 0.06 65.5 9.63 0.4 0.56
16O + 64Ni 5.44 40 13.18 0.01 0.09 62.6 9.83 0.26 0.34
16O + 74Ge 5.41 52 13.13 0.00 0.01 79.3 10.28 0.15 0.22
16O + 76Ge 5.43 52 13.09 0.01 0.03 77.5 10.35 0.22 0.31
16O + 92Zr 5.80 64 13.01 0.00 0.06 94.6 10.64 0.08 0.12
18O + 60Ni 5.69 38 13.55 0.12 0.78 71.5 9.02 2.48 2.76
18O + 62Ni 5.73 40 12.96 0.14 0.75 73 8.95 2.45 2.74
18O + 64Ni 5.77 38 13.35 0.14 0.76 69.5 9.03 1.9 2.11
18O + 76Ge 5.64 52 13.35 0.18 0.69 91 9.78 1.62 1.86
24Mg + 32S 6.74 18 14.90 0.06 0.61 39.7 7.95 5.35 5.87
32S + 34S 6.30 18 12.42 0.41 1.12 85 9.15 2.88 3.26
24Mg + 36S 7.07 50 14.19 0.07 0.76 37 7.97 3.98 4.33
12C + 62Ni 4.42 34 13.29 0.17 2.91 76.6 8.86 6.01 7.1
58Ni + 64Ni 12.99 52 16.10 0.06 0.33 92 11.73 1.37 1.64
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TABLE V. Numerical values of the positions RBE and RBN and heights VBE and VBN of the fusion barrier and the fusion cross sections
σf E and σf N calculated from the potentials VE and VN .

System Ec.m. RBE VBE σf E RBN VBN σf N

(MeV) (fm) (MeV) (mb) (fm) (MeV) (mb)

16O + 20Ne 30.88 7.20 8.62 1170.5 7.23 8.676 1177.5
16O + 42Ca 43.45 8.13 21.46 1049.0 8.14 21.46 1051.77
16O + 44Ca 44 8.17 21.20 1087.95 8.20 21.20 1093.29
16O + 52Cr 45.88 8.49 25.47 1005.9 8.51 25.48 1010.28
16O + 54Fe 46.29 8.58 28.38 893.3 8.61 28.41 897.80
16O + 58Ni 47.03 8.85 29.68 906.2 8.87 29.68 910.15
16O + 62Ni 47.69 8.83 30.00 907.2 8.85 30.03 910.14
16O + 64Ni 48 8.88 29.32 962.9 8.90 29.36 964.95
16O + 74Ge 46.04 9.30 34.04 707.1 9.31 34.04 708.26
16O + 76Ge 46.26 9.39 33.62 755.5 9.40 33.62 757.16
16O + 92Zr 47.70 9.88 41.867 374.1 9.89 41.87 374.75
18O + 60Ni 48.46 9.02 28.37 1058.5 9.06 28.37 1067.78
18O + 62Ni 48.83 8.93 29.08 1011.9 8.96 29.09 1020.24
18O + 64Ni 49.17 9.01 28.27 1082.9 9.04 28.27 1090.19
18O + 76Ge 45.28 9.59 32.83 792.8 9.62 32.83 798.98
24Mg + 32S 68.57 7.28 14.24 1329.9 7.58 17.18 1350.23
32S + 34S 49.97 8.92 33.69 813.5 8.98 33.71 825.24
24Mg + 36S 72 7.53 13.48 1446.6 7.71 15.25 1470.42
12C + 62Ni 40.22 8.41 22.74 963.9 8.48 22.75 979.46
58Ni + 64Ni 114.99 10.42 94.73 600.7 10.47 94.75 610.9

potential. Thus, we examine here the question of to what
extent the spin-density contribution affects the sub-barrier
fusion data at an energy Ec.m. where the calculated optical
potential VE + iWE reproduces the elastic scattering data of
the colliding open-j shell nuclei, without any renormalization.

The heavy-ion fusion cross section σf , for a target-
projectile spin-independent interaction, is obtained in terms
of the partial-wave expansion as

σf = λ2

4π

∑
L

(2L + 1)PL, (18)

where PL is the transmission coefficient which describes the
probability of compound nucleus formation by an incident
partial wave with orbital angular momentum L. By taking the
nuclear potential to be real and approximating the potential
near the barrier by a parabola, one obtains PL in the WKB
approximation as

PL = {
1 + exp

[
2π (μ/h̄2|V ′′(RB)|)

1
2 (V (RB) − Ec.m.)

]}−1
,

(19)

where

V (RB) = [VC(D) + VN (D) + VL(D)]|D=RB
, (20)

V ′′(RB) = d2

dD2
[VC(D) + VN (D) + VL(D)]|D=RB

, (21)

and VC(D), VN (D), and VL(D) are the Coulomb, nuclear,
and centrifugal potentials of the colliding nuclei. The position
D = RB is calculated from the following relations:

[VC(D) + VN (D) + VL(D)]|D=RB
= Ec.m., (22)

d

dD
[VC(D) + VN (D) + VL(D)]|D=RB

= 0, (23)

d2

dD2
[VC(D) + VN (D) + VL(D)]|D=RB

< 0. (24)

Thus, the barrier penetration model, Eqs. (18)–(24), does not
contain any free parameter except those entering through the
two-body Skyrme effective interaction vsky .

We have calculated the fusion barrier positions RBE and
RBN , heights VBE and VBN , and fusion cross sections σf E ,
σf N of all the pairs of colliding open-j shell nuclei at specified
energy, using the real potentials VE and VN in Eqs. (18)–(24).
These results are presented in Table V.

Table V shows that the fusion barrier occurs 0.5 fm
inside of the distance D1/100 of complete absorption. The
contribution of spin-density terms around the position RBE

of the fusion barrier is repulsive and enhances the values of
the position RBE and height VBE of the fusion barrier and
the fusion cross section σf E as well. Among all the pairs of
colliding nuclei considered here, the percentage contribution
of the spin-density terms toward VE , RBE , VBE , and σf E are
appreciable for the doubly spin-unsaturated colliding nuclei.
In case of 24Mg + 32S, at E′ = 68.57 MeV, the spin-density
terms affect the potential at the fusion barrier by about 7%
and the height of the fusion barrier by 21%. However, the
corresponding fusion cross section is affected by only about
1.5%, since the fusion cross section is determined not only by
the potential V (RB) but also by V ′′(RB).

V. CONCLUSION

We have calculated both the energy-dependent real VE and
imaginary WE parts of the optical potential of some twenty
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pairs of spin-unsaturated, open j -shell nuclei in the energy
density model, using the complex Skyrme III energy density.
These colliding nuclei have a wide range of combinations
of neutron and proton spin densities arising from their n, l,
and j values of the last unfilled l shell. Our systematic study
on the role of spin-density terms of Skyrme III energy density
reveals that the spin-density contribution toward the imaginary
potential WE is always larger than it is toward the real potential
VE . The contributions in both the real and imaginary potentials
increase with greater number of valence nucleons in a fixed
orbital j = l + 1/2 or when the valence nucleons are at higher
n or l orbitals or when number of neutron and proton orbitals of
the projectile and target nucleon remain unsaturated. The pairs
of doubly spin-unsaturated shell nuclei make a larger spin-
density contribution. Among the twenty pairs of open j -shell
nuclei considered in this work, the spin-density contributions
are found to be as high as 18%–19% at the repulsive maxima.
However, the contribution gradually decreases to zero as the
separation distance D increases beyond the maxima.

The elastic scattering cross sections of all the pairs of
nuclei exhibit a Fresnel diffractive pattern of angular distri-
butions. This type of scattering data is very much sensitive
to the variation of the real and imaginary potentials [4–6].
It is found that the calculated optical potential VE + iWE ,
without any variation or renormalization, nicely reproduces
the experimental data on elastic scattering cross sections for
all pairs of nuclei studied here. The elastic scattering data are
found to be sensitive to the potential VE + iWE in a wide radial
range Di � D � D1/100 of about 6 fm in the surface region. In
this region, the contributions of the spin-density terms toward
the potentials VE and WE are found to be up to 6% and 7%,
respectively.

Next, in the barrier penetration model we have calculated
the fusion barrier positions and heights and the fusion cross
sections of all pairs of nuclei, using the same potential VE .
The percentage contributions of the spin-density terms toward
these quantities of fusion of the colliding open j -shell nuclei
are found to be larger than that of closed j -shell nuclei. The
differences in the heights of the fusion barriers can be up to
21%. However, in our systematic study of the role of spin-
density terms in the sub-barrier fusion, we have not taken
into account the coupled-channel effects of vibrational and

rotational excited states of the projectile and target nuclei,
even though the experimental consequences of these effects
are important [34–38].

Finally, we note that both the elastic scattering and sub-
barrier fusion of all the pairs of open j -shell nuclei considered
at a specific energy occur when the colliding nuclei are at
a distance Di � D � RBE . The position RBE of the fusion
barrier is about 2 fm larger than the sum of their half-density
radii R12. In this region, the overlap density ρ is always smaller
than the nuclear matter density ρnm. The maximum overlap of
the densities of projectile and target nuclei among all the pairs
is found to be 56% of the nuclear matter density ρnm in case of
sub-barrier fusion of 24Mg + 32S at RB . Such an overlap can be
considered as a weak overlap and the use of the sudden approx-
imation for the composite density ρ and the spin density �J and
the use of Skyrme effective interaction are valid. Therefore, the
numerical values of the calculated optical potential in the radial
region Di � D � RB are qualitatively correct. In this region,
although the contribution of spin-density terms are found to
be appreciable toward the optical potential of several pairs of
open j -shell nuclei, the exit channel events such as the Fresnel
diffractive pattern of elastic scattering cross section and the
sub-barrier fusion cross section are not affected much by the
contribution of the spin-density terms. On the other hand, the
contribution of the spin-density terms becomes very large as
the separation distance D between the colliding nuclei further
decreases from RB to R12 and R12 to Dma . It may, therefore,
play a crucial role in determining the exit channel events such
as rainbow scattering [39–45] and transfer reactions [12–15],
which are sensitive to the potential in this interior region. For
such an analysis, however, one has to obtain microscopically
the reliable potential. This is being attempted.
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