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We study the development of collectivity in neutron rich nuclei in the close vicinity of 78Ni. We report on the
large scale shell model calculations in the N = 52–54 even-even nuclei with Z = 30–36. We predict maximum
of triaxiality in 86Ge and explain this phenomenon on the basis of a pseudo-SU(3) symmetry interpretation.
For the cases where signs for nonaxial shapes appear, we perform the triaxial Gogny calculations with particle
number and angular momentum projections. The comparison of results obtained in the laboratory and intrinsic
frames provides a comprehensive and complete picture of nuclear deformation in this region.
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I. INTRODUCTION

The study of collective behavior of deformed nuclei is a
classical problem in nuclear physics. Mean-field descriptions
in the intrinsic frame are perfectly suited for such studies, as
they take advantage of the spontaneous breaking of rotational
symmetry. The price to pay for the gain in the physical
insight is the loss of angular momentum as a good quantum
number. On the contrary, in the nuclear shell model defined
in the laboratory frame, angular momentum is conserved
but the physical insight associated with the existence of the
intrinsic state is lost. However, in the cases of well-deformed
nuclei, such as 24Mg or 48Cr, the collective properties in shell
model can be traced back to the validity of the Eliott’s SU(3)
symmetry, for which the relationship between the intrinsic and
laboratory frame descriptions is well understood.

The region of neutron-rich nuclei above the N = 50 shell
closure appears particularly interesting for the study of the
quadrupole properties. From the shell model point of view,
the nuclei above 78Ni can be described in a model space com-
prising neutron (2d5/2, 3s1/2, 2d3/2, 1g7/2, 1h11/2) and proton
(1f5/2, 2p3/2, 2p1/2, 1g9/2) orbitals. These two sets of orbits
contain those connected by a strong quadrupole interaction
and can form the pseudo-SU(3) blocks. Approaching the SU(3)
limit would require a degeneracy or a close proximity of the
orbitals of interest. From the shell model extrapolations it
appears that at least the 2d5/2 and 3s1/2 are degenerate in
78Ni [1] and that proton 1f5/2 and 2p3/2 orbits cross around
Z = 28 with the filling of the g9/2 neutron orbital [2]. Thus,
while 78Ni itself is predicted to be closed shell nucleus in the
shell model picture [3], as soon as few protons and neutrons
are added the deformation can set up quickly. Mean-field,
Hartree-Fock-Bogoliubov (HFB) calculations with Gogny
forces [4], revealed a possibility of shape mixing in this region
and indicate a non-negligible role of the nonaxial degrees of
freedom in ground states of these nuclei. Nevertheless, beyond-
mean field calculations are needed to provide spectroscopic
information to be compared with the experimental data and
with other theoretical approaches. In particular, the recently

developed full triaxial angular momentum restoration and
shape mixing with Skyrme [5], relativistic mean-field [6], and
Gogny [7] energy density functionals are the perfect tools to
study these collective phenomena all over the nuclear chart.

The experimental studies in the region around 78Ni has been
also intense in the recent years. While it is still difficult to study
the structure of 78Ni itself at currently existing facilities, the
knowledge of the light N = 50–54 even-even isotones has
been extended down to Z = 30 for N = 50 [8], Z = 32 for
N = 52 [9,10], and Z = 34 for N = 54 [11]. In particular,
the first possible signs of deformation at N = 52 have been
reported in Ref. [9], where the excited levels of 84Ge have been
observed. The comparison with five-dimensional collective
Hamiltonian (5DCH) calculations [12] pointed to a certain
softness of this nucleus. The detailed spectroscopy of 80Ge
clearly reveals the existence of γ -soft collective structures at
N = 48 [13]. The question that arises now is to understand
wether this behavior is maintained after the N = 50 shell
closure, in the natural valence space above the 78Ni core,
and why. Recently, the first observation of excited levels of
87Se (N = 53) has been achieved [14]. The adjacent shell
model interpretation in such a valence space has suggested the
increased collectivity of this nucleus to be responsible for the
observed level ordering.

In this work we perform a shell model study of even-even
N = 52–54 isotopes with Z = 30–36 and we focus on the
quadrupole properties of these nuclei as seen in the laboratory
system. We interpret our results using the limits of the Eliott’s
SU(3) symmetry in its pseudo-SU(3) variant. In the selected
cases, where signs of deformation and triaxiality are present
in the shell model framework, we also perform symmetry
conserved configuration mixing (SCCM)-Gogny calculations.
Our work is organized as follows. First we discuss details of
the shell model calculations in Sec. II A and we analyze the
limits of the quadrupole deformation of considered systems
in a pseudo-SU(3) symmetry model in Sec. II B. We outline
the SCCM-Gogny approach with particle number and angular
momentum projections in Sec. II C. In Sec. III we gather the
quadrupole properties obtained in microscopic shell model
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calculations for the ensemble of considered nuclei and then
we discuss in more detail selected cases, in comparison with
the results of the SCCM-Gogny approach. Finally, we collect
our main conclusions in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Shell model: Valence space and interaction

The shell model calculations presented in this work has
been achieved in a model space π (1f5/2, 2p3/2, 2p1/2, 1g9/2)
and ν(2d5/2, 3s1/2, 2d3/2, 1g7/2, 1h11/2) outside the 78Ni core,
which we name πr3g − νr4h (following notation of
Ref. [15]). The effective interaction used in this model
space has been established and described in Ref. [1]. It
contains a fit from Ref. [16] in its proton-proton part, the
neutron-neutron interaction called GCN5082 [17–19] and the
proton-neutron realistic G-matrix constrained in its monopole
part to reproduce the shell evolution between 91Zr and 101Sn. It
has been originally conceived to study the zirconium isotopes
but it appeared also quite successful for the description of low
lying and isomeric states in lighter Z nuclei [20–23]. Recently
it has been applied to the study of the yrast excitations in
N = 52 nuclei from Z = 30 to Z = 44 and in particular, to
the evolution of the 4+ − 6+ splitting in these systems. The
latter appeared to be reproduced in a great detail in the present
shell model approach, confirming its validity also in the closer
vicinity of 78Ni [24]. Also a study of N = 53 isotones has
been achieved within the same framework [14], where shell
model has been successful in interpreting the low energy levels
systematics and in particular, the descending trend of the 3/2+
state between 93Zr and 87Se. A development of deformation in
the proton midshell has been suggested to cause the observed
ordering of levels in 87Se.

In this work we consider even-even systems having two
to six protons and two to four neutrons in the valence space,
i.e., the N = 52, 54 isotones with Z = 30–36. The m-scheme
dimensions for these nuclei do not exceed 2 × 108. Full space
diagonalizations of such systems using the m-scheme shell
model code ANTOINE [25] are not computationally intense at
all and can be performed on a laptop.

In the calculations of quadrupole moments and transition
rates, we have used an enhanced polarization charge of 0.7e,
as suggested previously in Ref. [1] for this model space. This
allows us, in particular, to account for the missing proton
excitations from the f7/2 orbital to the rest of the shell, crucial
in nuclei around Z = 28, N = 50 [2], and thus to match better
the measured B(E2; 2+ → 0+) values of N = 50 nuclei:
80Zn and 86Kr. The enhanced neutron polarization charge can
account for the missing excitations from the g9/2 orbital.

To provide some more insight on the intrinsic shape
associated to the calculated shell model states, the E2 matrix
elements were analyzed following the same method which is
applied in multiple Coulomb excitation formalism. For this
purpose we use the model independent n-body quadrupole
moments introduced in Ref. [26] in a similar way as was
already done in Ref. [13]. For the sake of clarity we shall
remind here the expressions for the two-body and three-
body quadrupole moments of a given state s ≡ (s, Is,�s)

(as calculated here from shell model results):

p(2)
s = (2Is + 1)−1

∑
r

M2
sr = 5(Is + 1)(2Is + 3)

16πIs(2Is − 1)
Q2

spec(s)

+
∑
r �=s

B(E2; s → r), (1)

where Msr are the reduced E2 matrix elements,

p(3)
s = −

√
5(2Is + 1)−1(−1)2Is

×
∑
rt

{
2 2 2
Is Ir It

}
MsrMrtMts, (2)

where r and t are the intermediate (shell model here) states
connected by E2 transitions to the state s considered and
Mij are the E2 reduced matrix elements between states s,
r , and t . These are completely general and model independent
measures of the the intrinsic axial deformation and asymmetry,
being related to parameters of an equivalent ellipsoid having
the same p(2)

s and p(3)
s moments by:

(i) for the intrinsic quadrupole moment Qint(s) (from which
the axial deformation parameter β(s) is extracted):

Qint(s) =
√

16π

5
p

(2)
s , (3)

(ii) for the asymmetry angle γ (s):

cos 3γ (s) = −
√

7/2 p(3)
s

(
p(2)

s

)−3/2
. (4)

B. Pseudo SU(3) model analysis of quadrupole moments

The quadrupole properties of nuclei contained in the
valence space πr3g-νr4h can be anticipated by looking into
the limits of the pure pseudo-SU(3) symmetry first proposed
by Arima [27] and applied, e.g., in Refs. [1,15,18]. In this
work we investigate the nuclei for which the essential features
should be described within the pf5/2 orbits on the proton side
and dg7/2s1/2 on the neutron side, thus we can consider having
pseudo-SU(3) blocks for protons (pseudo-sd) and for neutrons
(pseudo-pf ). The quadrupole properties of the Nilsson-like
orbitals of a pseudo-SU(3) in a shell with principal quantum
number n + 1 are the same as those of the SU(3) orbits
with principal quantum number n, for which the intrinsic
quadrupole moment is given by [15]:

q0(n, χ, k) = −(2n − 3χ )b2, (5)

where χ can take integer values between 0 and n, k =
±( 1

2 , . . . , 1
2 + χ ), and b is the harmonic oscillator length

parameter. The total intrinsic quadrupole moment Q0 is
obtained as a sum of all the contributions from the valence
particles with corresponding effective charges. In this scheme
the energy is proportional to Q2

0 thus the orbits are filled
starting from χ = 0 or χ = n in a way which maximizes the
absolute value of the intrinsic quadrupole moment.

Let us start with two or four neutrons occupying the pseudo-
pf orbits. Two neutrons maximize the quadrupole deformation
when they occupy the lowest χ = 0 orbital with k = 1/2 and
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k = −1/2, leading to the total K = ∑
k = 0. Four neutrons

can be distributed in several degenerate configurations:

(χ = 0, k = ±1/2)2(χ = 1, k = ±1/2)2,

(χ = 0, k = ±1/2)2(χ = 1, k = ±3/2)2,

(χ = 0, k = ±1/2)2(χ = 1, k = ±1/2)1(χ = 1, k = ±3/2)1,

which means a possibility of K = 0 and K = 2. Even a small
mixing of K = 0 and K = 2 would lead to triaxiality: such
a mixing is impossible in a pure pseudo-SU(3) limit but may
appear in realistic shell model calculations.

Moving to the proton side, we need to consider two, four,
six, or eight valence protons in the pseudo-sd block, which
will correspond to Zn, Ge, Se, and Kr nuclei in our model
space. The two valence protons of Zn maximize the quadrupole
moment when they occupy both the lowest χ = 0 orbital (total
K = 0). The situation of Ge becomes more complex as the four
valence protons can adopt several degenerate configurations:

(χ = 0, k = ±1/2)2(χ = 1, k = ±1/2)2,

(χ = 0, k = ±1/2)2(χ = 1, k = ±3/2)2,

(χ = 0, k = ±1/2)2(χ = 1, k = ±1/2)1(χ = 1, k = ±3/2)1,

leading to possible K = 0 and K = 2. The same analysis in Se
(six particles) gives a possibility of two degenerate cases with
K = 0 having the same Q0 values, but with opposite signs:

(χ = 0, k = ±1/2)2(χ = 1, k = ±1/2)2(χ = 1, k = ±3/2)2,

(χ = 2, k = ±1/2)2(χ = 2, k = ±3/2)2(χ = 2, k = ±5/2)2.

Similarly, eight particles (Kr) can be redistributed in several
degenerate configurations, again with K = 0, 2.

The values of total intrinsic quadrupole moments and
corresponding B(E2) values obtained in the pseudo-SU(3)
limit [using Eq. (10)] are summarized in Table I. The
polarization charge of 0.7e is used in the pseudo-SU(3) model
to make comparisons with SM calculations straightforward.

The major conclusions from the pseudo-SU(3) model
analysis are the following: The degenerate configurations
with K = 0 and K = 2 can be obtained for four and eight
protons and for four neutrons in the valence space. Thus one
may expect some triaxiality in realistic calculations and in
experiment, reaching its maximum in 86Ge. The largest axial
deformation is predicted for six protons and four neutrons in
the valence space (88Se).

TABLE I. Predictions of the pseudo-SU(3) symmetry limit for the
values of intrinsic quadrupole moments (in efm2) and B(E2; 2+ →
0+) transition values (in e2fm4) in the studied nuclei.

Nucleus Q0 B(E2; 2+ → 0+) Nucleus Q0 B(E2; 2+ → 0+)

82Zn 114 258 84Zn 135 362
84Ge 131 342 86Ge 151 454
86Se 148 436 88Se 168 561
88Kr 117 272 90Kr 137 373

TABLE II. Properties of the yrast band of N = 52 isotones
[energies in MeV, quadrupole moments in efm2, B(E2) in e2fm4].
The calculations are done in the πr3g-νr4h model space with 1.7e

and 0.7e effective charges for protons and neutrons, respectively.

Z J E∗ B(E2; Qspec Q0 Q0 β

J → J − 2) from B(E2) from Qspec

30 2+ 0.88 169 − 14 92 48
4+ 1.50 127 − 24 67 66
6+ 3.17 182 − 40 77 100

32 2+ 0.75 371 − 27 136 93
4+ 1.56 364 − 37 113 101
6+ 3.03 455 − 27 120 67

34 2+ 0.70 436 − 37 148 129 0.19
4+ 1.41 439 − 46.5 124 128 0.17
6+ 2.76 607 − 55 139 136 0.19

36 2+ 0.88 329 6.5 129 23
4+ 1.66 207 − 31 85 86
6+ 3.24 95 14 55 35

C. Details of symmetry conserving configuration
mixing–Gogny calculations

In this section we describe briefly the beyond mean-field
method used in this work. In this approach, we use the
generator coordinate method (GCM) to define the many-body
wave functions [28]. Hence, we consider linear combinations
of states with different intrinsic quadrupole deformations, axial
and triaxial [5,7]:

|JM; NZ; σ 〉 =
∑

β,γ,K

f J ;NZ;σ
β,γ,K |JMK; NZ; βγ 〉, (6)

where N,Z, J,M,K are the number of neutrons and protons,
the total angular momentum and the angular momentum
component on the z axes of the laboratory and fixed frames,
respectively. The quadrupole deformation is parametrized by
the (β, γ ) coordinates and the states |JMK; NZ; βγ 〉 are
found by performing particle number and angular momentum

TABLE III. Properties of the yrast band of N = 54 isotones
[energies in MeV, quadrupole moments in efm2, B(E2) in e2fm4].

Z J E∗ B(E2; Qspec Q0 Q0 β

J → J − 2) from B(E2) from Qspec

30 2+ 0.80 193 − 26 98 91
4+ 1.50 93 3.5 57 10
6+ 2.83 139 − 52 67 131

32 2+ 0.65 465 − 40 153 140 0.21
4+ 1.75 628 − 40 149 110 0.19
6+ 3.26 659 − 33 145 82 0.17

34 2+ 0.67 568 − 48 169 168 0.23
4+ 1.94 714 − 54 158 148 0.21
6+ 3.58 466 − 55 122 137 0.18

36 2+ 0.80 386 − 24 139 84
4+ 1.75 201 20 84 55
6+ 3.15 447 48 119 121
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TABLE IV. Excited bands of selected N = 52 isotones [energies
in MeV, quadrupole moments in efm2, B(E2) in e2fm4].

Z J E∗ B(E2; J → J − 1) Qspec

30 2+
2 1.86 0.7

3+ 2.46 23 − 20
4+

2 2.43 10 − 32
5+ 3.11 40 − 19

32 2+
2 1.54 26

3+ 2.12 639 − 4
4+

2 2.31 366 − 22
5+ 2.96 200 − 28

34 2+
2 1.64 5

3+ 2.25 523 − 10
4+

2 2.71 27 − 38
5+ 3.50 118 − 30

36 2+
2 1.72 − 5

3+ 2.52 214 − 10
4+

2 2.28 11 55
5+ 3.17 108 − 9

projection of HFB wave functions |	(β, γ )〉:
|JMK; NZ; βγ 〉 = P J

MKP NP Z|	(β, γ )〉. (7)

Here, P J
MK , P N , and P Z are the operators that project onto

good angular momentum and number of particles, respectively
[28]. The HFB wave functions are found by minimizing the
particle number projected HFB energy (PN-VAP method [29])
using constraints on the quadrupole degrees of freedom to
produce a set of states with the desired deformation. In this
work we use for each nucleus a mesh of 72 states with de-
formations ranges as follows: (β ∈ [0.0, 0.8], γ ∈ [0◦, 60◦]).
In addition, the HFB wave functions preserve time-reversal
and spatial parity symmetries (only positive parity states
can be described) and are expanded in a spherical harmonic

TABLE V. Excited bands of selected N = 54 isotones [energies
in MeV, quadrupole moments in efm2, B(E2) in e2fm4].

Z J E∗ B(E2; J → J − 1) Qspec

30 2+
2 1.43 21

3+ 1.94 132 − 1
4+

2 1.93 0.5 − 20
5+ 2.81 1.4 − 8

32 2+
2 1.39 39

3+ 1.79 747 − 0.7
4+

2 2.34 214 3.5
5+ 2.91 77 − 28

34 2+
2 2.03 39

3+ 2.41 583 − 6
4+

2 2.53 26 39
5+ 3.31 234 − 25

36 2+
2 1.35 27

3+ 1.87 540 1.0
4+

2 2.25 44 14
5+ 3.0 5 11

oscillator basis including nine major oscillator shells. Finally,
the minimization of the energy computed with the GCM states
given in Eq. (6) is equivalent to solving the Hill-Wheeler-
Griffin (HWG) equations:∑
β ′

2,γ
′,K ′

(HJ ;NZ
β,γ,K;β ′

2,γ
′,K ′ − EJ ;NZ;σN J ;NZ

β,γ,K;β ′
2,γ

′,K ′
)
f J ;NZ;σ

β ′
2,γ

′,K ′ = 0,

(8)

where HJ ;NZ
β,γ,K;β ′

2,γ
′,K ′ and N J ;NZ

β,γ,K;β ′
2,γ

′,K ′ are the energy and
norm overlap kernels, respectively. From the solution of
the HWG equations we obtain directly the energy spectrum
EJ ;NZ;σ (σ = 1, 2, 3, . . .) and the coefficients needed to
compute expectation values and electromagnetic transitions
among the different states. The number of integration points
both in gauge and Euler angles for particle number and angular
momentum projection, the size of the harmonic oscillator
basis, as well as the number of mesh points in the triaxial
plane are chosen to ensure the convergence in the expectation
values, transition rates and collective wave functions computed
in this work. Further details about the performance of the
method can be found in Ref. [7]. The main differences with
the 5DCH method [12] are: i) exact GCM calculations without
gaussian overlap approximation (GOA) are performed, ii)
exact symmetry restoration (particle number and angular
momentum) is accomplished, iii) the set of intrinsic HFB wave
functions is found in the PN-VAP method instead of using
a plain HFB. The computations within SCCM approach are
time consuming and take approximately twenty days for each
nucleus on a cluster with 150 CPUs. Therefore, this method
has been used only in the analysis of 86Ge and 88Se, where the
role played by the triaxial degree of freedom is expected to be
most relevant.

III. RESULTS

A. Deformation properties of N = 52–54 isotones in the
laboratory picture

We start the discussion with the results obtained in the shell
model framework. In Tables II and III we collect the properties
of the investigated systems which characterize quadrupole
properties of the yrast bands: energies, B(E2) values, and
spectroscopic quadrupole moments Qspec. We derive the
intrinsic quadrupole moments Q0 from the spectroscopic ones
using the well known relations:

Q0 = (J + 1)(2J + 3)

3K2 − J (J + 1)
Qspec(J ), K �= 1 (9)

and

B(E2; J → J − 2) = 5

16π
e2 (J + 1)(J + 2)

(2J + 3)(2J + 5)
Q2

0, (10)

for K �= 1/2, 1.
Let us also remind, that a γ band (K = 2), apart of

a characteristic level sequence, has Q(2+
γ ) = −Q(2+

y ) and
Q(3+) ∼ 0. In the Davidov-Filipov model [30] the amount
of the triaxiality is derived from the ratio:

B(E2; 2+
γ → 2+

y )

B(E2; 2+
γ → 0+

y )
, (11)
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TABLE VI. Intrinsic shape parameters of the shell model states.

(Yrast) State Q0 β γ (deg.) Q0(SU3) Qrot
0 β rot

86Ge 0+
g.s. 165 0.238 12 151 − −

2+
1 161 0.232 8 153/140 0.21

4+
1 152 0.218 12 149/110 0.19

6+
1 118 0.172 10 145/82 0.17

88Se 0+
g.s. 174 0.250 9 168 − −

2+
1 169 0.243 12 169/168 0.23

4+
1 159 0.229 15 158/148 021

6+
1 118 0.173 14 122/137 0.18

(Excited) State Q0 β γ (deg.)
86Ge 2+

2 152 0.219 28
3+

1 148 0.213 32
4+

2 116 0.169 41
5+

1 105 0.154 33
88Se 2+

2 152 0.219 35
3+

1 143 0.207 36
4+

2 114 0.166 40
5+

1 100 0.146 36

where y subscript denotes the yrast states. In Tables IV
and V we collect the quantities characterizing the excited bands
in several nuclei.

As can be seen, the yrast bands of N = 52 zinc, germanium
and krypton miss the characteristic features of deformed
bands: The inequality of quadrupole moments derived from
spectroscopic moments and from transition values assuming
K = 0, as well as the visible variation of the derived
quantities with spin, do not allow us to associate the intrinsic
deformation parameter to this band. This situation gets
different in selenium, where the features of ground state
deformation are present. The results are compatible with
a deformed intrinsic state with nearly constant quadrupole
moment Q0 ∼ 130 efm2, corresponding to β ∼ 0.19 for 86Se.
The SM results confirm the analytic pseudo-SU(3) model
predictions that the maximum of deformation is obtained with
six protons in the model space, thus in 86Se for N = 52. Also
qualitative agreement between the pseudo-SU(3) and realistic
SM quadrupole moments is reasonable.

From Table III one has clear evidence for sizable defor-
mation of Ge and Se at N = 54. The full calculation of
the intrinsic shape parameters using the n-body quadrupole
operators was done for the yrast 0+

g.s., 2+
1 , 4+

1 , 6+
1 sequence

and for the excited band 2+
2 , 3+

1 , 4+
2 , 5+

1 . The results are
summarized in Table VI and compared to the pseudo-SU(3)
predictions and results from the simpler axial rotor analysis of
Table III. These two bands, with their main E2 connections,
are also displayed in Fig. 1(a) and 1(b).

Concerning the yrast sequence, a very nice agreement is
found for the results obtained with the three different methods.
This means that the collectivity originates mainly from the
global rotation of the shape, with the triaxial degree of freedom
playing only a marginal role. But this collective axial feature
stops already at 6+ both in 86Ge and 88Se, showing that the
axial collectivity is not yet fully established and that those
nuclei mark the beginning of full shell collectivity or the

end of a transitional region. All three methods consistently
depict 88Se as more collective than 86Ge which is expected,
as 88Se is closer to the proton mid shell. The ground state
axial deformation parameter β in particular is stronger in
88Se than in 86Ge. The second part of Table VI contains
the results for the nonyrast sequence built on top of the
2+

2 state. The asymmetry angles of all states considered are
close to 30◦, this band is clearly characteristic of a triaxial
structure and the comparison with the SU(3) or axial rotor
limit cannot help. Nor can the comparison with the Davidov
and Filipov model as the calculation of the higher order
n-body quadrupole moments rather reveals γ instability than
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FIG. 1. (Color online) Excitation energies (in keV) and highest
reduced transition rates B(E2) (in e2fm4) for (a) 86Ge and (b) 88Se,
calculated in the shell model framework.
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FIG. 2. (Color online) Potential energy surfaces in the particle number variation after projection (PN-VAP) approach along the (β, γ ) plane
for (a) 86Ge and (b) 88Se nuclei calculated with the Gogny D1S interaction.

permanently triaxially deformed, rotating shape. The axial
parameters of the states forming this sequence are practically
the same between the two nuclei, the difference comes from
the asymmetry angle, higher in the case of 88Se than in 86Ge.
One can consider that the triaxiality revealed by this band
is maximum in 86Ge while 88Se is already leaning towards
oblateness. A fact which, rather unexpectedly, is consistent
with the SCCM results as will be shown in the following
paragraph.

B. Intrinsic description of triaxial deformation

We now analyze the results obtained with the SCCM
method described in Sec. II C for 86Ge and 88Se (N = 54)
nuclei. To have an insight into the role of the intrinsic
deformation in these isotopes we represent in Fig. 2 the
potential energy surfaces (PES) along the triaxial (β, γ )
plane in the PN-VAP approach. Here we observe that both
nuclei have rather similar PES, with absolute minima at axial
prolate deformations β ∼ 0.15–0.20 and a quite flat region
between β ∈ [0.0, 0.3] , γ ∈ [0◦, 60◦]. In addition, 88Se shows
a slightly more pronounced γ softness than 86Ge, where the
prolate minimum is better defined. This kind of soft potentials
suggests that configuration mixing effects can play a key role
in understanding the spectra for these nuclei. Hence, we now
describe the results obtained by performing shape mixing
calculations with particle number and angular momentum
restored states. In Fig. 3 we represent the excitation energies
and reduced transition probabilities B(E2) for 86Ge [Fig. 3(a)]
and 88Se [Fig. 3(b)]. The states are sorted by connecting the dif-
ferent levels with the ones with the larger values of the B(E2).
On the one hand, we obtain for both nuclei ground state (g.s.)
bands with the sequence of angular momentum 0+

1 , 2+
1 , 4+

1 , 6+
1 ,

which in principle indicates the presence of rotational bands.
The mean value of the intrinsic third component of the angular
momentum is mainly K = 0 for all the states belonging to
these bands as we show in Table VII and VIII. The r42 =
E(4+

1 )/E(2+
1 ) ratios (r42 = 2.7 and 2.6 for 86Ge and 88Se,

respectively) for these states do not support the existence of
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88Se calculated with the Gogny D1S interaction.
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TABLE VII. Excitation energies (in MeV), spectroscopic quadrupole moments (in efm2) and distribution of the intrinsic quantum number
K of the states for g.s., first, and second excited bands in 86Ge.

0+
1 2+

1 4+
1 6+

1 2+
2 3+

1 4+
2 4+

3 5+
2

E(J +
σ ) 0.000 0.661 1.763 3.230 1.286 1.840 2.612 3.725 4.512

Qspec(J +
σ ) 0.000 − 26.691 − 19.165 − 17.057 27.182 0.000 − 57.542 77.500 30.497

K = 0 1.000 0.858 0.695 0.561 0.222 0.000 0.261 0.166 0.000
|K| = 2 0.000 0.142 0.289 0.401 0.778 1.000 0.563 0.149 0.189
|K| = 4 0.000 0.000 0.016 0.036 0.000 0.000 0.176 0.685 0.811

well-deformed axial rotational bands in these cases. However,
the ratios of 4+/2+ energies, strongly dependent on the
pairing interaction in nuclei, are hardly indicative for the
rotational structures in lighter, even well deformed nuclei. For
example, the experimental E(4+)/E(2+) value in 20Ne is 2.6,
in 24Mg 3.01 and 2.47 in 48Cr, which is also far from the
rotational limit value of 3.3. In Fig. 5 we thus represent the
ratio of the spectroscopic quadrupole moments Qspec(J )/Q2+ .
The 2+ states vary for each band, and for the ground state
bands we see a distinctive deviation from the rotational limit.
The main difference between the two isotones is however
found in the first and second excited bands. For 86Ge we
obtain a 2+

2 , 3+
1 , 4+

2 , 5+
1 band (predominantly K = 2) strongly

connected to the g.s. band and another one with the sequence
4+

3 , 5+
2 , 6+

3 (mostly K = 4) with smaller B(E2) values both
towards the g.s. and first excited bands. On the other hand,
88Se presents a much more mixed band structure as we see
in Fig. 3(b). In this case, we find the state 2+

2 at a slightly
lower excitation energy than the 0+

2 and with a large B(E2)
between them. These two states together with 4+

2 , 6+
2 develop

a K = 0 band strongly connected to the g.s. band. In addition,
we have also a predominantly K = 2 band (3+

1 , 2+
3 , 4+

3 , 5+
1 )

with a small admixture of K = 0 components that is also
connected to the first excited band.

To shed light on the shape structure of these states we
represent in Fig. 4 the collective wave functions for the band-
head states described above. The rest of the states belonging to
the same band have a similar distribution. The maxima in the
probabilities are found at (β ∼ 0.2, γ = 0◦), (β ∼ 0.25, γ =
15◦), and (β ∼ 0.25, γ = 18◦) for 86Ge and at (β ∼ 0.2, γ =
0◦), (β ∼ 0.25, γ = 60◦), and (β ∼ 0.2, γ = 28◦) for 88Se.
We observe that in most of the states represented in Fig. 4
the probability is distributed in a range of deformations (β ∈
[0.10, 0, 35], γ ∈ [0◦, 60◦]) showing that the triaxial degree
of freedom plays an important role, specially for the states in
the first and second exited bands. Finally, we notice that the

ground state of 88Se is slightly more spherical than the g.s. of
86Ge, consistently having a larger E(2+

1 ) (see Fig. 3).

C. Comparison of SM and SCCM calculations for 86Ge and 88Se

The comparison of calculated spectra and transition rates
in shell model and beyond mean-field frameworks is done
based on results shown in Figs. 1(a) and 3(a) for 86Ge and
Figs. 1(b) and 3(b) for 88Se. The comparison of deformation
properties in both models is shown in Fig. 5, where the ratios
of spectroscopic moments are plotted and compared to those
of the rotational limit.

For 86Ge, an excellent agreement between the two models
is found for predicted excitation energies. They agree in the
two calculations within several keV for the yrast band and
within 300 keV for the first excited band. Both models are as
well consistent in their description of the relative magnitudes
of the intraband transitions. However, shell model predicts
two rather disconnected bands: the B(E2) values between the
first excited and the ground state band are severely quenched
with respect to intraband transitions, except of the 2+

2 → 2+
1

one, which is the only plotted in the Fig. 1(a). In the SCCM
calculations the out-band transitions are closer in magnitude
to the intraband ones.

One should note that the absolute magnitude of transition
rates is overall much stronger in the SCCM calculations than
in the shell model. It appears that SCCM overshoots the
transition rate in the neighboring N = 50 86Kr nucleus, where
the experimental data is available: 336 e2fm4 is calculated
against the experimental value of 244(20) e2fm4. Nonetheless,
the trends of excitation energies and transition rates along
the Kr chain in the known region are correctly reproduced in
SCCM calculations. Shell model B(E2) values for N = 50
are much closer to experimental ones: we obtain 121 e2fm4

for 80Zn and 262 e2fm4 for 86Kr, while the experimental values
are 146(18) e2fm4 and 244(20) e2fm4, respectively. The good

TABLE VIII. Same as Table VII but in 88Se.

0+
1 2+

1 4+
1 6+

1 0+
2 2+

2 4+
2 2+

3 3+
1

E(J +
σ ) 0.000 0.866 2.245 4.740 1.869 1.717 2.962 3.139 3.054

Qspec(J +
σ ) 0.000 − 22.730 − 19.789 − 0.261 0.000 25.374 9.750 − 36.351 0.000

K = 0 1.000 0.941 0.888 0.771 1.000 0.728 0.853 0.393 0.000
|K| = 2 0.000 0.059 0.099 0.200 0.000 0.272 0.090 0.607 1.000
|K| = 4 0.000 0.000 0.013 0.026 0.000 0.000 0.057 0.000 0.000
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agreement is however expected since the effective charges in
SM have been chosen so to reproduce the transition rates in
the neighboring Zr isotones [1].

In spite of considerable differences in the absolute mag-
nitude of B(E2) values, it is conspicuous that both models
predict the largest B(E2) value between the first 3+ and the
second excited 2+ states in 86Ge. The level sequence and
transition rates obtained in both models suggest that 86Ge
can be non-axially deformed. Other characteristic features
common to triaxial nuclei appear in both calculations for 86Ge:
the Qspec values of the first 2+ and the second 2+ have the same
value but the opposite sign and Qspec(3+) ∼ 0 (see Tables III,
V, VII).

In 88Se, shell model predicts more deformed structure with
a lower lying 2+ state than SCCM, though the difference is of
only 200 keV. A possible experimental candidate for 2+ state
is located at 886 keV according to Ref. [31], SMMC appears
thus to be closer to the measurement. However, recently a
different value (651 keV) of 2+ energy in 88Se has been
reported [32], which agrees perfectly with the shell model
prediction and points to a stronger deformation of this nucleus
than obtained in the SCCM model. The remaining yrast levels
and the excited bands are located much higher in energy
in SMMC calculations than in SM. Both models predict a
much more complicated band structure in this nucleus. As
previously, transition rates between the yrast and excited bands
are relatively small in shell model, while SCCM calculations
predict considerable transitions between them.

The major difference in the two models concerns the degree
of deformation of both nuclei. While the SCCM calculation
find 88Se more spherical than 86Ge, the shell model predicts a
larger spectroscopic moment in Se than in Ge, which follows
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the pseudo-SU(3) scheme. It can be clearly seen in Fig. 5 that
shell model results follow more closely the rotational limit for
the ground state and excited bands in both 86Ge and 88Se than
the SCCM ones. Interestingly, SCCM supports shell model
findings that the triaxiality is more important in 86Ge and 88Se
and both models predict much a lower B(E2; 3+ → 2+

2 ) value
in 88Se. In addition, both models also agree that the K = 2
bands do not continue to the second excited 4+ state in 86Ge
and 88Se nuclei.

IV. CONCLUSIONS

We have analyzed the quadrupole properties of neutron rich
nuclei, just above the N = 50 shell closure. We have employed
the algebraic pseudo-SU(3) model, shell model framework
with empirically adjusted interactions in a πr3g − νr4h
model space outside the 78Ni core and finally, the particle
and angular momentum symmetry conserving beyond-mean
field calculations with Gogny forces. The pseudo-SU(3) and
shell model results appear to be in a good qualitative and
quantitative agreement. Both models predict the signs of
deformation in Se and Ge nuclei with four neutrons above

the N = 50 shell closure. The beyond mean-field calculations
agree well with the shell model ones in their predictions of
energy levels and band structures of 86Ge. The models used in
this work consistently indicate that a maximum of triaxiality
can appear in 86Ge, where a low lying 3+ level connected by
a strong transition to the 2+

2 should be observed. However,
some discrepancies are found in the two approaches for 88Se,
where shell model calculation envisage stronger deformation
effects than SCCM calculations. Further theoretical efforts are
required to understand their origin. It is now a challenge for
future experiments to verify the degree of collectivity around
the N = 50 shell closure and wether the triaxiality can indeed
develop in the nuclei just above the magic 78Ni.
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