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Three-cluster dynamics within an ab initio framework
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We introduce a fully antisymmetrized treatment of three-cluster dynamics within the ab initio framework of the
no-core shell model/resonating-group method. Energy-independent nonlocal interactions among the three nuclear
fragments are obtained from realistic nucleon-nucleon interactions and consistent ab initio many-body wave
functions of the clusters. The three-cluster Schrödinger equation is solved with bound-state boundary conditions
by means of the hyperspherical-harmonic method on a Lagrange mesh. We discuss the formalism in detail and give
algebraic expressions for systems of two single nucleons plus a nucleus. Using a soft similarity-renormalization-
group evolved chiral nucleon-nucleon potential, we apply the method to a 4He + n + n description of 6He and
compare the results to experiment and to a six-body diagonalization of the Hamiltonian performed within the
harmonic-oscillator expansions of the no-core shell model. Differences between the two calculations provide a
measure of core (4He) polarization effects.
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I. INTRODUCTION

In nuclear physics, ab initio approaches seek to solve the
many-body Schrödinger equation in terms of constituent pro-
tons and neutrons interacting through nucleon-nucleon (NN )
and three-nucleon (3N ) forces that yield a high-precision fit
of two- and three-body data. Their aim is twofold: first, to
help unfold the true nature of the force among nucleons and,
second, to arrive at a fundamental understanding of nuclei and
their role in the universe.

In three- and four-nucleon systems, where a numerically
exact solution of the quantum-mechanical problem for both
negative [1] and positive energies [2] is now possible, this
goal has been largely achieved. For heavier systems, ab initio
calculations have been mostly confined to the description
of the bound-state properties of stable nuclei but are now
starting to be extended to dynamical processes between nuclei.
The Green’s function Monte Carlo method has been used to
describe the elastic scattering of neutrons on 4He [3] and to
compute asymptotic normalization coefficients [4] and nuclear
widths [5]. Loosely bound and unbound nuclear states have
been addressed within the coupled-cluster technique [6,7] by
using a Berggren basis and this method has recently been
applied to compute elastic proton scattering on 40Ca [8].

An ab initio framework that promises to provide a unified
treatment of a wide range of nuclear phenomena (well-bound
states, loosely bound and unbound exotic nuclei, scattering
and reaction observables) is the no-core shell model with
continuum (NCSMC) [9,10]. Here, the nuclear many-body
states are seen as superimpositions of continuous (A − a, a)
binary-cluster wave functions in the spirit of the resonating-
group method (RGM) [11–16] and square-integrable eigen-
states of the A-nucleon system, in which each cluster of
nucleons and the compound nuclear states are obtained within
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the ab inito no-core shell model (NCSM) [17,18]. So far, we
have laid the foundations of the NCSMC by developing the
formalism to compute nucleon-nucleus collisions and applying
it to the description of the unbound 7He nucleus. However,
expansions on the NCSM/RGM portion of the basis [19,20]
have already been successfully used to describe nucleon [21]
and deuteron [22] scattering on light nuclei and achieve the
first ab initio description of 7Be(p, γ )8B radiative capture [23]
and 3H(d, n)4He and 3He(d, p)4He fusion rates [24], based
on realistic NN interactions. Work is currently under way to
incorporate the 3N force into this binary-reaction formalism
and to attain the description of deuteron-nucleus scattering and
transfer reactions within the NCSMC approach.

Achieving an ab initio treatment of three-cluster dynamics
is another important stepping stone towards gaining a basic
understanding of nuclei and their reactions. To cite a few
instances, important nuclear fusion processes such as the
3H(3H, 2n)4He or 3He(3He, 2p)4He reactions are character-
ized by three-body final states. In addition, only with an
approach capable of accounting for three-cluster configura-
tions can one obtain an accurate description of Borromean
nuclei, ternary systems of two nucleons orbiting around a
tightly bound core whose components are not bound in pairs.
Finally, three-body configurations can be necessary even at
very low energy to achieve a proper treatment of polarization
and virtual excitations of breakup channels in reactions with
weakly bound projectiles such as the deuteron.

Microscopic three-cluster models, where all nucleons are
taken into account and the Pauli principle is treated exactly,
have been used for some time, particularly in combination with
the hyperspherical formalism for the solution of the dynamic
equations [25–30]. However, they have two main limitations:
the use of central NN potentials with state-dependent param-
eters adjusted to reproduce the binding energy of the system
under study, occasionally complemented with a spin-orbit in-
teraction; and a simplified description of the internal structure
of the clusters, which are in most cases described by s-shell
wave functions. In this paper, we report on an extension of the
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NCSM/RGM formalism to treat the dynamics among three
nuclei made of fully antisymmetrized interacting nucleons.
The solution of the three-cluster Schrödinger equation is ob-
tained by means of hyperspherical harmonic (HH) expansions
on a Lagrange mesh [31,32]. In addition, we present the first
4He + n + n investigation of the ground state (g.s.) of the 6He
nucleus based on an NN potential that yields a high-precision
fit of the NN phase shifts and ab initio four-body wave
functions for the 4He cluster obtained consistently from the
same Hamiltonian. In particular, we employ a similarity-
renormalization-group (SRG) [33,34] evolved chiral N3LO
NN [35] potential. For this first application, we include only
the g.s. of the 4He cluster and estimate the importance of
the core polarization by comparing the results obtained with
six-body NCSM diagonalizations of the adopted Hamiltonian.
The inclusion of excited states of 4He to describe such effects is
hard and not very efficient within the NCSM/RGM approach.
On the other hand, core-polarization effects will be easily
accounted for once the present formalism is embedded within
the NCSMC framework.

The paper is organized as follows. In Sec. II we define the
microscopic three-cluster problem, present a brief overview
of the HH functions and their application within the R-matrix
method on Lagrange mesh for the solution of the three-body
bound-state problem, and introduce in detail the three-cluster

NCSM/RGM formalism. In particular, in Sec. II E we present
algebraic expressions for systems of two single nucleons plus a
nucleus. Results for the g.s. of the 6He Borromean nucleus are
presented in Sec. III, where we discuss calculations performed
by solving the 4He(g.s.) + n + n NCSM/RGM equations and
compare them with a diagonalization of the Hamiltonian in the
six-body NCSM model space. Conclusions and outlook are
given in Sec. IV. Finally, additional details on the formalism
are presented in the Appendixes.

II. FORMALISM

A. Microscopic three-cluster problem

The intrinsic motion of a system of A nucleons arranged
into three clusters, of mass number A − a23, a2, and a3 (a23 =
a2 + a3 < A), respectively, can be described by the many-
body wave function

|�Jπ T 〉 =
∑

ν

∫∫
dx dy x2 y2 GJπ T

ν (x, y) Âν

∣∣�Jπ T
νxy

〉
, (1)

where GJπ T
ν (x, y) are continuous variational amplitudes of the

integration variables x and y, Âν is an appropriate intercluster
antisymmetrizer introduced to guarantee the exact preservation
of the Pauli exclusion principle, and

∣∣�Jπ T
νxy

〉 = [(∣∣A − a23α1I
π1
1 T1

〉(∣∣a2 α2I
π2
2 T2

〉∣∣a3 α3I
π3
3 T3

〉)(s23T23))(ST )(
Y�x

(η̂23)Y�y
(η̂1,23)

)(L)](Jπ T ) δ(x − η23)

xη23

δ(y − η1,23)

yη1,23
(2)

are three-body cluster channels of total angular momentum J ,
parity π , and isospin T . Here, |A − a23α1I

π1
1 T1〉, |a2 α2I

π2
2 T2〉,

and |a3 α3I
π3
3 T3〉 denote the microscopic (antisymmetric)

wave functions of the three nuclear fragments, which are
labeled by the spin-parity, isospin, and energy quantum
numbers I

πi

i , Ti , and αi , respectively, with i = 1, 2, 3. Ad-
ditional quantum numbers characterizing the basis states of
Eq. (2) are the spins �s23 = �I2 + �I3 and �S = �I1 + �s23, the
orbital angular momenta �x , �y , and �L = ��x + ��y , and the
isospin �T23 = �T2 + �T3. In our notation, all these quantum
numbers are grouped under the cumulative index ν = {A −
a23 α1I

π1
1 T1; a2 α2I

π2
2 T2; a3 α3I

π3
3 T3; s23 T23 S �x �y L}. Besi-

des the translationally invariant coordinates (see, e.g., Ref. [20]
Sec. II.C) used to describe the internal dynamics of clusters 1,
2, and 3, respectively, in Eq. (2) we have introduced the Jacobi
coordinates �η1,23 and �η23, where

�η1,23 = η1,23η̂1,23

=
√

a23

A(A − a23)

A−a23∑
i=1

�ri −
√

A − a23

Aa23

A∑
j=A−a23+1

�rj (3)

is the relative vector proportional to the displacement between
the center of mass (c.m.) of the first cluster and that of the

residual two fragments, and

�η23 = η23η̂23 =
√

a3

a23 a2

A−a3∑
i=A−a23+1

�ri −
√

a2

a23 a3

A∑
j=A−a3+1

�rj

(4)

is the relative coordinate proportional to the distance
between the center of mass of cluster 2 and that of cluster

FIG. 1. (Color online) We show the Jacobi coordinates �η1,23

(proportional to the vector between the c.m. of the first cluster and
that of the residual two fragments) and �η23 (proportional to the vector
between the c.m. of cluster 2 and that of cluster 3). A case with
three clusters, of four, two, and one nucleons, is shown, however,
the formalism is completely general and can be used to describe any
three-cluster configuration.
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3 (see Fig. 1). Here, �ri denotes the position vector of the
ith nucleon.

Using expansion (1) for the wave function and projecting
the microscopic A-body Schrödinger equation onto the basis
states Âν |�Jπ T

νxy 〉, the many-body problem can be mapped onto
the system of coupled-channel integral-differential equations

∑
ν

∫∫
dx dy x2y2[HJπ T

ν ′ν (x ′, y ′, x, y)−E N Jπ T
ν ′ν (x ′, y ′, x, y)

]
×GJπ T

ν (x, y) = 0 (5)

for the unknown variational amplitudes GJπ T
ν (x, y). Here, E

is the total energy of the system in the c.m. frame and

HJπ T
ν ′ν (x ′, y ′, x, y) = 〈

�Jπ T
ν ′x ′y ′

∣∣Âν ′H Âν

∣∣�Jπ T
νxy

〉
, (6)

N Jπ T
ν ′ν (x ′, y ′, x, y) = 〈

�Jπ T
ν ′x ′y ′

∣∣Âν ′Âν

∣∣�Jπ T
νxy

〉
(7)

are integration kernels given, respectively, by the Hamil-
tonian and overlap (or norm) matrix elements over the
antisymmetrized basis states of Eq. (2). Finally, H is the
intrinsic A-body Hamiltonian. Denoting by V̄C the sum of
the pairwise average Coulomb interactions among the three
clusters in channel ν of charge numbers Zν1, Zν2, and Zν3,
this can be separated into relative-motion and clusters’ intrinsic
Hamiltonians according to

H = Trel + V̄C + Vrel + H(A−a23) + H(a2) + H(a3) , (8)

with Trel the relative kinetic energy operator for the three-body
system and Vrel the intercluster potential given by

Vrel =
A−a23∑
i=1

A∑
j=A−a23+1

Vij +
A−a3∑

k=A−a23+1

A∑
l=A−a3+1

Vkl

+V3N
(A−a23,a2,a3) − V̄C . (9)

Here, V3N
(A−a23,a2,a3) encompasses the portion of intercluster

interactions owing to the 3N force, which, in general, is
part of a realistic Hamiltonian, and Vij is the (nuclear plus
point–Coulomb) interaction between nucleon i and nucleon j .
In the present paper we consider only the NN component of
the intercluster interaction and disregard, for the time being,
the term V3N

(A−a23,a2,a3). Inclusion of the 3N force into the
formalism, although computationally much more involved, is
straightforward and will be the matter of future investigations.
In the remainder of the paper, we also omit the average
Coulomb potential V̄C , which is null for neutral systems such
as the 4He + n + n investigated here. The treatment of charged
systems is, nevertheless, possible and can be implemented
along the same lines as in Ref. [32].

B. Orthogonalized equations

Owing to the presence of the norm kernel, the three-cluster
equations (5) contain energy-dependent coupling terms. Al-
ternatively, one can introduce the orthogonalized Hamiltonian

kernel H̄Jπ T
ν ′ν (x ′, y ′, x, y) of Eq. (A1) and solve the more

familiar system of multichannel Schrödinger equations∑
ν

∫∫
dx dy x2y2

[
H̄Jπ T

ν ′ν (x ′, y ′, x, y)

−E δνν ′
δ(x ′ − x)

x ′x
δ(y ′ − y)

y ′y

]
χJπ T

ν (x, y) = 0. (10)

The amplitudes GJπ T
ν (x, y) of Eq. (1) can then be recovered

from the Schrödinger wave functions χJπ T
ν (x, y) through

Eq. (A2). More details on the orthogonalization procedure
are given in Appendix A.

C. Hyperspherical harmonics

The three-cluster Schrödinger equations, (10), can be
conveniently solved within the HH basis. This basis is broadly
used [36] to treat few-body problems, as its elements are
eigenfunctions of the angular part of the kinetic operator
written in hyperspherical coordinates [37]. The first step is
to move to hyperspherical coordinates, i.e.,

η23 = ρη sin αη, x = ρ sin α, (11)

η1,23 = ρη cos αη, y = ρ cos α, (12)

where ρη and ρ are hyper-radii, and αη and α hyperangles. In
these coordinates, the relative kinetic energy operator for the
three-cluster system can be written as

T̂rel = − h̄2

2m

(
∂2

∂ρ2
+ 5

ρ

∂

∂ρ
− �̂2

ρ2

)
, (13)

where �̂2 is the grand-angular kinetic operator and m is the
mass of the nucleon.

As anticipated, the elements of the HH basis are the
eigenfunctions of �̂2

YK�x�y

LML
(�) = φ

�x,�y

K (α)
(
Y�x

(x̂) Y�y
(ŷ)
)(L)
ML

, (14)

with eigenvalues K(K + 4). Here, K is the hypermomentum
quantum number defined as K = 2n + �x + �y with n =
0, 1, 2, . . . , the notation � represents the hyperangle α and
the four angles x̂ and ŷ (the direction angles of the Jacobi
coordinates �x and �y, respectively), and the complete set of
functions φ

�x,�y

K (α) is given by

φ
�x,�y

K (α) = N
�x�y

K (sin α)�x (cos α)�y P
�x+ 1

2 ,�y+ 1
2

n (cos 2α), (15)

where P
α,β
n (ξ ) are Jacobi polynomials, and N

�x�y

K normaliza-
tion constants.

As shown in Appendix B, the HH functions, (14), form
a natural basis for the description of the three-cluster wave
function of Eq. (1) and for the solution of the three-cluster
dynamical equations. Indeed, by (i) using the expansion

χJπ T
ν (ρ, α) = 1

ρ5/2

∑
K

uJπ T
Kν (ρ)φ

�x,�y

K (α) (16)

for the relative motion wave functions, where uJπ T
Kν (ρ) are

hyper-radial functions analogous to those of Eq. (B6), and
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(ii) projecting from the left on the basis states φ
�′
x ,�

′
y

K ′ (α′),
Eq. (10) can be written as a set of nonlocal integral-differential
equations in the hyper-radial coordinates:

∑
Kν

∫
dρρ5H̄K ′K

ν ′ν (ρ ′, ρ)
uJπ T

Kν (ρ)

ρ5/2
= E

uJπ T
K ′ν ′ (ρ ′)
ρ ′ 5/2

. (17)

Here, the orthogonalized Hamiltonian kernel in the hyper-
radial variables ρ and ρ ′ is given by

H̄K ′K
ν ′ν (ρ ′, ρ) =

∫
dα′ sin2 α′ cos2 α′

∫
dα sin2 α cos2 α

×φ
�′
x ,�

′
y

K ′ (α′) H̄Jπ T
ν ′ν (ρ ′, α′, ρ, α) φ

�x,�y

K (α).

(18)

The solution of Eq. (17) for the case in which the three clusters
form a bound state can be conveniently achieved within the
R-matrix method as discussed in the next section.

D. Solution of the three-cluster equations for bound states

We calculate the relative motion wave function by solving
Eq. (17) with the calculable R-matrix method [38]. In particu-
lar, we use a Lagrange mesh which simplifies the problem as
shown in many previous works for the two-cluster case [39–42]
and was generalized to the three-cluster problem in Ref. [31].
Within this method, the configuration space is divided into two
regions by assuming that the Coulomb interaction (if present)
is the only interaction experienced by the clusters beyond a
finite separation ρ = a.

In the external region (ρ > a), where the Schrödinger
equation can be solved exactly, the hyper-radial wave function
is approximated by its known asymptotic form for large ρ. For
bound states of neutral systems (such as the one investigated
in this paper), such an asymptotic solution is given by

uJπ T
Kν,ext(ρ) = BKν

√
kρ KK+2(kρ), (19)

where KK+2(kρ) is a modified Bessel function of the second
kind, k2 = −2mE/h̄2 is the wave number, and BKν is a
constant. In the internal region (ρ � a), where also the mutual
nuclear interaction among the clusters is present, the wave
function is written as a variational expansion on a Lagrange
basis of N functions fi(ρ) (see Appendix C for definition),

uJπ T
Kν,int(ρ) =

N∑
i=1

βKνi fi(ρ), (20)

where βKνi are the coefficients of the expansion. The radial
wave functions are then obtained by solving in the internal
region the set of Bloch-Schrödinger equations∑

Kν

∫
dρρ5

[
H̄K ′K

ν ′ν (ρ ′, ρ) + (LKν(ρ)

−E)
δ(ρ − ρ ′)

ρ5
δν ′νδK ′K

]
uJπ T

Kν,int(ρ)

ρ5/2

= LK ′ν ′(ρ ′)
uJπ T

K ′ν ′,ext(ρ
′)

ρ ′5/2
, (21)

supplemented by the continuity condition uJπ T
Kν,int(a) =

uJπ T
Kν,ext(a). Here, we have used the asymptotic expression of

Eq. (19) on the right-hand side and the expansion of Eq. (20)
on the left-hand side of the equation, respectively. Further,
the elements of the Bloch operator (LKν being arbitrary
constants) [32]

LKν(ρ) = h̄2

2m
δ(ρ − a)

1

ρ5/2

(
∂

∂ρ
− LKν

ρ

)
ρ5/2 (22)

have the dual function of restoring the Hermiticity of the
Hamiltonian in the internal region and enforcing the continuity
of the derivative of the wave function at ρ = a [38]. Owing
to the Dirac’s δ in the Bloch operator, the system of nonlocal
equations (21) is equivalent to that of Eq. (17) in the internal
region. Projecting Eq. (21) over a basis element fi ′ (ρ ′) and
choosing the logarithmic derivative evaluated in a

LKν(E) = a
u′Jπ T

Kν,ext(a)

uJπ T
Kν,ext(a)

(23)

for the constants appearing in the definition of the Bloch
operator, (22), system (21) reduces to∑

K ′ν ′i ′

[
CJπ T

Kνi,K ′ν ′i ′ − Eδν ′νδK ′Kδi ′i
]
βK ′ν ′i ′ = 0, (24)

where the elements of the matrix CJπ T are given by the
integrals over the internal region,

CJπ T
K ′ν ′i ′,Kνi =

∫ a

0
dρ ′
∫ a

0
dρρ5fi ′(ρ

′)

×
(
H̄K ′K

ν ′ν (ρ ′, ρ) +LKνδν ′νδK ′K
δ(ρ ′ − ρ)

ρ5

)
fi(ρ).

(25)

The choice of Lagrange functions as square-integrable basis
states for the expansion of the wave function in the internal
region of Eq. (20) greatly simplifies the evaluation of these
integrals. Indeed, within the Gauss quadrature approximation,
the Lagrange functions are orthogonal to each other (see
Appendix C), the matrix elements of nonlocal potentials are
proportional to the values of the nonlocal potentials at the mesh
points, and the analytical expression for the matrix elements
of the kinetic energy operator is straightforward to obtain.

Note that the matrix CJπ T depends on the energy, owing
to the choice (23) of the boundary conditions in the Bloch
operator, which are functions of the wave number k [see
Eq. (19)]. In practice, the solution of Eq. (24) is obtained
recursively. One can start from LKν = 0 and iterate the solution
of the eigenvalue equation, (24), until the convergence in E
is reached, which typically occurs in a few iterations. The
coefficients βKνi of the expansion (20) are then obtained from
the corresponding eigenvector and the relative motion wave
functions can be constructed using Eqs. (16) and (20).

E. Integration kernels

The norm and Hamiltonian integration kernels presented
in Sec. II A are calculated within the NCSM/RGM approach
as follows. First, the clusters’ eigenstates appearing in Eq. (2)
are obtained by diagonalizing the H(A−a23), H(a2), and H(a3)
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intrinsic Hamiltonians within the model spaces spanned by
the (A − a23)-, a2-, and a3-nucleon NCSM bases, respectively.
These are complete sets of many-body HO basis states, the
size of which is defined by the maximum number Nmax of HO
quanta above the lowest configuration shared by the nucleons.
The same HO frequency h̄� is used for all three clusters, and
the model-space size Nmax is identical (differs by one) for
states of the same (opposite) parity.

Second, for those components that are localized, the
matrix elements of the translational invariant operators
Âν ′Âν, Âν ′H Âν entering the expression of the integration

kernels are evaluated within an HO model space using the
expansion∣∣�Jπ T

νxy

〉 = ∑
nxny

∑
ZJ23

ẐĴ23ŜL̂ (−1)I1+J23+J+S+Z+�x+�y

×
{

I1 s23 S

�x Z J23

}{
S �x Z

�y J L

}

×Rnx�x
(x)Rny�y

(y)
∣∣�Jπ T

γnxny

〉
, (26)

where Ẑ = √
2Z + 1, Ĵ23 = √

2J23 + 1, . . . , etc., and
|�Jπ T

γnxny
〉 are the HO channel states defined by

∣∣�Jπ T
γnxny

〉 = [(∣∣A − a23α1I
π1
1 T1

〉(
Y�x

(η̂23)
(∣∣a2α2I

π2
2 T2

〉∣∣a3α3I
π3
3 T3

〉)(s23T23))(J23T23))(ZT )
Y�y

(η̂1,23)
](Jπ T )

Rnx�x
(η23)Rny�y

(η1,23)

(27)

and labeled by the channel index γ = {A − a23 α1I
π1
1 T1;

a2 α2I
π2
2 T2; a3 α3I

π3
3 T3; �x s23J23 T23 Z �y}. Besides the rep-

resentation of the Dirac’s δ functions of Eq. (2) in terms
of HO radial wave functions Rnx�x

(x) and Rny�y
(y), the

transformation of Eq. (26) reflects a different coupling scheme
of the HO channels, (27), with respect to the original basis,
with J23 the total (orbital plus spin) angular momentum
quantum number of the system formed by the second and
third clusters and �Z = �I1 + �J23 the new channel spin. While
the configuration of Eq. (2) is dictated by the use of the HH
as the basis for the solution of the three-cluster problem (see
Sec. II C and Appendix B), the binary-cluster-like coupling
scheme of Eq. (27) is more convenient for the derivation of the
kernels in the HO basis, as will become clear in a moment. The
frequency h̄� and the model-space size (Nmax/Nmax + 1 for
even/odd parity states) used to expand the relative motion are
the same as those adopted for the calculation of the clusters’
eigenstates.

Finally, although the integration kernels are translational
invariant quantities, it is computationally convenient to work
within a Slater determinant (SD) channel basis |�Jπ T

γnxny
〉SD

defined as in Eq. (27) but with �R(a23)
c.m. in place of the relative

vector �η1,23 and the eigenstates of the heaviest cluster obtained
in the SD basis, i.e.,∣∣A − a23α1I

π1
1 T1

〉
SD = ∣∣A − a23α1I

π1
1 T1

〉
R00
(
R(A−a23)

c.m.

)
×Y00

(
R̂(A−a23)

c.m.

)
, (28)

where �R(A−a23)
c.m. and �R(a23)

c.m. are, respectively, the coordinates
proportional to the c.m. of the first and last two clusters:

�R(A−a23)
c.m. = 1√

A − a23

A−a23∑
i=1

�ri, (29)

�R(a23)
c.m. = 1√

a23

A∑
j=A−a23+1

�rj . (30)

Indeed, the translational invariant matrix elements can be
extracted from those calculated in the SD basis, which contain
the spurious motion of the c.m., by inverting the following

linear transformation:

SD

〈
�Jπ T

γ ′n′
xn

′
y

∣∣ Ôt.i.

∣∣�Jπ T
γnxny

〉
SD

=
∑

nr′
y �r′

y ,nr
y�

r
y ,Jr

〈
�

Jπr
r T

γ ′
r n

′
xn

r′
y

∣∣ Ôt.i.

∣∣�Jπr
r T

γrnxnr
y

〉

×
∑
NL

�̂y �̂
′
y Ĵ

2
r (−1)Z+�y−Z′−�′

y

×
{

Z �r
y Jr

L J �y

}{
Z′ �r′

y Jr

L J �′
y

}
× 〈nr

y�
r
y NL �y

∣∣00 ny�y �y

〉
a23

A−a23

× 〈nr′
y �r′

y NL �′
y

∣∣00 n′
y�

′
y �′

y

〉
a′

23
A−a′

23

. (31)

Here, γr denotes a channel index identical to γ except for
the replacement of the quantum number �y with �r

y (the

same applies for the primed indexes), πr = π (−1)�
r
y−�y =

π1π2π3(−1)�x+�r
y , and Ôt.i. is any scalar and parity-conserving

translational invariant operator. Further, the transformation of
Eq. (31) is diagonal in all quantum numbers but ny , �y , n′

y , �′
y ,

and Jπ . Although formally not strictly necessary, with the new
angular momentum coupling scheme of Eq. (27), the present
conversion from SD to translational invariant matrix elements
represents a straightforward generalization of the analogous
binary-cluster transformation discussed in Sec. II C 2 of
Ref. [20] and the most advantageous choice from a compu-
tational point of view.

1. The (A-2,1,1) mass partition

The theoretical framework presented so far is general and
can, in principle, be applied to any three-cluster system. In
the following, we discuss the derivation of the integration
kernels for the more specialized instance of a target nucleus
plus two single nucleons (a2, a3 = 1), such as the 4He + n + n
system investigated here. Specifically, we consider the case of
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identical (A − 2, 1, 1) mass partitions in both the initial and
the final states.

In this case, the second and third clusters are point-like
nucleons with quantum numbers I

π2(3)

2(3) T2(3) = 1
2

+ 1
2 , and the

intercluster antisymmetrizer is simply given by the product
of the antisymmetrization operators for an (A − 2, 2) mass
partition and that of a two-body system,

Âν = Â(A−2,2)
1√
2

(1 − P̂A−1 A)

=
√

2

(A − 1)A

⎡
⎣1−

A−2∑
i=1

(P̂iA−1+P̂iA) +
A−2∑

i<j=1

P̂iA−1P̂jA

⎤
⎦

× 1√
2

(1 − P̂A−1 A). (32)

Although other factorizations of this operator are of course
possible, with the present choice the antisymmetrization of
nucleons A−1 and A is trivial and can be included in the
definition of the channel basis; i.e.,

∣∣�̃Jπ T
νxy

〉 = 1 − (−1)�x+s23+T23

√
2

∣∣�Jπ T
νxy

〉
. (33)

The integration kernels for the (A − 2, 1, 1) mass par-
tition are then obtained by evaluating the matrix ele-
ments of the operators Â2

(A−2,2) = √
(A − 1)A/2 Â(A−2,2) and

Â(A−2,2)H Â(A−2,2) = 1
2 (Â2

(A−2,2)H + H Â2
(A−2,2)) on the basis

of Eq. (33). For the norm kernel of Eq. (7), this yields the
following sum of a direct and an exchange term:

N Jπ T
ν ′ν (x ′, y ′, x, y) = (1 − (−1)�x+s23+T23 )δν ′ν

× δ(x ′ − x)

x ′x
δ(y ′ − y)

y ′y
+N ex

ν ′ν(x ′, y ′, x, y). (34)

Here, the direct term arising from the identical permutation in
the antisymmetrization operator is calculated in the full space,
whereas the nonlocal exchange term is evaluated within the
HO model space. As explained in the previous section, this
is achieved by using expansion (26), with the translational
invariant matrix elements on the HO channel basis of Eq. (27)
(antisymmetrized for the exchange of nucleons A−1 and A),

N ex
γ ′n′

xn
′
y ,γ nxny

= −2(A − 2)
〈
�̃Jπ T

γ ′n′
xn

′
y

∣∣P̂A−2 A

∣∣�̃Jπ T
γ nxny

〉
+ (A − 2)(A − 3)

2

〈
�̃Jπ T

γ ′n′
xn

′
y

∣∣P̂A−2 AP̂A−3 A−1

∣∣�̃Jπ T
γ nxny

〉
,

(35)

obtained from the corresponding SD ones by inverting
Eq. (31). At the same time, calculation of the matrix elements
over the SD channels |�̃Jπ T

γ nxny
〉SD of Eq. (27) is achieved by

first performing a transformation to a fully single-particle

basis; i.e.,∣∣�̃Jπ T
γ nxny

〉
SD =

∑
abIL

ẐÎ Ĵ23ŝ23ĵa ĵbL̂
2 (−1)I1+J+�x+�y+T23

×〈na�a nb�b L|ny�y nx�x L〉d=1

×
{

I1 J23 Z

�y J I

}{
�y L �x

s23 J23 I

}

×

⎧⎪⎨
⎪⎩

�a �b L
1
2

1
2 s23

ja jb I

⎫⎪⎬
⎪⎭
∣∣�Jπ T

κab

〉
SD. (36)

Here, a and b stand for the collections of HO single-
particle quantum numbers {na�aja} and {nb�bjb}, respectively;
〈na�a nb�b L|ny�y nx�x L〉d=1 indicates an HO bracket for
two particles of equal mass; and κab = {A − 2 α1I

π1
1 T1;

na�aja
1
2 ; nb�bjb

1
2 ; IT23} is the index labeling the new SD

channel basis,∣∣�Jπ T
κab

〉
SD = [|A − 2 α1I1T1〉SD

(
ϕna�aja

1
2
(�rAσAτA)

×ϕnb�bjb
1
2
(�rA−1σA−1τA−1)

)(IT23)](Jπ T )
. (37)

We note that, except for a difference in the notation used
for the total isospin of nucleons A − 1 and A, this basis is
identical to that introduced for the treatment of binary-cluster
channels with a dinucleon projectile in Eq. (18) of Ref. [22],
where the interested reader can also find the algebraic
expressions of the matrix elements

SD
〈�Jπ T

κ ′
ab

|P̂A−2 A|�Jπ T
κab

〉
SD

and
SD

〈�Jπ T
κ ′

ab
|P̂A−2 AP̂A−3 A−1|�Jπ T

κab
〉

SD
in Eqs. (19) and (20),

respectively.
The calculation of the Hamiltonian kernel of Eq. (6) is

achieved along the same lines. In this case, the kernel can be
divided into a term proportional to the norm kernel discussed
above, plus a term which resembles the expression of the
potential kernel for binary-cluster channels with a dinucleon
projectile (see Ref. [22], Sec. II B),〈

�̃Jπ T
ν ′x ′y ′

∣∣H Â2
(A−2,2)

∣∣�̃Jπ T
νxy

〉
= [T̂rel + V̂ (x ′) + E

I ′
1T

′
1

α′
]N Jπ T

ν ′ν (x ′, y ′, x, y)

+ 〈�̃Jπ T
ν ′x ′y ′

∣∣V (A−2,2)
rel Â2

(A−2,2)

∣∣�̃Jπ T
νxy

〉
, (38)

with an analogous expression for the matrix elements of the
Hermitian conjugate operator Â2

(A−2,2)H . Here, T̂rel acts on the

x ′ and y ′ coordinates, V̂ (x ′) is the potential between nucleon

A and nucleon A−1, E
I ′

1T
′

1
α′ is the energy of the (A−2)-nucleon

eigenstate in the final channel, and V (A−2,2)
rel is the sum of

pairwise interactions corresponding to the first term on the
right-hand side of Eq. (9).

As for the exchange operators of the norm, the matrix ele-
ments of V (A−2,2)

rel Â2
(A−2,2) are calculated within the HO model

space. This involves the evaluation, on the SD channel basis of
Eq. (37), of five potential terms: (i) VA−2 A−1(1−P̂A−2 A−1),
(ii) VA−2 AP̂A−2 A−1, (iii) VA−3 A(1−P̂A−3 A)P̂A−2 A−1, (iv)
VA−3 A−1P̂A−2 A−1, and (v) VA A−4(1−P̂A−2 A−1)P̂A−3 A. Alge-
braic expressions for these matrix elements can be found in
Eqs. (A1)–(A4) and (24) in Ref. [22].
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Differently from the deuteron-nucleus formalism in
Ref. [22], where this interaction is already taken into account
in the calculation of the (bound) projectile eigenstate, here
the Hamiltonian kernel contains the additional contribution
coming from the action of the operator V̂ (x ′) on the norm
kernel. In the absence of Coulomb interaction between the last
two nucleons (which, if present, can be treated separately as
explained in Sec. II A), this term is localized in the variables
x ′, x and can be calculated as

V̂ (x ′)N Jπ T
ν ′ν (x ′, y ′, x, y)

= ŜŜ ′L̂L̂′ (−1)�x+S+L−�′
x−S ′−L′

×
∑
J23

Ĵ 2
23

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− I1 S ′ s23

�y − L′ �′
x

�x s23 − J23

L S J −

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

×
∑
Lx

∑
n′

xnx

Rn′
x�

′
x
(x ′)RnxLx

(x)

×〈n′
x�

′
xs23J23T23|V |nxLxs23J23T23〉

× (1 − (−1)�x+s23+T23 )δγ̃ ′γ
δ(y ′ − y)

y ′y

+ V̂ (x ′)N ex
ν ′ν(x ′, y ′, x, y). (39)

Here, the expression in curly braces represents a
12-j symbol of the second kind (see Appendix D),
〈n′

x�
′
xs23J23T23|V |nxLxs23J23T23〉 are two-body matrix ele-

ments of the nuclear interaction on the translational-invariant
HO basis, and γ̃ ′ is an index associated with the HO channel
states of Eq. (27) and identical to γ ′ except for the replacement
of the quantum number �′

x with Lx . In the present work,
the Dirac’s δ function in the y variables of Eq. (39) is
approximated by an extended-size expansion in HO radial
wave functions that goes well beyond the adopted HO model
space (Next � Nmax). The influence of such an approximation
on the calculated binding energy of 6He is small and is
discussed in Sec. III.

Finally, with the exception of the terms proportional to the
exchange part of the norm kernel, the action of the relative

kinetic energy operator T̂rel and that of the eigenvalues E
I ′

1T
′

1
α′

are both calculated in the full space.

III. APPLICATIONS TO 6HE

It is well known that 6He is the lightest Borromean nucleus
[43,44], formed by an 4He core and two halo neutrons. Owing
to its small mass number and the fact that its constituents do
not form bound subsystems, it is an ideal first candidate to be
studied within the present approach.

The g.s. of this nucleus has been the subject of many
investigations. Some of them are based on a three-body
nonmicroscopic cluster formalism, representing it as a system
of three inert particles [31,32,45–47]. This type of three-body
method can lead to the appropriate asymptotic behavior of the
wave function but does not allow for the exact treatment of the
Pauli principle, which plays a fundamental role for light nuclei,
and makes use of effective nucleon-nucleus potentials. There

have also been ab initio six-body calculations focused on the
g.s. of 6He [48–52]. These are based on realistic Hamiltonians
and fulfill the Pauli principle exactly. However, not taking
explicitly into account the three-body cluster configuration of
this nucleus leads to an incorrect description of the asymptotic
properties of the system. Between these two approaches are
microscopic calculations which take into account both the
three-cluster configuration of the system and the internal
structure of its constituents, giving a better description of the
asymptotic behavior of the nuclear wave function while also
preserving the Pauli principle [25,27–29,53,54]. Nevertheless,
so far these types of calculations have been based on semire-
alistic interactions, often without spin-orbit force, and on a
simplified description of the internal structure of the clusters.

In this work we present for the first time an ab initio
calculation which not only uses realistic interactions but also
takes into account the three-body configuration of this nucleus.
In particular, we apply the formalism presented in Sec. II to
study the g.s. of 6He within a 4He(g.s.) + n + n cluster basis.
As stated in Sec. II E, the 4He wave function is calculated
within the NCSM formalism. In the present calculations, we
describe the 4He core only by its g.s. wave function, ignoring its
excited states. The inclusion of excited states leads to big tech-
nical difficulties within the NCSM/RGM formalism because it
increases notably the number of channels and the calculation
becomes unbearable for current computational resources.
However, this is a minor setback which, once the method
is established as presented in this work, can be overcome by
coupling the present three-cluster wave functions with NCSM
eigenstates of the six-body system within the NCSMC [9,10]
approach. For the time being, we estimate core polarization
effects, by comparing the computed JπT = 0+1 4He(g.s.) +
n + n g.s. energy with that obtained from an NCSM diago-
nalization of the six-body Hamiltonian. In both calculations,
we use the same two-body interaction, namely, the SRG
evolved [33,34] potential obtained from the chiral N3LO NN
interaction [35] with the evolution parameter � = 1.5 fm−1.

A. 4He and 6He NCSM calculations

We performed NCSM calculations for 4He that generated
eigenstates needed as input for the subsequent three-body
cluster NCSM/RGM investigations of 6He. Further, we also
calculated the g.s. energy of 6He within the NCSM in order
to make a comparison with the 4He + n + n NCSM/RGM
results. The computed 6He g.s. energies for a range of
HO frequencies and various basis sizes (Nmax values) are
presented in Fig. 2. As stated earlier, we are employing a
soft SRG-evolved chiral N3LO NN interaction with evolution
parameter � = 1.5 fm−1. We intentionally adopt such a soft
interaction, for which our calculations reach convergence
in the HO basis expansion already at the computationally
accessible Nmax ∼ 12. We can subsequently concentrate on the
exploration of the validity of other approximations in the three-
cluster NCSM/RGM formalism. We note that the same NN
interaction was used in previous binary-cluster NCSM/RGM
calculations of the d-4He scattering [22] and d-3H fusion [24].
The variational NCSM calculations converge rapidly and can
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FIG. 2. (Color online) Convergence pattern of the binding energy
of 6He within the NCSM formalism.

be easily extrapolated to Nmax → ∞ using, e.g., an exponential
function of the type E(Nmax) = E∞ + ae−bNmax . As shown in
Fig. 2, at Nmax = 12 the dependence of the 6He g.s. energy
on the HO frequency is flat in the range of h̄� ∼ 12–18 MeV.
The variational minimum is close to h̄� = 14 MeV, which we
then choose for the calculation of the 4He eigenstates used as
input for the 4He + n + n NCSM/RGM investigations of the
6He nucleus.

In Table I, the energy of 4He and 6He g.s.’s calculated
with the NCSM formalism are shown (in MeV) in the
second and last columns, respectively. To allow for a direct
comparison with the NCSM/RGM calculation, results are
listed as a function of the absolute HO model space size
Ntot = N0 + Nmax, where N0 is the number of oscillator quanta
shared by the nucleons in their lowest configuration. For the
4He nucleus N0 = 0 and Ntot = Nmax, but for the p-shell 6He
nucleus within the NCSM Ntot = Nmax + 2. The extrapolated
values of the NCSM calculation with their uncertainties and
the experimental values [52] are also given. It can be observed
that, with the present soft SRG interaction, the g.s. energy of

TABLE I. Computed NCSM 4He, NCSM/RGM 6He [as
4He(g.s.) + n + n] and NCSM 6He g.s. energies (in MeV) as a func-
tion of the absolute HO model space size Ntot = N0 + Nmax, where
N0 is the number of oscillator quanta shared by the nucleons in their
lowest configuration. For the 4He nucleus and for the NCSM/RGM
4He + n + n system, N0 = 0 and Nmax = Ntot. However, for the
p-shell 6He nucleus within the NCSM, N0 = 2 and Nmax = Ntot − 2.
The last two rows show the extrapolated values for the calculations
with their uncertainties and the experimental values.

Ntot
4He NCSM 6He NCSM/RGM 6He NCSM

6 − 27.984 − 28.907 − 27.705
8 − 28.173 − 28.616 − 28.952
10 − 28.215 − 28.696 − 29.452
12 − 28.224 − 28.697 − 29.658
Extrapolation − 28.230(5) − 28.70(3) − 29.84(4)
Experimental − 28.296 − 29.268

4He is close to the experimental value, while the 6He g.s. is
overbound by about 0.5 MeV.

B. 4He + n + n NCSM/RGM calculations

We performed calculations for the 4He + n + n three-
cluster system by using the NCSM/RGM formalism described
in Sec. II. In this first application, we neglect core polarization
effects and limit the description of 4He to just the I

π1
1 T1 = 0+0

g.s. eigenstate in the NCSM/RGM coupled-channel equations.
This is the only limitation of the model space introduced.
None of the remaining quantum numbers contained in the
cumulative index ν have any restriction other than those
dictated by the model space size itself. In particular, we
calculated Hamiltonian and norm kernels of Eqs. (6) and (7)
for all possible Jπ channels up to J = 27, the maximum
value of the total angular momentum for our largest model
space of Nmax = 13, in which both the �x and the �y orbital
angular momentum quantum numbers can vary from 0 to 13.
Although, for the present paper we were exclusively interested
in the 0+ g.s. of 6He, this was a necessary step to correctly
extract the translational invariant matrix elements from our SD
calculations through Eq. (31). Illustrative examples of the norm
kernel are given in Sec. III B1. The g.s. energy of 6He is then
obtained by solving the 4He + n + n nonlocal hyper-radial
equations (17) for the Jπ = 0+ channel with bound-state
boundary conditions, as explained in Sec. II D. The dimension
of the HH model space used for this part of the calculation is
related to the maximum value of the hypermomentum Kmax.
Overall, the number of {ν,K} channels is very large (around
200 for the Jπ = 0+ state alone in our largest model space with
Nmax = 13 and Kmax = 28). The dependence of our results for
the 6He g.s. with respect to both the HO and the HH expansions
is discussed in Sec. III B2.

1. Norm kernels

Particularly interesting are the elements of the exchange
part of the norm kernel, N ex

ν ′ν(x ′, y ′, x, y), defined in Eq. (34),
which give a measure of the influence of the Pauli exclusion
principle. In Fig. 3, we present just a few of the most relevant
examples. In addition, for visual purposes, we set the value
of the primed coordinates x ′ and y ′ to 1 fm. In the present
calculation, where the first cluster is given by the g.s. of 4He,
i.e., a I

π1
1 T1 = 0+0 state, and the second and third clusters are

single nucleons, the various channels can be simply labeled by
the spin and orbital angular momentum quantum numbers S,
L, �x , and �y . As one would expect, for the largely s-shell 4He
core the antisymmetrization makes its largest contribution in
the S = L = �x = �y = 0 channel of the 0+ state, of which we
show the diagonal “exchange” norm in Fig. 3(a). Large nega-
tive values of the exchange part of the norm kernel generally
correspond to the presence of Pauli-forbidden components, in
this case the 0h̄� component owing to the s-wave relative
motion in both x and y coordinates. The norm is positive and
much smaller in channels where the antisymmetrization plays
a minor role, such as the S = L = �x = �y = 1 displayed in
Fig. 3(c). The fairly symmetric appearance of these norm
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FIG. 3. (Color online) Diagonal elements of the exchange part of the norm kernel N ex
νν (x ′, y ′, x, y) for the (a) S = L = �x = �y = 0,

(b) S = L = �x = 1, �y = 0, (c) S = L = �x = �y = 1, and (d) S = �x = �y = 1, L = 2 partial waves. In each plot, the primed x ′ and y ′

coordinates are set to 1 fm.

kernels is caused by the equal value of the two orbital angular
momenta �x and �y . However, the kernels are, in general,
asymmetric in x, y (x ′, y ′) as is particularly evident in the
S = L = �x = 1, �y = 0 case [Fig. 3(b)]. In this component,
which appears in the 0−, 1−, and 2− states, one can observe
once again the repulsion owing to the Pauli principle in the y
coordinate, while the p-wave motion forces the norm kernel to
be null for x = 0 (x ′ = 0). Finally, in Fig. 3(d) we present the
S = �x = �y = 1, L = 2 diagonal element of the 1+, 2+, and
3+ exchange norm. In this channel, where one could naively
expect a positive norm, we find a non-negligible negative
contribution of the antisymmetrization, which suggests the
presence of Pauli-forbidden components. These examples
show that a correct treatment of the antisymmetrization not
only is important to describe the g.s. of the 6He nucleus, but
also plays a role in important excited states such as the 1− or
2+ resonances.

2. 6He ground state

To calculate the g.s. of 6He, we first orthogonalize the
NCSM/RGM equations, (5), as explained in Sec. II B and
Appendix A. During this procedure the eigenvalues and
eigenvectors of the norm kernel in the HO model space
are calculated. For this JπT = 0+1 state, we observed the
appearance of Pauli-forbidden norm eigenstates recognizable
for their very small eigenvalues and negligible overlap with
the physical g.s. eigenfunction. Spurious states can appear and
admix with the low-lying physical eigenstates of the system if
such Pauli-forbidden norm eigenstates are not eliminated. For
the present calculation, we have removed all norm eigenstates
with eigenvalues smaller than 0.1. In the Nmax = 12 model
space, these amounted to a total of nine eigenstates with
eigenvalues ranging from 0.58 × 10−3 to 0.62 × 10−1. The
unprecedented large number of {νn} channels (∼300) is likely
responsible for the occurrence of such unphysical eigenstates
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FIG. 4. (Color online) Dependence of the NCSM/RGM calcu-
lated 6He g.s. energy at Nmax = 6 as a function of the maximum
value of the hypermomentum Kmax used in the HH expansion. For
these calculations we used a matching radius of a = 20 fm, N = 30
Lagrange mesh points, and an extended HO model space of Next = 40.

of the norm, which had never been observed in our previous
binary-cluster NCSM/RGM calculations.

We then expanded the orthogonalized NCSM/RGM equa-
tion, (10), in HH functions and solved the nonlocal hyper-radial
equations (17) for the 4He + n + n relative motion imposing
bound-state boundary conditions, by using the R-matrix
method on a Lagrange mesh from Sec. II D. We found a
single bound state in the JπT = 0+1 channel and proceeded
to study the behavior of our results at fixed Nmax with respect
to the remaining parameters of the calculation. Given the
large scale of this computation, we performed this study at
Nmax = 6. The rate of convergence of the bound state with
respect to the size of the adopted HH model space can be
judged by examining Fig. 4, where we present a study of the
calculated g.s. energy as a function of the maximum value of
the hypermomentum Kmax. The results start to stabilize around
Kmax = 14 and are fully converged already at Kmax = 20. At
a given Nmax, the calculation is variational in Kmax. Then
we studied the stability of the g.s. energy with respect to
the selection of the matching radius a, and we found that
it was good as long as we chose values larger than 20 fm. The
number N of mesh points required for a good convergence of
the Lagrange expansion depends on the value of the matching
radius. For a = 20 fm, about 30 mesh points are enough, while
a larger number is needed if the matching radius is increased.
The choice of the N value also depends somewhat on the
size of the extended HO model space Next used to represent
the Dirac’s δ function in the y (y ′) coordinate (proportional
to the distance between the centers of mass of the 4He and
the two neutrons) while calculating the interaction kernel of
Eq. (39). Larger Next values correspond to a larger y range
for this potential kernel, which is localized only in the x (x ′)
coordinate. About 30 (40) mesh points are sufficient to reach
convergence up to Next = 30 (Next = 70). The behavior of
the g.s. energy as a function of Next is presented in Fig. 5.
As shown, an extended HO basis size of at least Next = 40
is needed to accommodate the long range of this interaction
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N
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E
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N
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max
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SRG-N
3
LO NN

Λ = 1.5 fm
-1 

6
He

NCSM/RGM

FIG. 5. (Color online) Dependence of the NCSM/RGM calcu-
lated 6He g.s. energy at Nmax = 6 as a function of the size of
the extended HO model space Next used for the calculation of the
interaction kernel of Eq. (39). For these calculations we used a
hypermomentum of Kmax = 20, a matching radius of a = 20 fm, and
N = 30 (N = 40) Lagrange mesh points for Next � 30 (Next > 30).

kernel. Disregarding this effect by computing Eq. (39) within
the adopted HO model space (i.e., with Next = Nmax) leads to
about 200 keV underbinding in the 6He g.s. energy. Finally, a
stable result for the integrations in the hyperangles α and α′ of
Eq. (18), which we perform numerically using a Chebyshev-
Gauss quadrature (for Chebyshev polynomials of the second
kind), was obtained with 20 mesh points. Based on this analysis
and to ensure that convergence is reached, we adopted a
matching radius of a = 30 fm with N = 70 mesh points,
a hypermomentum Kmax = 28, and an extended HO model
space of Next = 60 for our larger Nmax calculations (including
the largest with Nmax = 12) presented in the following. In
Fig. 6 the main components of the radial part of the relative
motion wave function uJπ T

Kν of the 0+ g.s. of 6He are shown
for different values of the HO basis size Nmax used for the
expansions of the 4He wave function and localized elements
of the integration kernels. In the present calculation, each
component is uniquely identified by the quantum numbers
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FIG. 6. (Color online) The three main components of the radial
part of the 6He g.s. wave functions uKν(ρ) for Nmax = 6, 8, 10, and 12.
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FIG. 7. (Color online) Probability distribution of the main com-
ponent of the 4He + n + n relative motion wave function for the
J πT = 0+1 ground state. The quantum numbers corresponding to
this component are S = L = �x = �y = 0. Here rnn = √

2 ηnn and
rα,nn = √

3/4 ηα,nn are, respectively, the distance between the two
neutrons and the distance between the c.m. of 4He and that of the two
neutrons.

shown in the figure. As can be seen, convergence is almost
reached at Nmax = 10, and an Nmax = 14 calculation, which
is currently out of computational reach, is not expected to
substantially change the present results. This is confirmed also
by the Nmax dependence of the related g.s. energy, presented
in the third column in Table I. Contrary to the NCSM, which
gives rise to a Gaussian asymptotic behavior of the wave
function owing to the use of expansions over six-body HO
basis states, in the NCSM/RGM the 4He(g.s.) + n + n wave
functions present the asymptotic behavior of Eq. (19), which
is included by construction when using the R-matrix method.
As shown in Fig. 6, the tails can extend up to about ρ = 25 fm.
This feature will be of great importance when studying 6He
excited states, using scattering asymptotic conditions in the
solution of the three-cluster equations.

Information about the three-cluster structure of the 6He
g.s. can be obtained by studying the probability distribution
arising from the main component of the 4He + n + n relative
motion wave function, presented as a surface plot in Fig. 7,
and as a contour plot in Fig. 8. This component, characterized
by the quantum numbers S = L = �x = �y = 0, presents
the well-known [31] two-peak shape distribution. One peak
corresponds to a “dineutron” configuration in which the
neutrons are close together (about 2 fm apart) while the 4He
core is separated from their c.m. at a distance of about 3
fm, whereas the second peak, corresponding to the “cigar”
configuration, represents an almost-linear structure in which
the two neutrons are far from each other (about 5 fm apart)
and the α particle lies almost in between them at ∼1 fm
from their c.m. The position maxima of the two peaks can be
more easily seen in the contour diagram in Fig. 8. The second
most important contribution to the wave function comes from
the component with quantum numbers S = L = �x = �y = 1,
and the probability distribution arising from it is shown in
Fig. 9. From the amplitude of the plot, it can be concluded that
this component contributes very little to the complete wave

FIG. 8. (Color online) Contour diagram of the probability distri-
bution plotted in Fig. 7.

function and does not significantly change the characteristic
two-peak picture in Fig. 7.

The obtained 6He g.s. energy (in units of MeV) for different
sizes of the NCSM/RGM model space Nmax are presented in
the third column in Table I. The results of NCSM calculations
of the 4He and 6He systems are shown in the second and
last columns, respectively. At Nmax = 12, the NCSM/RGM
calculation is basically converged within its uncertainty of
about 30 keV, listed in the last row. The effect of the exclusion
of the spurious eigenstates of the norm, discussed at the
beginning of this section, is included in this uncertainty. Unlike
the NCSM case, the present NCSM/RGM calculations are not
variational in the HO model space size, as at each Nmax value
the three-cluster basis contains a different 4He eigenstate.
It can be observed that in the NCSM/RGM the 6He g.s. is
underbound. In particular, the energy is about 1 MeV higher
than the one obtained within the NCSM. This difference is
caused by excitations of the 4He core, which, for technical
reasons, are included only in the NCSM calculation at present.
In this sense, the difference between the two calculations
provides a measure of core polarization effects in 6He.

FIG. 9. (Color online) Same as Fig. 7, but for the second most
important component. The quantum numbers corresponding to this
component are S = L = �x = �y = 1.
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IV. CONCLUSIONS

In this work, we have extended the NCSM/RGM method
[19,20] to the treatment of three-cluster dynamics. This new
feature permits us to study a new range of systems that
present three-body configurations. In particular, in this work
we show that it can be used to study the structure of two-
neutron halo nuclei such as 6He and, contrary to other ab
initio methods such as the NCSM, to obtain the appropriate
asymptotic behavior of its wave functions. Moreover, the
present formalism combined with the appropriate scattering
boundary conditions gives access to the ab initio study of
resonant states of two-neutron halo nuclei (such as the excited
states of 6He) as well as to scattering problems involving
channels with three fragments. Three-cluster NCSM/RGM
4He + n + n scattering calculations with the aim of studying
6He low-lying resonances are currently under way and will be
reported in a subsequent paper.

For the present study of 6He within the 4He + n + n cluster
basis, we used only the g.s. wave function to describe the
4He core. This leads to an underbinding of the 6He g.s. owing
to the missing treatment of core polarization. The difference
with respect to the energy obtained from a diagonalization of
the Hamiltonian in an NCSM six-body model space indicates
that, with the present soft NN interaction, core-polarization
effects amount to less than 5% of the binding. This is,
however, a much larger effect if one considers that it represents
about two-thirds of the separation energy with respect to the
4He + n + n threshold. The inclusion of excited states of
4He would significantly increase the number of channels in
the calculation, making it computationally unbearable. Core
polarization effects can be more efficiently taken into account
by coupling the present three-cluster wave functions with six-
body NCSM eigenstates within the NCSMC framework. While
the results of this approach will be presented in a forthcoming
publication, the main difficulty of such a calculation resides in
obtaining the three-cluster NCSM/RGM wave functions and
has been addressed in the present work.

ACKNOWLEDGMENTS

We thank G. Hupin for many useful discussions. Computing
support for this work came from the LLNL institutional
Computing Grand Challenge program and from an INCITE
Award on the Titan supercomputer of the Oak Ridge Lead-
ership Computing Facility (OLCF) at ORNL. The work
was prepared in part by LLNL under Contract No. DE-
AC52-07NA27344. Support from the U.S. DOE/SC/NP (Work
Proposal No. SCW1158) and NSERC Grant No. 401945-2011
is acknowledged. TRIUMF receives funding via a contribution
through the Canadian National Research Council.

APPENDIX A: ORTHOGONALIZATION

The appearance of the norm kernel N Jπ T
ν ′ν (x ′, y ′, x, y) in

Eq. (5) reflects the fact that the many-body wave function
�Jπ T is expanded in terms of a nonorthogonal basis. There-
fore, Eq. (5) does not represent a system of multichannel
Schrödinger equations, and GJπ T

ν (x, y) do not represent
Schrödinger wave functions. However, one can solve the

equivalent set of orthogonalized equations introduced in
Eq. (10), where

H̄Jπ T
ν ′ν (x ′, y ′, x, y)

=
∑
ν̃ ′

∫∫
dx̃ ′dỹ ′x̃ ′2ỹ ′2∑

ν̃

∫∫
dx̃ dỹ x̃2ỹ2

×N−1/2
ν ′ ν̃ ′ (x ′, y ′, x̃ ′, ỹ ′)HJπ T

ν̃ ′ ν̃ (x̃ ′, ỹ ′, x̃, ỹ)N−1/2
ν̃ν (x̃, ỹ, x, y)

(A1)

is the orthogonalized Hamiltonian kernel and the Schrödinger
wave functions χJπ T

ν (x, y) are the new unknowns of the
problem, related to GJπ T

ν (x, y) through

GJπ T
ν (x, y)

=
∑

ν̃

∫∫
dx̃ dỹ x̃2 ỹ2N− 1

2
νν̃ (x, y, x̃, ỹ) χJπ T

ν̃ (x̃, ỹ).

(A2)

Here, N 1/2
ν ′ν (x ′, y ′, x, y) and N−1/2

ν ′ν (x ′, y ′, x, y) represent the
square root and the inverse-square root of the norm kernel,
respectively, which are obtained as follows. First, we add and
subtract from the norm kernel the identity in the HO model
space:

N Jπ T
ν ′ν (x ′, y ′, x, y)

= δνν ′

[
δ(x ′ − x)

x ′x
δ(y ′ − y)

y ′y

−
∑
nxny

Rnx�x
(x ′)Rnx�x

(x)Rny�y
(y ′)Rny�y

(y)

]

+�Jπ T
ν ′ν (x ′, y ′, x, y). (A3)

The norm kernel within the truncated model space,
�Jπ T

ν ′ν (x ′, y ′, x, y), is obtained by using expansion (26) with the
matrix elements on the HO Jacobi-channel states of Eq. (27)
given by

�Jπ T
γ ′n′

xn
′
y ,γ nxny

= δnx,n′
x
δny ,n′

y
δγ,γ ′ + N ex

γ ′n′
xn

′
y ,γ nxny

(A4)

and N ex
γ ′n′

xn
′
y ,γ nxny

as defined in Eq. (35). Then the square and
the inverse-square root of the full-space norm are obtained
by (i) finding the eigenvalues λ� and eigenvectors |ϕJπ T

� 〉 of
matrix �Jπ T of Eq. (A4); (ii) calculating

�
±1/2
γ ′n′

xn
′
y ,γ.nxny

=
∑

�

〈
�Jπ T

γ ′n′
xn

′
y

∣∣ϕJπ T
�

〉
λ

±1/2
�

〈
ϕJπ T

�

∣∣�Jπ T
γnxny

〉
(A5)

and the corresponding integration kernels through expan-
sion (26), and, finally, (iii) replacing the model-space norm
�Jπ T

ν ′ν (x ′, y ′, x, y) in Eq. (A3) with �
±1/2
ν ′ν (x ′, y ′, x, y); that is,

N±1/2
ν ′ν (x ′, y ′, x, y)

= δνν ′

[
δ(x ′ − x)

x ′x
δ(y ′ − y)

y ′y

−
∑
nxny

Rnx�x
(x ′)Rnx�x

(x)Rny�y
(y ′)Rny�y

(y)

]

+�
±1/2
ν ′ν (x ′, y ′, x, y). (A6)
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For the inverse operation to be permissible in Eq. (A5) one has
to exclude the subspace of (fully) Pauli-forbidden states for
which λ� = 0.

APPENDIX B: HH CHANNEL BASIS

Using the Dirac δ properties and completeness relation of
the set of φ

�x�y

K functions, we have

δ(x − η23)

x η23

δ(y − η1,23)

y η1,23

= δ(ρ − ρη)

ρ5/2 ρ
5/2
η

δ(α − αη)

sin α cos α sin αη cos αη

(B1)

= δ(ρ − ρη)

ρ5/2 ρ
5/2
η

∑
K

φ
�x,�y

K (αη)φ
∗ �x ,�y

K (α); (B2)

then the three-cluster channel states of Eq. (2) can be
written as ∣∣�Jπ T

νxy

〉 =∑
K

φ
∗ �x ,�y

K (α)
∣∣�Jπ T

νKρ

〉
, (B3)

where |�Jπ T
νKρ 〉 are the channel states in the HH basis

∣∣�Jπ T
νKρ

〉 = [(∣∣A − a23α1I
π1
1 T1

〉(∣∣a2 α2I
π2
2 T2

〉∣∣a3 α3I
π3
3 T3

〉)(s23T23))(ST )YK�x�y

L (�η)
](Jπ T ) δ(ρ − ρη)

ρ5/2 ρ
5/2
η

, (B4)

with �η = {αη, η̂23, η̂1,23} and YK�x�y

L (�η) the HH basis
elements defined in Eq. (14). At the same time, inserting
this expansion in Eq. (1), changing from x and y to the HH
coordinates ρ and α, and integrating over the hyperangle α,
one can demonstrate that the many-body wave function is also
given by

∣∣�Jπ T
〉 =∑

νK

∫
dρ ρ5 gJπ T

Kν (ρ)

ρ5/2
Âν

∣∣�Jπ T
νKρ

〉
, (B5)

where the hyper-radial functions gJπ T
Kν (ρ) are obtained from the

projection of the variational amplitudes GJπ T
ν (ρ sin α, ρ cos α)

over the functions φ
�x,�y

K (α):

gJπ T
Kν (ρ)

ρ5/2
=
∫

dα sin2 α cos2 α

×φ
∗ �x ,�y

K (α) GJπ T
ν (ρ sin α, ρ cos α). (B6)

APPENDIX C: LAGRANGE BASIS

We use a Lagrange basis which is a set of N functions fn(x)
(see [42] and references therein), given by

fn(x) = (−1)na−1/2

√
1 − xn

xn

xPN (2x/a − 1)

x − axn

, (C1)

where PN (x) are Legendre polynomials, and xn satisfy

PN (2xn − 1) = 0. (C2)

The Lagrange mesh associated with this basis consists in N
points axn on the interval [0, a] and satisfies the Lagrange
conditions

fn′ (axn) = 1√
aλn

δnn′ , (C3)

where the coefficients λn are the weights corresponding to
a Gauss-Legendre quadrature approximation for the [0, 1]
interval; i.e., ∫ 1

0
g(x)dx ∼

N∑
n=1

λng(xn). (C4)

Using the Lagrange conditions of Eq. (C3), it is straightforward
to see that within the Gauss approximation the Lagrange
functions are orthogonal; i.e.,∫ a

0
fn(x)fn′ (x)dx ∼ δnn′ . (C5)

APPENDIX D: 12- j SYMBOL DEFINITION

The 12-j symbol of the second kind [55] is defined by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− a2 a3 a4

b1 − b3 b4

c1 c2 − c4

d1 d2 d3 −

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= (−1)b3−a4−d1+c2
∑

x

(2x + 1)

{
a3 b4 x

b1 d3 b3

}{
a3 b4 x

c4 a2 a4

}{
b1 d3 x

d2 c1 d1

}{
c4 a2 x

d2 c1 c2

}

= (−1)b3−a4−d1+c2
∑

x

(2x + 1)

⎧⎪⎨
⎪⎩

a3 b3 d3

a4 b4 c4

a2 b1 x

⎫⎪⎬
⎪⎭
⎧⎪⎨
⎪⎩

d2 d1 d3

c2 c1 c4

a2 b1 x

⎫⎪⎬
⎪⎭. (D1)
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[1] H. Kamada, A. Nogga, W. Glöckle, E. Hiyama, M. Kamimura,
K. Varga, Y. Suzuki, M. Viviani, A. Kievsky, S. Rosati,
J. Carlson, S. C. Pieper, R. B. Wiringa, P. Navrátil, B. R. Barrett,
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