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Determination of the density dependence of the nuclear incompressibility
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Background: The determination of the density dependence of the nuclear incompressibility can be investigated
using the isoscalar giant monopole resonance.
Purpose: The importance of the so-called crossing density at subsaturation density is underlined.
Methods: The measurements of the isoscalar giant monopole resonance (GMR), also called the breathing mode,
are analyzed with respect to their constraints on the quantity Mc, e.g., the density dependence of the nuclear
incompressibility around the so-called crossing density ρc = 0.1 fm−3.
Results: The correlation between the centroid of the GMR, EGMR, and Mc is shown to be more accurate than
the one between EGMR and the incompressibility modulus at saturation density, K∞, giving rise to an improved
determination on the nuclear equation of state. The relationship between Mc and K∞ is given as a function of the
skewness parameter Q∞ associated with the density dependence of the equation of state. The large variation of Q∞
among different energy density functionals directly impacts the knowledge of K∞: A better knowledge of Q∞ is
required to deduce more accurately K∞. Using the local density approximation, a simple and accurate expression
relating EGMR and the quantity Mc is derived and successfully compared to the fully microscopic predictions.
Conclusions: The measurement of the GMR constrains the slope of the incompressibility Mc at the crossing
density rather than the incompressibility modulus at the saturation density.
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I. INTRODUCTION

The determination of the nuclear incompressibility is a
longstanding problem. The earliest microscopic analysis came
to a value of K∞ = 210 MeV [1], but with the advent of micro-
scopic relativistic approaches, a value of K∞ = 260 MeV was
obtained [2]. The fact that K∞ cannot be better determined
than 230 ± 40 MeV, taking into account the whole data on the
isoscalar giant monopole resonance (GMR), as well as the var-
ious methods to relate the GMR to K∞ (see, e.g., Refs. [1–9]),
leads to a recent effort to reanalyze the method [10].

Pairing effects and similarly the shell structure effects on
the nuclear incompressibility were analyzed along these lines.
Since the first investigation [11], several studies have shown
that pairing effects have an impact on the determination of
K∞ [7,8], and it was considered as a possible cause of the
difficulty to accurately constrain K∞. This effect of pairing
on the incompressibility modulus has also been analyzed in
nuclear matter, showing that the main effect is occurring at sub-
saturation densities [12]. However, there is a general consensus
between the various microscopic models that pairing effects
on K∞ are not strong enough to explain the lack of accuracy
in the determination of the nuclear incompressibility [7–9,13].
Other effects have to be investigated.

Recently, the density dependence of the nuclear incom-
pressibility was reinvestigated, suggesting that the correlation
between the centroid of the GMR and the incompressibility
modulus K∞ at saturation density is blurred by the density
dependence of the nuclear equation of state in different models
[10]. The observed differences in the extraction of K∞ from
the energy of the GMR (EGMR) are based on different models
and attributed to the density dependence of the equation of
state (EoS), which has still to be better constrained. The
observation of a crossing point provided a possible path to

be investigated. The crossing point arises from energy density
functionals (EDFs) that are designed to describe finite-nuclei
observables: Their density-dependent incompressibility K(ρ)
crosses around the mean density in nuclei, ρc � 0.1 fm−3. It
was therefore proposed that the quantity Mc, e.g., the density
dependence of K(ρ) around the crossing density ρc, is the
quantity that shall be constrained by measurements of the
GMR instead of K∞.

The aim of the present article is to further analyze the cor-
relation method from which is extracted the incompressibility
modulus K∞ and to give a better basis on the alternative
method based on the correlation between EGMR and Mc. A
comparison between the two methods is given in Sec. II for
208Pb and 120Sn nuclei, showing the relevance of the new
method [10]. In Sec. III the source of uncertainties in the
determination of K∞ is directly related to the skewness param-
eter Q∞. The skewness parameter gives a contribution to the
limitation on the knowledge of the density dependence of the
nuclear EoS between the crossing and the saturation densities.
The origin of the crossing density is also demonstrated in the
case of the Skyrme and Gogny EDFs. In Sec. IV, the explicit
relation between the centroid of the GMR and the quantity Mc

is derived using the local density approximation (LDA) and
keeping as much as possible analytical relations between the
various quantities to facilitate their interpretation. The results
are compared to the fully microscopic one. Conclusions are
given in Sec. V.

II. THE MICROSCOPIC APPROACH

In this section, we first summarize the constrained Hartree-
Fock-Bogoliubov (CHFB) approach used to accurately predict
the isoscalar GMR energy. We then provide the definition
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of the parameter Mc, driving the density dependence of the
incompressibility around the crossing point. Finally, using
these two quantities, the correlation analysis between the GMR
energy and the incompressibility modulus K∞ on one hand and
the GMR energy and the parameter Mc at the crossing density
on the other hand are compared.

A. Microscopic calculation of the GMR energy

We first recall how to evaluate the energy of the GMR. We
use the sum rule approach to microscopically calculate the
centroid energy of the GMR. In such a microscopic approach,
we calculate the energy as

EGMR =
√

m1

m−1
, (1)

where the kth energy-weighted sum rule is defined as

mk =
∑

i

(Ei)
k|〈i|Q̂|0〉|2, (2)

with the RPA excitation energy Ei and the isoscalar monopole
transition operator,

Q̂ =
A∑

i=1

r2
i . (3)

The calculations using fully microscopic approaches based
on EDF are usually performed using the CHFB or the RPA
approach [14]. In the present case we calculate the GMR
centroid for the Skyrme EDF with the CHFB approach. For
completeness, results using other functionals such as Gogny
and relativistic functionals are also given. The CHFB method
is known to provide an accurate prediction of the GMR
centroid.

In the following the energy-weighted moment m1 and the
m−1 moment are directly evaluated from the ground state
obtained from Skyrme CHFB calculations. The moment m1

is evaluated by the double commutator using the Thouless
theorem [15],

m1 = 2h̄2A

m
〈r2〉, (4)

where A is the number of nucleons, m is the nucleon mass,
and 〈r2〉 is the rms radius evaluated on the ground-state density
given by Skyrme HFB.

Concerning the evaluation of the moment m−1, the con-
strained HFB approach is used. It should be noted that the
extension of the constrained HF method [4,16] to the CHFB
case has been demonstrated in Ref. [17] and employed in
Ref. [8]. The CHFB Hamiltonian is built by adding the
constraint associated with the isoscalar monopole operator,
namely,

Ĥconstr. = Ĥ + λQ̂, (5)

and the m−1 moment is obtained from the derivative of the
expectation value of the monopole operator on the CHFB
solution |λ〉,

m−1 = −1

2

[
∂

∂λ
〈λ|Q̂|λ〉

]
λ=0

. (6)

B. Constraints on the equation of state deduced from EGMR

Next, the parameter Mc is defined. Instead of correlating
EGMR and K∞, it was proposed that the energy of the GMR
(1) gives a strong constraint on the quantity Mc defined, at the
crossing density ρc � 0.1 fm−3, as [10]

Mc ≡ 3ρcK
′(ρ)|ρ=ρc

, (7)

where the density-dependent incompressibility K(ρ) is de-
rived from the thermodynamical compressibility χ (ρ) as [18]

K(ρ) = 9ρ

χ (ρ)
= 18

ρ
P (ρ) + 9ρ2 ∂2E(ρ)/A

∂ρ2
, (8)

and the pressure is

P (ρ) ≡ ρ2 ∂E(ρ)/A

∂ρ
. (9)

The parameter Mc was introduced instead of K∞ ≡ K(ρ0)
(where ρ0 is the saturation density) in the correlation analysis
based on EGMR because (i) the crossing density ρc is closer
to the average density in finite nuclei than the saturation
density ρ0 and (ii) the crossing of the incompressibility at
ρc makes EGMR mostly sensitive to the derivative of the
incompressibility at the crossing density [10]. It should be
noted that the existence of a crossing density for other EoS
quantities, such as, for instance, the symmetry energy [19],
the neutron EoS [20,21], and the pairing gap in nuclear
matter [22], was also observed. It might reveal the general
trend that the experimental constraints drive these quantities
towards a crossing point at around the average density of finite
nuclei. Various EDFs shall, however, exhibit various density
dependencies around the crossing point. At first order the
derivative of the incompressibility (or symmetry energy or
pairing gap) at this point will differ between various EDFs
and additional measurements in nuclei shall characterize these
derivatives. For instance, the derivative of the neutron EoS
around ρc � 0.11 fm−3 was found to be strongly correlated to
the neutron skin in 208Pb [20,21], giving a strong support to
improved experimental measurements of this quantity [23].

Figure 1 depicts K(ρ), between half of the saturation
density and the saturation density, for several Gogny, Skyrme,
and relativistic EDFs. A large dispersion is observed at
saturation density (ρ/ρ0 = 1), whereas at ρ/ρ0 � 0.71 there
is a much more focused area, defining the crossing density ρc.

For several EDFs, Table I displays Kc ≡ K(ρc) and K∞, the
values of the incompressibility modulus defined, respectively,
at the crossing density ρc = 0.71ρ0 and at the saturation
density. As also noted on Fig. 1, the Skyrme EDF have a similar
density dependence (see the discussion in Sec. III B). The
dispersion of Kc values is increased considering relativistic
EDFs, because of the various density dependencies among
these EDFs. It is therefore more a crossing band that is
observed around the crossing density than a crossing point.
Considering all the EDFs, the standard deviation is 5.2 MeV
on Kc, to be compared with 24 MeV on K∞. The very
weak dispersion in absolute value of Kc as a function of the
EDFs is striking, whereas the incompressibility modulus at the
saturation density K∞ is more scattered.
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FIG. 1. (Color online) EoS incompressibility K(ρ) calculated
with various relativistic and nonrelativistic functionals. The Skyrme
EDFs are in solid lines.

To investigate the origins of this weak dispersion of Kc, we
now analyze the two contributions to the density-dependent
incompressibility, as depicted by Eq. (8). The first term of
the right-hand side in Eq. (8) is proportional to the pressure
P (ρ), which is indeed related to the first derivative of E/A
and the second term is the second derivative of the binding
energy E/A with respect to the density. The former vanishes at
saturation density, by definition, and K∞ is related only to the
second derivative of the binding energy, K∞ = 9ρ2

0
∂2E(ρ)/A

∂ρ2 |ρ0 .
Table II displays the expectation values of these two contribu-
tions to the incompressibility at the crossing density Kc and
for the Skyrme EDFs. The first and second derivatives of the
energy per particle E/A act in opposite signs. The contribution
of the pressure at ρc is not negligible, at variance with its
contribution at ρ0, and largely contributes to the stabilization
of Kc. The correlations between EGMR and the solely second
derivative of E/A at the saturation density might not be the

TABLE I. Values of Kc and K∞: Incompressibility K(ρ) at
crossing (ρc = 0.71ρ0) and saturation densities, respectively. The
mean value and the standard deviation are displayed on the two last
lines.

EDFs Crossing Kc (MeV) Saturation K∞ (MeV)

SLy5 36 230
SkM∗ 34 217
Sk255 36 255
Sk272 35 272
SGII 34 215
D1S 38 210
NL3 33 271
DDME2 22 251
FSUGold 41 229

Mean 34.3 238.9
Standard deviation 5.2 24.0

TABLE II. Evaluation of Kc and of the two terms defining the
incompressibility K(ρ) [Eq. (8)] at the crossing density ρc = 0.71ρ0

for a set of different Skyrme EDFs.

EDFs Crossing

Kc (MeV) 18
ρc

P (ρc) (MeV) 9ρ2
c

∂2E(ρ)/A
∂ρ2 |ρc (MeV)

SLy5 36 −103 139
SkM∗ 34 −99 133
Sk255 36 −113 149
Sk272 35 −119 154
SGII 34 −98 132

most appropriate one and the EDF-invariant property of the
crossing point (ρc,Kc) shall be useful.

C. (EGMR,K∞) versus (EGMR,Mc) correlation analysis

Using EGMR and Mc discussed in the previous sections,
it is possible to determine if Mc is better constrained by
EGMR than K∞. The correlation diagrams (EGMR,Mc) and
(EGMR,K∞) are compared on Figs. 2 and 3, respectively.
Two nuclei are considered: the doubly magic 208Pb and the
semimagic 120Sn nuclei. In this latter case, pairing effects
are known to slightly impact the position of the GMR [12],
leading to a larger dispersion compared to the 208Pb case. In
the 208Pb case, the (EGMR,Mc) correlation is well pronounced:
A correlation coefficient close to one (r = 0.94) is obtained.
The (EGMR,K∞) correlation displays a weaker correlation
coefficient (r = 0.79). Similar conclusions can be drawn on
120Sn; namely, Mc is a better correlated quantity with EGMR

than K∞. In this nucleus, the correlation coefficients are
weaker than in 208Pb because of pairing effects which spread
a bit more the GMR predictions. It is rather delicate to
deduce an accurate value of K∞ from GMR measurements
in 120Sn because of the weak correlation on (EGMR,K∞). In
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FIG. 2. Centroid of the GMR in 208Pb and 120Sn calculated with
the microscopic method (see text) vs the value of Mc for various
functionals [3,5,10,24–29]. The solid lines correspond to linear
regression for each nuclei. The corresponding correlation coefficient
r is displayed.
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FIG. 3. Same as Fig. 2 with K∞.

summary, considering various models with different density
dependencies and two different nuclei, a better correlation is
observed between EGMR and Mc, compared to the one between
EGMR and K∞. It should be noted that these considerations on
the slope of the incompressibility Mc at the crossing point have
recently been used in Ref. [24], where a good linear correlation
between EGMR and Mc is also found, including the so-called
BCPM functional.

In more detail, it should be noted that the relativistic
DDME2 interaction in the correlation graph (EGMR,K∞) is
largely deviating from the others, as it is well known [2–4],
while it is much more compatible with the others in the graph
(EGMR,Mc) [10]. On the contrary, restricting to the Skyrme
interactions, the quantities (EGMR,K∞) and (EGMR,Mc) are
similarly well correlated. This is directly related to the good
correlation between (Mc,K∞) owing to a similar density
dependence among the Skyrme EDFs (in ρα), which is
discussed in Sec. III C.

These results on Mc provide a step towards compatible
results between Skyrme, Gogny, and relativistic approaches
[10]. The extracted value for the quantity Mc in 120Sn and
208Pb nuclei are also in better agreement between each other
than the corresponding K∞ values: Considering the various
EDFs as well as the 120Sn and the 208Pb data, one gets Mc �
1050 ± 100 MeV (9% uncertainty), and K∞ � 230 ± 40 MeV
(17% uncertainty) [10]. The value of Mc and its error bar are
deduced from the measurement of the GMR, intersecting the
linear fits on correlation plots such as Figs. 2 and 3, on a
dozen nuclei (see Fig. 3 of Ref. [10] and text therein). The
value of K∞ and its error bar are deduced from the crossing
area on Fig. 1 and the observed spreading of K∞ at saturation
densities [10].

In summary, using microscopic approaches, it is observed
that the correlation between Mc and the centroid EGMR is
less dispersive and therefore more universal among various
models, than the one between K∞ and EGMR [10]. In the next
section we provide a more quantitative understanding of the
differences between the quantities Mc and K∞, explaining the
role of the density dependence of the EoS between the crossing
and the saturation densities.

III. DENSITY EXPANSION OF THE EQUATION OF STATE

The striking stability of Kc among the various Skyrme
EDFs (Table I) deserves an investigation. In this section,
the density dependence of the EoS is discussed in terms of
the derivatives of the EoS with respect to the density. The
stability of Kc as well as the relation between the slope of
the incompressibility modulus Mc and the parameters K∞ and
Q∞ are derived, providing an explanation for the difficulty to
constrain K∞.

A. Density dependence of the equation of state around ρ0

We start from a systematic expansion around the saturation
density ρ0 of the binding energy, such as in the generalized
liquid drop model (GLDM) [30,31], where, in symmetric
matter, the energy per particle reads

E(x) = E∞ + 1
2K∞x2 + 1

6Q∞x3 · · · , (10)

with x = (ρ − ρ0)/(3ρ0), ρ0 being the saturation density of
symmetric nuclear matter. Q∞ is the third derivative of the
energy per particle.

Applying Eqs. (8) and (9) to the expansion Eq. (10), one
obtains the pressure,

P (x) = 1
3 (1 + 3x)2

[
K∞x + 1

2Q∞x2 + · · · ], (11)

and the incompressibility,

K(x) = (1 + 3x)[K∞ + (9K∞ + Q∞)x + 6Q∞x2 + · · ·].
(12)

Figure 4 displays the binding energy Eq. (10), pressure
Eq. (11), and incompressibility Eq. (12) as function of the
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FIG. 4. (Color online) (a) Binding energy E/A in MeV,
(b) pressure in MeV fm−3, and (c) incompressibility K in MeV,
as functions of the density for various truncation in the expansion
Eq. (10). See text for more details.
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TABLE III. Parameters appearing in the density expansion of the
binding energy E/A Eq. (10) for a set of models considered in this
work: ρ0 is the saturation density, E∞ the binding energy, K∞ the
incompressibility modulus, and Q∞ the skewness parameter.

ρ0 (fm−3) E∞ (MeV) K∞ (MeV) Q∞ (MeV)

SLy5 0.160 −15.98 230 −363
SkM∗ 0.160 −15.79 217 −386
Sk255 0.157 −16.35 255 −350
Sk272 0.155 −16.29 272 −306
D1S 0.163 −16.02 210 −596
NL3 0.148 −16.24 271 189
DDME2 0.152 −16.14 251 478
FSUGold 0.148 −16.30 229 −537

density ρ going from 0 to 0.2 fm−3, which correspond to the
SLy5 Skyrme parametrization [29]. Apart for the solid lines
that are obtained from the full Skyrme interaction, the other
curves correspond to various approximations in the density
expansion of the binding energy [Eq. (10)]. For instance, the
dotted line in the binding energy E/A corresponds to the 0th
order in the density expansion where only the quantity E∞
has been included, all other quantities being set to zero. The
dashed line (E + K) takes into account the quantities E∞
and K∞, and the long-dashed line (E + K + Q) includes the
quantities E∞, K∞, and Q∞. Similar approximations have
been performed in the case of the pressure [Eq. (11)] and
incompressibility [Eq. (12)]. A good convergence towards the
full Skyrme interaction is found when successively including
in the expressions for the binding energy, the pressure, and
the incompressibility the quantities E∞, K∞, and Q∞. These
quantities can therefore reasonably well describe the density
dependence of the EoS and are given in Table III for a set of
models considered in this work.

It is clear from Table III that while the quantities E∞ and
K∞ are not varying by more than 20%, the values for the
skewness parameter Q∞ are almost unconstrained and can
vary by more than 100% among the models. The uncertainty
in the determination of the skewness parameter Q∞ gives, in
a quantitative way, the main lack of knowledge in the density
dependence of the EoS. The uncertainty on Q∞ also impacts
the density dependence of the pressure and, more interestingly
here, of the incompressibility.

B. Stability of Kc

Let us now provide an explanation for the stability of Kc

observed in Table III. From Eq. (12), and assuming the validity
of a density expansion from ρ0 to ρc, we obtain

Kc � (1 + 3xc)[(1 + 9xc)K∞ + (1 + 6xc)xcQ∞], (13)

with xc ≡ (ρc − ρ0)/(3ρ0).
In the case of Skyrme interaction, there is a good correlation

among the quantities K∞ and Q∞, as shown in Fig. 5. The
parameters K∞ and Q∞ are mostly determined by the same
term, the term t3 in ρα , in the case of Skyrme interaction [10].
Owing to their similar density dependence (in ρα), the Skyrme
EDFs exhibit indeed a linear correlation among these two
quantities, whereas the picture is blurred when considering
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FIG. 5. K∞ versus Q∞ for several models. The solid and dashed
lines correspond to the fit on the Skyrme and Gogny EDFs values,
respectively.

at the same time Skyrme and relativistic EDFs. A linear
correlation is also found in the Gogny EDFs case on Fig. 5,
which have a similar t3 in ρα density dependence [32]. This
confirms that the (K∞,Q∞) correlation emerges because of the
t3 term of these EDFs. On the contrary, we have checked that
there is not such a correlation among the relativistic NL2, NL3,
TM1, TM2, and NL-SH EDF families, having no t3 term [25].

The linear correlation among the Skyrme and Gogny EDFs
can be described by

K∞ = a + bQ∞, (14)

with a = 338 ± 9 MeV and b = 0.29 ± 0.03 for the Skyrme
EDFs and a = 354 ± 8 MeV and b = 0.25 ± 0.04 for the
Gogny ones. Injecting Eq. (14) into Eq. (13), one gets

Kc � (1 + 3xc)[(1 + 9xc)a + f (xc)Q∞], (15)

with f (x) = [6x2 + (9b + 1)x + b]. An EDF-almost-
independent value of Kc is therefore obtained for f (x) = 0
because Q∞ is the only EDF-dependent quantity in Eq. (15):
The solution of f (x) = 0 therefore provides the crossing point
observed on Fig. 1. The function f (x) has only one zero for
positive densities, given by xc = −0.095 ± 0.002 for Skyrme
EDFs and xc = −0.093 ± 0.002 for Gogny ones, which
corresponds to ρ = (0.714 ± 0.005)ρ0 ≡ ρc for Skyrme
EDFs and ρ = (0.721 ± 0.005)ρ0 ≡ ρc for Gogny ones.

It is interesting to notice that the values for xc obtained
for Skyrme and Gogny EDFs are close to −1/9, for which
∂f/∂b = 0. This fact provides an explanation of the weak
dependence of the crossing point on the correlation pattern
(the value of the coefficient b).

In summary, for the Skyrme and Gogny EDFs there
is therefore a density, ρc, for which the incompressibility
modulus K(ρc) is independent from the quantities K∞ and
Q∞ defined in Eq. (10) and is

Kc ≡ K(ρc)

= (1 + 3xc)(1 + 9xc)a

= ρc

ρ0

(
3
ρc

ρ0
− 2

)
a. (16)
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FIG. 6. K∞ as a function of Mc for various Skyrme, Gogny, and
relativistic functionals.

The value of xc is almost identical for Skyrme and Gogny
EDFs, and taking the value for a given by the linear correlation,
one finds Kc = 34 ± 4 MeV for Skyrme EDFs and 41 ±
4 MeV for Gogny ones, confirming the value of the crossing
point shown in Table I and on Fig. 1 for the Skyrme EDFs.
This approach confirms in a both quantitative and qualitative
way the existence of a crossing point, especially in the case of
the Skyrme and Gogny EDFs. In the case of the other EDFs,
especially the relativistic ones, it is rather a crossing area that
is obtained (Fig. 1), owing to the lack of a good correlation
between K∞ and Q∞, in general; see Fig. 5. It seems therefore
difficult to provide a quantitative extension of Eq. (15) beyond
the Skyrme or Gogny cases.

C. Relation between K∞ and Mc

Figure 6 displays the (Mc,K∞) correlation for four Skyrme
EDFs. Adding to this correlation graph various EDFs with
other density dependencies, such as the relativistic one,
drastically blurs the correlation. This originates from the large
uncertainty on the value of the skewness parameter Q∞ among
the EDFs discussed in the previous section (Table III). Using
Eqs. (7) and (12), the quantity Mc can be expressed as

Mc � 3Kc + (1 + 3xc)2[9K∞ + (1 + 12xc)Q∞]. (17)

The correlation between Mc and K∞ depends on the density
dependence of the binding energy reflected in the skewness
parameter Q∞, which can vary to a large extent; see Table III.
More precisely, from Eq. (17), one can deduce the value of the
quantity K∞ as

K∞ = 1

9

Mc − 3Kc

(1 + 3xc)2
− 1 + 12xc

9
Q∞, (18)

where the first term of the right-hand side gives the dominant
contribution (about 200 MeV) and the second term gives the
correction (about 10 MeV) induced by the higher order density
dependence, represented by the first term beyond K∞, which
is the skewness parameter Q∞. The values of Kc and xc are
fixed by the existence of a crossing point, and Mc is extracted
from the correlation analysis based on the experimental EGMR.

These quantities have, however, typical uncertainties which
contribute to the determination on K∞. The uncertainty on Kc

is indeed typically of about ±5 MeV (Table I). Using Eq. (18),
it provides and additional variation of K∞ of about ±3 MeV.
The ±100 MeV uncertainty on Mc also provides a typical
±20 MeV uncertainty on K∞ using Eq. (18). Now, taking a
typical uncertainty for Q∞ of ±500 MeV (Table III), Eq. (18)
provides a variation on K∞ about ±10 MeV, also contributing
to the error bar on K∞. It is therefore clear that the uncertainty
on K∞ is not only related to that on Mc but also related to the
lack of knowledge on the density dependence of the EoS, repre-
sented in the present analysis by the skewness parameter Q∞.

In conclusion, the relation Eq. (18) clearly shows that the
uncertainty on the incompressibility modulus K∞ is mainly
related to that on the quantities Mc and Q∞. The reduction
of the error bar on K∞ is therefore mostly related to a
better knowledge of Mc, well correlated with EGMR, and of
the skewness parameter Q∞, for which new experimental
constraints are found.

IV. A SIMPLE EXPRESSION RELATING EGMR AND Mc

To provide a complementary view to microscopic ap-
proaches [1–10], it may be useful to derive an analytic
relationship between the GMR centroid in nuclei and the
quantity Mc, to enlighten and confirm the results obtained with
a fully microscopic approach; see Sec. II and Ref. [10]. In this
section we aim to derive an analytical relationship between the
centroid of the GMR and the relevant quantity of the EoS, Mc

defined by Eq. (7).
The energy centroid of the GMR is used to define the

incompressibility in nuclei KA [1]:

EGMR =
√

h̄2KA

m〈r2〉 . (19)

To derive an analytical relationship, 〈r2〉 can be approximated
by 3R2/5 [33], where R � 1.2A1/3 is the nuclear radius,
yielding

EGMR � h̄

R

√
5KA

3m
. (20)

We derive an analytic relation between KA and Mc using
the LDA to check, in a complementary way to microscopic
approaches, the role of Mc in determining the centroid of the
GMR.

The following step consists of dividing KA into a nuclear
and a Coulomb contributions, as

KA = KNucl + KCoulZ
2A−4/3, (21)

where, in the liquid drop approach, KNucl is defined as

KNucl = K∞ + KsurfA
−1/3 + Kτ

(
N − Z

A

)2

,

as in the Bethe Weissäcker formula for the binding energy
[1]. The accuracy of this approach can be enhanced with the
inclusion of higher order terms [34]. The quantities K∞, Ksurf ,
and Kτ are, however, poorly constrained by the relative small
data [1,35]. We prefer instead to extract KNucl from the LDA,
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which has the advantage that (i) it was proven to be a good
approximation of the microscopic calculation [12] and (ii) the
consistency between the value obtained for KA and the Skyrme
functional is guaranteed.

A. The local density approximation

The nuclear contribution KNucl is related to the density
dependence of the incompressibility K(ρ) as [12],

KNucl = ρ2
0

A

∫
d3r

K[ρ(r)]

ρ(r)
. (22)

Equation (22) makes it possible to perform the LDA by
considering the density profile of nuclei, ρA(r), in Eq. (8),
where ρ = ρA(r). The LDA give accurate estimation of KNucl

[12]. It should be noted that in Eq. (22), the value of K(ρ)
at saturation density (i.e., K∞) does not have any specific
impact on the KA value and nor, therefore, on the prediction
of EGMR. Further, owing to the existence of the crossing area
(ρc,Kc) � (0.1 fm−3, 35 MeV), which takes into account both
the Skyrme EDFs crossing (Table I) and the relativistic one
(Fig. 1), K(ρ) can be approximated to the first order around
the crossing point by

K(ρ) = Mcρ

3ρc

− Mc

3
+ Kc, (23)

where Mc is related to the first derivative of the incompress-
ibility [Eq. (7)].

This first-order approximation is relevant as observed on
the (EGMR,Mc) correlation of Figs. 2 and 3. Of course, taking
the density dependence of the incompressibility as its first
derivative around the crossing point remains an approximation,
which explains the not-exactly linear (EGMR,Mc) correlation
on Fig. 2 considering Skyrme and relativistic EDFs.

The integral in Eq. (22) is taken between ρ0/2 and ρ0, which
is adapted to the linear regime around ρc and corresponds to
the typical dispersion of the density values around the mean
density in nuclei [10]. Injecting expression (23) into Eq. (22)
and assuming a Fermi shape of the nuclear density, with
diffusivity �0.5 fm [33] yield the analytical relation between
the centroid of the GMR and Mc, using Eqs. (20) and (21):

EGMR = h̄

R

{
20π

3mA

∫ ρ0

ρ0/2

[
a ln

(
ρ0

ρ
− 1

)
+ R

]2

×
(

Mcρ

3ρc

− Mc

3
+ Kc

)
a

1 − ρ/ρ0

ρ2
0

ρ2
dρ

+ 5KCoul

3m
Z2A−4/3

}1/2

. (24)

The integral in Eq. (24) denotes the nuclear contribution,
whereas the second part comes from the Coulomb effects. The
Coulomb contribution is evaluated using KCoul = −5.2 MeV
[1,36]. This value is obtained from the liquid drop expan-
sion of the incompressibility and applied to several Skyrme
interactions [36]. It should be noted that the Fermi shape is
a good approximation of the density and we have checked
that the diffusivity of the density obtained from microscopic
Hartree-Fock calculations (0.47 fm) is very close to 0.5 fm.
The use of the Fermi density is legitimized by the aim of
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FIG. 7. Centroid of the GMR in A = 208 (solid lines) and A =
120 (dashed lines) nuclei calculated with the LDA for the nuclear
incompressibility and using its first derivative at the crossing point
[Eq. (24) without the Coulomb term]. The two lines for each mass
number correspond to the lower and upper values of Kc deduced from
its variance.

tracing the analytical impact of the quantity Mc on the GMR
centroid. Equation (24) also underlines the important role of
the quantity Mc on the GMR centroid. On the contrary, the
incompressibility at saturation density K∞ does not play any
specific role in Eq. (24). It is, therefore, rather the quantity Mc

which is the relevant quantity to be constrained by the GMR
measurements.

B. Results and comparison with the microscopic method

The stability of the results obtained with Eq. (24) has
been studied with respect to the diffusivity value a, the LDA
prescription [Eq. (22)], the crossing point (ρc,Kc) values, and
the integration range. A sound stability is obtained against
these quantities: The predicted GMR centroid does not change
by more than 10% by making all these variations in relevant
physical ranges. For instance, the typical variation for a given
EDF between the LDA value of KA and the microscopic
one is of 7%, except in the DDME2 case, where the linear
approximation Eq. (23) is less suited (15% variation on KA).

We first study the behavior of the nuclear contribution
[KCoul = 0 in Eq. (24)]. Figure 7 displays the correlation
between the centroid of the GMR and the Mc value using
Eq. (24), for nuclei with A = 208 and A = 120. For each
mass number the values obtained with the lower and upper
values of Kc (see Table I) are displayed. A good qualitative
agreement is obtained with the fully microscopic results (see
Fig. 2 and 3) in view of the approximations performed to
derive Eq. (24). The A dependence is also well described.
These results confirm the validity of the present approach and
emphasize Mc as a relevant EoS quantity to be constrained by
the GMR measurements. It also qualitatively agrees with the
microscopic results.

To perform a more quantitative study, the curves on Fig. 8
display the centroid of the GMR in 208Pb and 120Sn nuclei
predicted using the full Eq. (24) with both the nuclear and the
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FIG. 8. Centroid of the GMR in 208Pb (solid lines) and 120Sn
(dashed lines) calculated with the LDA and including the Coulomb
effects as a function of Mc. The two lines for each mass number
correspond to the lower and upper values of Kc deduced from
its variance. The values for various EDF obtained microscopically
(squares and dots) are also displayed for comparison.

Coulomb contributions. The comparison with the microscopic
results using various EDFs is also shown. A good agreement
is obtained in both cases, strengthening again the present
analytical LDA approach, and emphasizing the role of Mc.
Comparing Figs. 7 and 8, the Coulomb effect on the GMR
centroid can be evaluated to be about 1 MeV in heavy nuclei.

The remaining small underestimation of the data by the
present LDA approach might indicate the need for possible
ameliorations. For instance, the contribution of the gradient
terms in the LDA, neglected in the present analysis, could be
further included within the improved Thomas-Fermi approxi-
mation in Eq. (22) [37]. We have also checked that a different
value of KCoul (−3 MeV) also contributes to an improved
description of the data. A better understanding of the respective
contributions of the gradient terms and the Coulomb one in
the LDA is a relevant path to further investigate within the
improved Thomas Fermi approach.

The almost linear correlation between EGMR and Mc

observed on Fig. 8 can be further investigated. Equation (24)
can be rewritten as

EGMR = [α(A, ρ0)Mc + β(A,Z, ρ0)]1/2, (25)

with

α(A, ρ0) ≡ 20πh̄2

9mAR2

∫ ρ0

ρmin

[
a ln

(
ρ0

ρ
− 1

)
+ R

]2

×
(

ρ

ρc

− 1

)
a

1 − ρ/ρ0

ρ2
0

ρ2
dρ, (26)

β(A,Z, ρ0) ≡ 5h̄2KCoul

3mR2
Z2A−4/3 + 20πh̄2

3mAR2

×
∫ ρ0

ρmin

[
a ln

(
ρ0

ρ
− 1

)
+R

]2
aKc

1 − ρ/ρ0

ρ2
0

ρ2
dρ.

(27)

Fixing ρc and Kc, the coefficients α and β only depend on
the nucleus’ mass and charge (A, Z), and on the saturation
density ρ0, which is constrained by the charge radii. Typical
values are α = 0.12 MeV and β = 42 MeV2 in the case
of 208Pb and α = 0.16 MeV and β = 75 MeV2 in the case
of 120Sn.

It should be noted that the LDA approximation (25) of
EGMR can be obtained because of the existence of the crossing
point. In Eq. (25), the energy of the GMR depends on the
functional mostly through the parameter Mc. In conclusion,
the LDA makes it possible to obtain expression (25) relating
EGMR with Mc in a simple and accurate form.

Introducing (M0,E0) as the reference point, where M0 ≡
1200 MeV and E0 is the corresponding GMR energy, one
can go one step further and linearize Eq. (25) with respect to
Mc − M0, as

EGMR � α

2E0
Mc +

(
E0 − αM0

2E0

)
. (28)

This is justified for the typical values of Mc, ranging between
1000 and 1500 MeV, as shown on Fig. 8. The almost linear
correlation between EGMR and Mc observed on Fig. 8 is
therefore understood by the present approach [Eq. (28)]. It
clearly shows that the measurement of the GMR position
constrains Mc, which is a first information on the density
dependence of the incompressibility. It should be recalled that
such a quantitative description is not possible with K∞ because
there is no crossing point of the incompressibility at saturation
density: Equation (24) is not applicable in that case.

V. CONCLUSIONS

The relationship between the isoscalar GMR and the EoS
raises the question of which EoS quantity is constrained by
GMR centroid measurements. The incompressibility modulus
K∞ alone may not be the relevant one nor the most direct
because the more general density dependence of the incom-
pressibility should be considered. A crossing area is observed
on K(ρ) at ρc � 0.1 fm−3 among various functionals. Using a
microscopic approach, such as constrained HFB, the slope Mc

of K(ρ) at the crossing density can be directly constrained by
GMR measurements. This assesses the change of the method
in extracting EoS quantities from GMR: Mc is first constrained,
and an approximate value of K∞ can be deduced in a second
step [10].

The stability of Kc has been demonstrated in the case
of Skyrme EDFs. A general relationship between Mc

and K∞ is obtained, showing the contribution of the
uncertainty in the density dependence of the EoS which
has been cast into the quantities Q∞. The K∞ value can
be determined in a second step from the knowledge of the
Mc value, requiring a better constraint on the skewness
parameter Q∞, being one of the main uncertainties for
the density dependence of the incompressibility between
the crossing density and the saturation density. One should
recall that the K∞ value remains 230 ± 40 MeV (17%
uncertainty), whereas the quantity Mc is better constrained
to be Mc � 1050 ± 100 MeV (9% uncertainty) [10]. A better
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knowledge of higher order density-dependent terms of
E/A(ρ), e.g., the skewness parameter Q∞, shall help to more
accurately relate the parameter Mc to the incompressibility
modulus K∞.

Using the LDA approach and an analytical approximation
of the density, the microscopic results have been confirmed:
The measurement of the centroid of the isoscalar GMR
constrains the first derivative Mc of the incompressibility
around the crossing point ρc � 0.1 fm−3. An analytical relation
between the centroid of the GMR and the quantity Mc is

derived and the predicted GMR centroid is found, in agreement
with the microscopic method.
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70, 691 (2007).
[15] D. J. Thouless, Nucl. Phys. 22, 78 (1961).
[16] O. Bohigas, A. M. Lane, and J. Martorell, Phys. Rep. 51, 267

(1979).
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