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In-medium nucleons and nucleonic systems: Infinite nuclear matter
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In the present work we discuss the modifications of infinite nuclear matter properties. The modifications are
performed in the framework of the in-medium modified Skyrme model. The model is developed to study the
properties of in-medium nucleons and nucleonic systems. The mesonic sector of the model contains the nonlinear
pion fields propagating in the nuclear medium. The properties of in-medium pions are defined by the pion-nucleus
optical potential. The isospin-breaking part of the optical potential and the isospin-breaking effects in the mesonic
sector generate the isospin-breaking effects in the baryonic sector. Further, the isospin-breaking effects in the
baryonic sector are related to the asymmetric-matter properties. First, we discuss the binding energy per nucleon
and the bulk properties of the isospin-symmetric nuclear matter. Then, we include the isospin-breaking effects
and discuss the asymmetric-matter properties.
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I. INTRODUCTION

Studies of nucleon properties at finite density and tem-
perature are important for understanding the properties of
baryonic matter under extreme conditions. The discovery
of the effect by European Muon Collaboration (EMC ef-
fect) [1–3], pointing to changes of nucleon properties in
nuclear matter (e.g., swelling of the nucleon), initiated further
experimental measurements [4–8] and different theoretical
approaches [9–16]. The measurements, particularly, have been
devoted to studies of electromagnetic (EM) form factors
of bound nucleons. For example, the polarization-transfer
phenomenon in proton knock-out reactions 4He(�e, e′, �p )3H
had prompted continuous experimental interest during the
last decade [5–8]. Those experimental measurements showed
the quenching effect in the polarization-transfer double ratio
R = (P ′

x/P
′
z)4He/(P ′

x/P
′
z)1H. From the theoretical point of

view, the quenching effect can be interpreted as an indication
of changes in the nucleon’s EM form factors in the nuclear
medium [9–15] or as an effect of final-state interactions and
two-body current contributions [16].

Among the existing approaches related to the hadron
properties in nuclear matter, many theoretical models are
based on the concept of in-medium nucleons perceiving their
individuality. However, properties of nucleons may change in
the nuclear medium. Therefore, depending on the energy scale
and as is asserted in Refs. [13,15], the changes in EM structures
of the bound nucleons may be the actual case observed during
the experimental measurements of the polarization-transfer
double ratio R. The studies of in-medium EM form factors
will help to analyze the difference in behaviors of in-medium
protons and neutrons. Furthermore, knowledge of the behavior
of in-medium nucleons would be useful for studying the
properties of infinite and finite nucleonic systems in a more
self-consistent way.

The main focus of present and future works is on
modifications of infinite nuclear matter properties, studies
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of ground-state properties of magic nuclei and nuclei near
the shell closure, and descriptions of nuclear reactions. The
approach we are going to use is semiphenomenological.
To justify this approach, one should satisfy as much as
possible phenomenological requirements—the model must
be able to reproduce the experimental data and explain the
related phenomena. Therefore, we perform our studies step
by step. As an initial step I, we concentrate on the analysis
of nucleon properties in symmetric and asymmetric nuclear
matter. However, we relate those nucleon properties to the
bulk properties of infinite nucleonic systems. The nucleon
properties in finite nuclei and the relation of those properties
to finite nuclear systems will be the subject of the next step II,
which will be considered in our future works.

The paper is organized in the following way. In the
next section we discuss a topological solitonic approach
to nuclear matter and formulate our tasks. Further, in that
section we present the generalized Lagrangian (Sec. II A) and
discuss the medium functionals describing the influence of the
surrounding environment on the in-medium nucleon properties
and discuss the peculiarities of our model by comparing with
other approaches (Sec. II B). In Sec. III we discuss the classical
(Sec. III A) and quantum (Sec. III B) solitons in nuclear
matter. Then, in Sec. IV we study the binding energy per
nucleon, extracting the contributions of volume (Sec. IV A)
and symmetry-energy (Sec. IV B) terms. The results are pre-
sented in Sec. V, where we discuss symmetric (Sec. V A) and
asymmetric nuclear matter (Sec. V B) properties, separately.
In Sec. V C we discuss the small corrections due to the explicit
isospin-breaking effects in the mesonic sector. Finally, in
Sec. VI we summarize our results and present the outlook
for further studies.

II. NUCLEAR MATTER IN A SOLITONIC APPROACH

While the objects of primary interest (constituents of
nuclear matter) are assumed to have an extended structure,
a chiral solitonic approach may serve as one of the appropriate
tools during our studies. Therefore, the theoretical framework
in this work will be an in-medium modified solitonic model.
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We will use the in-medium modified Skyrme model [17]
where, in addition to the initial studies considering the kinetic
and mass term modifications [18], the modification of the
Skyrme’s quartic term has also been taken into account.
However, in the present work, we will generalize the model
presented in Ref. [17]; i.e., we take into account the isospin-
breaking effects as has been done in Refs. [19,20] in order
to study the Nolen-Schiffer anomaly (NSA) in mirror nuclei
[21,22].

It is necessary to note that the calculations in Refs. [19,20]
are based on the idea of an effective neutron-proton mass
difference, which is supposed to change in nuclear matter
relatively to its free-space value. During those studies, the
electromagnetic part of the in-medium neutron-proton mass
difference was calculated by taking into account the changes
in EM form factors of nucleons due to the surrounding nuclear
environment.

Naturally, the approach developed in Refs. [19,20] can be
applied to studies of quenching effect in the polarization-
transfer double ratio R during the proton knock-out
4He(�e, e′, �p)3H reaction. However, before calculating R in
reactions involving finite nuclei, one has to improve the model
because the initial approach presented in Ref. [18] and later
versions [19,20] have a shortcoming; i.e., the renormalization
of the nucleon’s mass in nuclear medium was large. It is
necessary to note that our framework employs a nonrelativis-
tic approach to the nucleon and nuclear matter properties.
Therefore, it is difficult to explain the large renormalization of
the nucleon’s effective mass in our model, in contrast to the
relativistic mean-field approaches. For example, the mass ratio
m∗

N/mN ≈ 0.8 for the nucleon in 16O led to further difficulties
during the calculation of the Nolen-Schiffer anomaly in the
framework of the in-medium modified Skyrme model [20].1

The main conclusion in Ref. [20] was the stringent restriction
to the possible modifications of the nucleon’s effective mass
in nuclei.

Technically, the large renormalization of the nucleon’s
effective mass may be related to the behavior of the Skyrme
term in nuclear matter. For example, when the Skyrme term is
intact in nuclear matter the renormalization of the nucleon’s
effective mass is large [18] while the modification of the
Skyrme term in nuclear matter diminishes the renormalization
effect [17]. From a physical point of view, the first situa-
tion may be interpreted as attributable to ignorance of the
nucleon’s core modifications in nuclear matter. The second
case, in contrast, implies the core modifications too. While
the original Skyrme term is important for stabilization of
the nucleon-soliton, its medium-modified version seems to
be important for stabilization of nuclear matter. For example,
further developments of the initial approach allowed correct
reproduction of the bulk properties of symmetric nuclear
matter [17].

Consequently, in the present work we propose a gener-
alized version of the in-medium modified Skyrme model

1Hereafter, a superscripted asterisk indicates an explicit medium
modification. For an inexplicit medium modified expression we use
a symbol without the asterisk.

which unifies the ideas of Refs. [17–20]. We formulate the
generalized Lagrangian which takes into account the follow-
ing: the nucleon’s “outer-shell” and “inner-core” modifications
in a symmetric nuclear medium, the corresponding symmetric-
matter properties, the isospin-breaking effects in the mesonic
sector and the subsequent effects in the single baryonic sector,
changes in nucleon properties due to an isospin-asymmetric
nuclear environment, and the corresponding asymmetric-
matter properties.

In other words, after formulation of the generalized La-
grangian, first we rediscuss the modification of nucleon prop-
erties in symmetric nuclear matter and study the correlations
of those properties with the symmetric-matter characteristics
(e.g., the volume term in the binding energy formula, the
compressibility of symmetric nuclear matter, and the density
dependence of pressure in symmetric matter). Then we discuss
isospin-symmetry-breaking effects in the mesonic sector, the
corresponding isospin-breaking effects in the baryonic sector
(e.g., the neutron-proton mass difference), and their relation
to asymmetric-matter properties (e.g., the nuclear symme-
try energy, the compressibility of asymmetric matter, and
asymmetric-matter characteristics near the saturation point).
These formulated tasks will be the content of step I.

A. Generalization of the in-medium modified Lagrangian

We start from the in-medium modified Skyrme-model
Lagrangian [19,20] and generalize it by taking into account the
modifications of the Skyrme’s quartic term as has been done in
Ref. [17]. The generalized Lagrangian has the following form:

L∗ = L∗
sym + L∗

asym. (1)

It is schematically separated into two parts: the isospin-
symmetric part L∗

sym and the isospin-asymmetric part L∗
asym.

The isospin-symmetric part contains three terms:

L∗
sym = L∗

2 + L∗
4 + L∗

χSB. (2)

Here L∗
2 is the in-medium modified nonlinear σ -model La-

grangian, L∗
4 is the in-medium modified Skyrme’s stabilizing

term, and L∗
χSB is the in-medium modified chiral-symmetry-

breaking term. Their explicit forms are given as

L∗
2 = F 2

π

16

{
α02

s Tr(∂0U∂0U
†) − α0

p Tr(∂iU∂iU
†)

}
, (3)

L∗
4 = − 1

16e2ζτ

Tr [U †∂0U,U †∂iU ]2

+ 1

32e2ζs

Tr [U †∂iU,U †∂jU ]2, (4)

L∗
χSB = F 2

πm2
π

8
α00

s Tr (U − 1), (5)

where Einstein’s summation convention is always assumed (if
not specified otherwise).

The isospin-asymmetric part contains two terms:

L∗
asym = 	Lmes + 	L∗

env. (6)

Here 	Lmes is the isospin-breaking term that arises from the
explicit symmetry breaking in the mesonic sector, and the term
	L∗

env takes into account the isospin asymmetry of the nucleus.
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Their explicit forms are

	Lmes = F 2
π

16

2∑
a=1

M2
−Tr(τaU )Tr(τaU

†), (7)

	L∗
env = −F 2

π

32

2∑
a,b=1

εab3
	χ

mπ

Tr(τaU )Tr(τb∂0U
†), (8)

where M2
− = (m2

π± − m2
π )/2.

The chiral SU(2) matrix U has the form U =
exp(2iτaπa/Fπ ), where πa (a = 1, 2, 3) are the Cartesian
isospin components of the pion field. The pion decay constant
and the Skyrme parameter have values Fπ = 108.783 MeV
and e = 4.854, respectively [20]. The neutral-pion mass
is mπ = 134.977 MeV, which is its Particle Data Group
(PDG) value [23]. The model parameters are chosen in
such a way that the exact PDG values of nucleon masses
in free space, mp = 938.27 MeV and mn = 939.56 MeV
[23], are reproduced correctly. Consequently, by ignoring the
electromagnetic effects in pion masses, all of these choices
of parameters induce the following value for the charged pion
mass: mπ± = 135.015 MeV. (For the detailed explanations see
Refs. [19,20].)

The medium functionals, α00
s , α02

s , α0
p and 	χ , depend

on nuclear density ρ(�r) and represent the influence of the
surrounding environment on the single-nucleon properties.
They mostly represent the “outer-shell” changes of the in-
medium nucleon.

In the present work, based on the ideas of Ref. [17], the
in-medium modification of the Skyrme term is generalized as

L4 ⇒ L∗
4 = 1

ζτ

L(time)
4 + 1

ζs

L(space)
4 . (9)

Here the medium functionals ζτ and ζs also depend on nuclear
density ρ(�r) and represent the “inner-core” modifications of
the in-medium nucleon.

Finally, the Lagrangian in Eq. (1) with the specific modified
term L∗

4 in Eq. (4) is called the generalized in-medium
modified Lagrangian and will be used in our calculations after
we define the medium functionals. The peculiarities of the
generalized Lagrangian are discussed in the next section.

B. Model peculiarities and consistency with other approaches

Here, we briefly outline the basic peculiarities of the
generalized Lagrangian in Eq. (1). First of all we note that the
effective Lagrangian in the linear approximation reproduces
the pion Lagrangian in nuclear matter [19],

L∗
low = 1

2

∑
λ=±,0

{
∂μπλ†∂μπλ − πλ†(m2

πλ + ̂λ
)
πλ

}
. (10)

Here ̂±,0 are the self-energies of charged and neutral pions
π±,0 and depend on the functionals α00

s , α02
s , α0

p, and 	χ [24].
In such a way, the pion Lagrangian in the nuclear medium,
Eq. (10), is related to the generalized Lagrangian in Eq. (1).
Moreover, the medium modifications are consistent with other
approaches in Refs. [25–27].

As an example, we consider the L∗
2 term given in Eq. (3),

which includes temporal and spatial parts. The factors in

Eq. (3) can be presented as F ∗
π,t = Fπ

√
α02

s and F ∗
π,s =

Fπ

√
α0

p, respectively. Then, with the set of parameters defined

in Refs. [19,20], F ∗
π,s will decrease in nuclear matter. One can

easily check that so does the ratio F ∗
π,s/F

∗
π,t . These results

are in qualitative agreement with the results obtained in the
framework of in-medium chiral perturbation theory [25,26]
and the QCD sum rules approach [27].

The pion mass terms L∗
χSB + 	Lmes in the generalized

Lagrangian in Eq. (1) represent the in-medium modified
version of the Lagrangian which was originally proposed by
Rathske [28]. Note that the Lagrangian in Ref. [28] describes
the isospin-breaking effects in the Skyrme model. The L∗

χSB

and 	Lmes terms take into account the medium modifications
of neutral-pion mass and the isospin-breaking effect in the
mesonic sector and generate the subsequent isospin-breaking
effects in the baryonic sector [19,20]. Schematically, if one
uses F ∗

π,t = Fπ

√
α02

s instead of Fπ then the effective pion
mass in an isospin-symmetric environment can be defined
as m∗

π = mπ

√
α00

s /α02
s . Then, the set of parameters given

in Refs. [19,20] reproduces the monotonically increasing
function of density m∗

π (ρ). This is again consistent with QCD
sum rule studies [27].

The term 	L∗
env takes into account the isospin asymmetry

of the surrounding environment; it is asymmetric under the
interchange of neutron ρn(�r) and proton ρp(�r) distributions.
Consequently, it is the term most responsible for the modi-
fication of the neutron-proton mass difference in asymmetric
nuclear matter as well as for the self-consistent modifications
of asymmetric-matter properties. Moreover, the Lagrangian in
Eq. (8) contains the Weinberg-Tomozawa term as the relation

b̃1δρ

4πη
= − mπδρ

8πηf 2
π,ph

= bl.o.
1 δρ (11)

is based on the isovector s-wave scattering length in the
chiral expansion to the lowest order (see the discussions in
Refs. [29,30]). This term naturally appears due to the explicit
energy dependence in the pion-nucleus optic potential [24].

Now let us discuss the remaining functionals ζτ and ζs

entering into the in-medium modified Skyrme term L∗
4. It is

well known that the Skyrme’s quartic stabilizing term may be
related to the vector meson dominance model [31], which can
be realized in implicit gauge symmetry of the nonlinear sigma
model Lagrangian [32]. In this sense the medium modification
via the functionals ζτ and ζs , in general, may be related to
the vector-meson properties in nuclear matter. For example,
reducing the Skyrme parameter in the nuclear medium may
correspond to a decrease of the gρππ coupling. Then one can
treat it as a change of the ρ meson width or as a diminishing
value of the ρ meson mass in the nuclear medium. There are
experimental indications of similar changes in the ρ meson
properties [33–35] and some theoretical predictions [36,37].

In the spirit of chiral effective Lagrangians, the Skyrme
model Lagrangian could be considered as a truncated version
of the general low-energy Lagrangian. Then the total infor-
mation from the higher order terms accumulate effectively in
the Skyrme parameter. Consequently, the in-medium modifi-
cations of the higher derivative terms in the general low-energy
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Lagrangian can be expressed in terms of the in-medium
modified Skyrme parameter. Therefore, the generalized in-
medium modified Skyrme model already has all the necessary
ingredients and, in principle, could be also relevant (at least
qualitatively) to studies of nuclear many-body problems.

For example, due to its stabilizing role, the Skyrme term
will also be responsible for the medium modifications, first of
all, near the saturation point and at larger densities. Because at
high densities the nucleon’s core modifications may become
important, one should take into account those modifications in
order to avoid the collapse of nuclear matter to a singularity
[17].

There are already alternate approaches to treat nuclear
many-body problems in the framework of the Skyrme model.
One of the ways was pioneered by Kutschera et al. [38]
and later Klebanov [39] discussed a possible formation of
skyrmionic matter with a simple cubic crystalline structure
due to tensor forces between the neighboring nucleons of the
unit cell. There have been a series of studies related to the
energetically favorable crystalline structures [40–47] and par-
allel studies of the Skyrme model on the hypersphere [48–55].
The former are still under discussion and concentrate on the
investigations of face-centered cubic (FCC) structure and the
possible phase transitions due to baryon charge delocalization
from the lattice points to the lattice sides [56–60]. In a quantum
mechanical Hartree-Fock-type approach, minimizations of the
FCC crystal energy are performed by using the effective in-
medium interactions calculated in the framework of the in-
medium Skyrme model [61]. One can also mention the studies
of exotic many-body systems where the nuclei are considered
as topologically nontrivial configurations [62–66].

However, in the above-mentioned alternate approaches,
the in-medium skyrmions lose their individuality partially or
completely from the beginning and therefore seem to be not
relevant for the discussions of nucleon knock-out reactions and
disintegration processes during heavy-ion collisions. Here we
would like to note that in the framework of the present approach
one may always trace the properties of an individual nucleon
in dense matter (including finite nuclei), except for an extreme
(very high density) case. Nevertheless, that extremal situation
can also be naturally explained via the stabilization mechanism
in terms of the in-medium energy-momentum tensor form
factors [67]. The conclusion is that at very high densities
the solitonic picture may no longer be preserved since the
skyrmions start to overlap and may lose their individuality.

All of the alternate approaches within the Skyrme model
have to deal with modifications of Lagrangian parameters in
nuclear matter. As an example, the authors of [62–66] describe
light and medium-heavy nuclei properties via the change of
Lagrangian parameters (in particular, the Skyrme parameter)
from nucleus to nucleus. They call this a “calibration.” In this
context, our modification via the functionals ζτ and ζs is an
alternate path to those and other discussed approaches.

III. NUCLEONS IN NUCLEAR MATTER

The peculiarities of the quantization procedure are dis-
cussed in detail in Refs. [19,20]. The corresponding in-medium
modified expressions for the classical soliton mass, for the

quantized symmetric rotator’s energy eigenvalues, and for
the electromagnetic form factors of nucleons and all relevant
discussion also can be found there. The difference in the
present work is that the Skyrme parameter must change
as e → e∗ = ζ

1/2
τ e or e → e∗ = ζ

1/2
s e, depending on the

corresponding (time-dependent or time-independent) part of
the Lagrangian. Consequently, the simple ζ−1

τ or ζ−1
s factors

appear in the expressions related to L∗
4. It is trivial to trace

the ζ−1 factor due to an infinite nuclear matter approximation
considered in the present work.2 Moreover, one can consider
the density as a constant parameter and all density functionals
become simply functions of the density parameter. In this
case, one can formulate a transparent minimization scheme
which allows the simple parametrization of medium functions
as discussed below in the present work.

A. Classical solitons

In infinite nuclear matter, using the spherically symmetric
hedgehog ansatz for the chiral field

U = exp{i �τ �nF (r)}, �n = �r/r, (12)

and the condition3

a∗2 = 2M2
−

�∗
mes

�∗ (13)

one obtains the following Lagrangian:

L∗ = −M∗
NP + a∗�∗

env, (14)

where

M∗
NP =

√
α0

p

ζs

m∗(β), (15)

m∗(β) = 4πFπ

e

∫ ∞

0
dx x2

{
1

8

[
F 2

x + 2 sin2 F

x2

]

+ sin2 F

x2

[
F 2

x + sin2 F

2x2

]
+ β2

2
sin2 F

2

}
, (16)

�∗ = (
α0

pζs

)−3/2(
α02

s �2 + ζ−1
τ α0

pζs�4
)
, (17)

�∗
mes = (

α0
pζs

)−3/2
�2, (18)

�∗
env = (

α0
pζs

)−3/2 	χ

2mπ

�2, (19)

�2 = 2π

3e3Fπ

∫ ∞

0
dx x2 sin2 F, (20)

�4 = 8π

3e3Fπ

∫ ∞

0

(
F 2

x + sin2 F

x2

)
x2 sin2 Fdx. (21)

Here we introduced the notation Fx = ∂F/∂x and the scaled
variable x = (α0

pζs)1/2eFπr and we defined the density-
dependent function

β2 =
(

m2
π

e2F 2
π

)
α00

s(
α0

p

)2
ζs

. (22)

2Some additional changes appear in describing the phenomena
related to finite nuclei and we will discuss them in a separate work.

3For more details, see Ref. [19].
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The corresponding equation of motion is obtained by
variation of the Lagrangian in Eq. (14) and has the form

(x2 + 8 sin2 F )Fxx − x2β2 sin F (1 − 2a∗γ 2 cos F )

+ 2xFx +
(

4F 2
x − 4 sin2 F

x2
− 1

)
sin 2F = 0, (23)

where we defined another density function

γ 2 = 	χ

12m3
πα00

s

= 	χ

24ρ0α00
s

. (24)

Therefore, the classical solution F depends on the two
parameters β and γ : F = F (x; β, γ ). The boundary conditions
have the forms

F → π − ax, x → 0,
F → b (1 + β̃x)x−2 e−β̃x , x → ∞,

β̃ = β
√

1 − 2a∗γ 2

and satisfy the baryon number one (B = 1) solution.

B. Quantum solitons

Considering the time-dependent rotations in isotopic space,
one can get the following time-dependent Lagrangian (see
Ref. [19]):

L∗ = −M∗
NP − M2

−�∗
mes + ω2

1 + ω2
2

2
�∗

+ (ω3 + a∗)2

2
�∗ + (ω3 + a∗)�∗

env, (25)

where �ω is the angular velocity of the spinning skyrmion.
Furthermore, defining the canonical conjugate variables in
the body-fixed reference system Ti = ∂L∗/∂ωi and using the
canonical quantization method one obtains from the time-
dependent Lagrangian in Eq. (25) the following Hamiltonian:

Ĥ = M∗
NP + M2

−�∗
mes + �∗2

env

2�∗ + T̂
2

2�∗ −
(

a∗ + �∗
env

�∗

)
T̂3.

(26)

By sandwiching the Hamiltonian between the appropriate
baryon states one determines the energy of a nucleon in nuclear
matter and the corresponding neutron-proton mass difference
due to the strong interactions:4

	m∗
np = a∗ + �∗

env

�∗ . (27)

Finally, one gets the in-medium masses of the nucleons,

m∗
n,p = mS∗

N − 	m∗
npT3, (28)

where

mS∗
N = M∗

NP + 3

8�∗ + �∗

2

(
a∗2 + �∗2

env

�∗2

)
(29)

is the isoscalar part of the nucleon’s mass and T3 is the third
component of isospin.

4During our practical calculations, we will ignore the electromag-
netic part of the neutron-proton mass difference, while its density
dependence is found to be very weak (e.g., see Ref. [19]).

IV. NUCLEAR MATTER

In order to discuss the properties of nuclear matter, let
us introduce two free parameters: the density parameter λ =
(ρn + ρp)/ρ0 in terms of the normal nuclear matter density ρ0

and the isospin asymmetry parameter δ = (ρn − ρp)/ρ.
It is known that the ground-state properties of finite nuclei

are described very well by the semiempirical mass formula.
Consequently, one can write the binding energy per nucleon
in the form

ε(A,Z) = −aV + aS

(N − Z)2

A2
+ · · · , (30)

where the first term is the volume part and the second term
is the asymmetric part. The surface, Coulomb, and pairing
terms are indicated by dots. They can be ignored at zero
temperature and in the thermodynamic limit with an infinite
number of baryons distributed in an infinite volume. Therefore,
the isospin asymmetry parameter δ can be expressed as
δ = (N − Z)/A. In terms of the asymmetry parameter, the
binding energy formula takes the form

ε(λ, δ) = −aV (λ) + εS(λ)δ2 + O(δ4)

≡ εV (λ) + εA(λ, δ), (31)

where εS(λ) is known as the symmetry energy.

A. Symmetric matter

In the case of symmetric matter (N = Z), the volume term
in Eq. (30) is a functional of the nuclear density and its
minimization gives the desired equation of state (EoS). Here, in
order to perform the similar task, we define the volume term as

εV (λ) = 1
2 [m∗

p(λ, 0) + m∗
n(λ, 0)] − mS

N

= mS∗
N (λ, 0) − mS

N, (32)

where m∗
n,p(λ, 0) are the masses of nucleons in symmetric

nuclear matter and mS
N = (mp + mn)/2 is the isospin-averaged

mass of the nucleons in free space.
If the volume term is fixed one can discuss the thermody-

namic properties of symmetric nuclear matter. First of all it will
be interesting to analyze the pressure. The density dependence
of the pressure is given by the formula

p = ρ
∂ ẼV (ρ)

∂ρ
− ẼV (ρ) = ρ0λ

2 ∂εV (λ)

∂λ
, (33)

where

ẼV ≡ EV (ρ)

V
= εV (ρ)

A

V
= λεV (λ)ρ0 (34)

is the binding energy per unit volume in symmetric matter.
Another important quantity is the compressibility of nuclear

matter, K0, defined as

1

9
ρK0 = 1

K th
. (35)

Here K th is the thermodynamic isothermal compressibility and
is defined as

1

K th
= ρ

∂p

∂ρ
= ρ2

(
2

∂εV

∂ρ
+ ρ

∂2εV

∂ρ2

)
. (36)
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Consequently, at the equilibrium point (∂εV /∂ρ = 0), one can
get the widely used expression of the compressibility

K0 = 9ρ2 ∂2εV

∂ρ2

∣∣∣∣
ρ=ρ0

= 9λ2 ∂2εV

∂λ2

∣∣∣∣
λ=1

. (37)

B. Asymmetric matter

In order to reproduce the symmetry energy and discuss the
properties of related quantities, we rewrite the binding energy
per nucleon given in Eq. (31) as

ε(λ, δ) = Zm∗
p(λ, δ) + Nm∗

n(λ, δ)

A
− Zmp + Nmn

A
. (38)

Then, using the definition of the volume term in Eq. (32), one
can define the asymmetric part of the binding energy as

εA(λ, δ) = ε(λ, δ) − εV (λ)

= mS∗
N (λ, δ) − mS∗

N (λ, 0) + [	m∗
np(λ, δ) − 	mnp]

δ

2
.

(39)

Consequently, the symmetry energy is defined by the formula

εS(λ) = 1

2

∂2εA(λ, δ)

∂δ2

∣∣∣∣
δ=0

= 1

2

∂2

∂δ2

(
mS∗

N (λ, δ) + 	m∗
np(λ, δ)

δ

2

)
δ=0

. (40)

The peculiarities of the symmetry energy can be studied by
considering the Taylor series near the normal nuclear matter
density λ = 1:

εS(λ) = εS(1) + LS

3
(λ − 1) + KS

18
(λ − 1)2 + · · · . (41)

Here LS and KS are the quantities related to the slope and the
curvature of the symmetry energy, respectively.

V. RESULTS AND DISCUSSION

It is necessary to note that our goal is not to fine-tune
and reproduce the exact quantitative values of experimental
observables; we will rather concentrate on the analysis at a
qualitative level. Nevertheless, when possible, we try to be
more accurate at a quantitative level too.

A. Symmetric matter

In the case of symmetric nuclear matter (	χ = 0) the
solutions depend only on one parameter β, F = F (x; β, 0),
and one can easily calculate the β dependence of m∗, �2,
and �4. One can also ignore the term proportional to M2

−
in Eq. (29) while this term is several orders smaller relative
to the first and second terms. This situation corresponds to
the isospin-symmetric mesonic sector, i.e., mπ± = mπ0 , and,
consequently, M− = 0. Further, in order to simplify calcu-
lations we assume that α02

s = ζ−1
τ α0

pζs . Then the symmetric
nuclear matter can be parametrized in terms of three variational
parameters C1, C2, and C3 as shown below. If we define the
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FIG. 1. (Color online) The volume energy εV as a function of
normalized density λ = ρ/ρ0. The parameters of medium functionals
are given in Table I: the solid curve corresponds to Set I, the dashed
one to Set II, and the dotted curve to Set III. Akmal-Pandharipande-
Ravenhall predictions [68] are marked by stars.

three medium functions

1 + C1λ = f1(λ) ≡
√

α0
p

ζs

, (42)

1 + C2λ = f2(λ) ≡ α00
s(

α0
p

)2
ζs

, (43)

1 + C3λ = f3(λ) ≡
(
α0

pζs

)3/2

α02
s

, (44)

the binding energy per nucleon in symmetric matter Eq. (32)
becomes

εV = f1m
∗(f2) + 3f3

8{�2(f2) + �4(f2)} − mN, (45)

while β = β(f2) [see Eq. (22)]. Now one can easily reproduce
the symmetric-matter properties by relating the variational
parameters C1, C2, and C3 to the value of the volume term
εV (ρ0), to the stability of nuclear matter p(ρ0) = 0, and to
the compressibility of nuclear matter, K0 = K(ρ0), at the
saturation density ρ0.

The results of the minimization procedure are presented in
Fig. 1, where the density dependence of the volume term εV (λ)
in terms of the normalized nuclear matter density λ is shown.
For comparison, we present also the Akmal-Pandharipande-
Ravenhall (APR) predictions (see the model A18 + δv + UIX∗
in Ref. [68]). The values of the corresponding variational
parameters and the coefficients of symmetric matter at sat-
uration density are listed in Table I. One can see that the

TABLE I. The variational parameters and the coefficients of the
volume term at the saturation density ρ0. Here the isospin-breaking
effect in the mesonic sector is ignored, i.e., M− = 0.

Set C1 C2 C3 εV (ρ0) K0 Q

(MeV) (MeV) (MeV)

I −0.279 0.737 1.782 −16 240 −410
II −0.273 0.643 1.858 −16 250 −279
III −0.277 0.486 2.124 −16 260 −178
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FIG. 2. (Color online) The pressure p in symmetric matter as a
function of normalized density λ = ρ/ρ0. The parameters of medium
functionals are given in Table I: the solid curve corresponds to Set I,
the dashed one to Set II, and the dotted curve to Set III.

parameters defined in Set III reproduce results similar to the
APR predictions.

Here it is necessary to note that the compressibility of
symmetric and infinite nuclear matter, within the various
approaches [69–74], is found to be K0 ∼ 290 ± 70 MeV.
Therefore, by fitting the symmetric-matter properties we
choose the compressibility value in that given range.

The quantity in the last column of Table I is proportional
to the third derivative of the volume term at saturation density
ρ0 and is defined as

Q = 27λ3 ∂3εV (λ)

∂λ3

∣∣∣∣
λ=1

. (46)

Our predictions for Q are qualitatively similar to the results
from other approaches. For example, the Hartree-Fock ap-
proach, based on Skyrme interactions [75] and the isospin-
and momentum-dependent interaction (MDI) model [76] gives
qualitatively similar results. Another example is the ratio
Q/K0; in the present model one has Q/K0 ≈ −1.71 for
K0 = 240 MeV while the phenomenological momentum-
independent model (MID) [77] gives the result Q/K0 ≈ −1.6.

It is also interesting to analyze the density dependence of
pressure. The pressure p in symmetric matter as a function
of normalized density λ is shown in Fig. 2. Our results are
consistent with the results deduced from experimental flow
data and simulations studies by Danielewicz et al. [78].

B. Asymmetric nuclear matter

In isospin-asymmetric matter, there will be additional term
proportional to δ2, i.e., the term containing γ 2 in Eq. (23).
Consequently, the solutions and the corresponding integrals,
m∗, �2, and �4, become γ dependent. In the present section
we mainly concentrate on the symmetry energy and discuss
the solutions corresponding to δ � 0. Therefore, in the first
approximation one may assume that the solutions are still
δ independent, i.e., F � F (x; β, 0). We note that if M− =
0 then the solutions become exactly γ independent [see the
Lagrangian in Eq. (14)]. In this case, the symmetry energy has

the form

εS(λ) = 1

4

{
∂2

∂δ2

[
�∗

env

�∗ (�∗
env + δ)

]}
δ=0

= C4λmπ�2

8α02
s �

(
C4λmπ�2

4α02
s f3(λ)

+ 1

)
, (47)

where we defined

	χ = m−1
π C4 δρ = 0.5m2

πC4λδ (48)

and introduced the new variational parameter C4. To
parametrize asymmetric matter we need one more parameter
C5. Here we consider two possible variants. In the first case,
one can assume that the medium function α0

p is given by
pion-nucleus scattering data and has the form [24]

α0
p = 1 − 4πc0ρ

η + 4πg′c0ρ
, (49)

where c0 = C5m
−3
π is the p-wave scattering volume, g′ = 0.7

is the correlation parameter, and η = 1 + mπ/mS
N is the

kinematic factor. This situation corresponds to the in-medium

spatial part of the pion decay constant: F ∗
π,s = Fπ

√
α0

p. In

the second case, one can assume that α02
s is given by an

approximate expression [19]

α02
s = 1 + C5m

−1
π ρ, (50)

which corresponds to the in-medium temporal part of the
pion decay constant: F ∗

π,t = Fπ

√
α02

s . As soon as α0
p or α02

s

is defined, all medium functionals are completely defined
according to Eqs. (42)–(44).

Now let us discuss the asymmetric-matter properties. The
symmetry energy εS as a function of the normalized nuclear
matter density λ is given in Fig. 3 and the additional parameters
are listed in Table II. The quantities in the last two columns,

Kτ = KS − 6LS, K0,2 = Kτ − Q

K0
LS, (51)

represent the correlations between symmetric- and
asymmetric-matter properties.
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FIG. 3. (Color online) The symmetry energy as a function of
normalized density λ = ρ/ρ0. The solid curve corresponds to Eq. (49)
and to the parameters defined by Set II, while the dashed one
corresponds to Eq. (50) and to the parameters defined by Set II (see
Tables I and II). APR predictions [68] are marked by stars.
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TABLE II. Three sets of parameters which reproduce the asymmetric-matter properties. The variational parameters C4 and C5 are chosen
in such a way that, at saturation point p(ρ0) = 0, the values of the symmetry energy εS and its first derivative LS/3 are reproduced in the
commonly adopted range. Other parameters are defined in Table I and are used in the approximation M− = 0.

Set C4 C5 εS(ρ0) (MeV) LS (MeV) KS (MeV) Kτ (MeV) K0,2 (MeV)

C5 is defined by Eq. (49)
I 2.367 0.037 32 60 −411 −591 −488
II 2.356 0.036 32 60 −405 −585 −518
II 2.228 0.035 32 60 −418 −598 −557

C5 is defined by Eq. (50)
I 4.249 −0.1370 32 60 −127 −307 −204
II 4.258 −0.1372 32 60 −126 −306 −239
III 4.290 −0.1373 32 60 −124 −304 −263

There are different predictions [69–72,79–84] of nuclear
symmetry energy at densities higher than the normal nuclear
matter density and, in general, they are classified into two
types: stiff or soft. Stiff symmetry energy is characterized by a
monotonically increasing behavior when the density of nuclear
matter increases, while soft symmetry energy, after increasing
at subnormal nuclear matter densities, starts to decrease at
supranormal densities. Our results belong to the soft symmetry
energy class if one starts from Eq. (49) and assumes that the
spatial part of the pion decay constant decreases in the nuclear
medium. In contrast, if one starts from Eq. (50) and assumes
that the temporal part of the pion decay constant decreases in
the nuclear medium the results belong to the stiff symmetry
energy class. In both situations, either Eq. (49) or (50) is used
as an input form, the symmetry energy in the present model is
quiet insensitive to the different model parameters presented in
Table I. It is necessary to note that all three sets of parameters
in the lower part of Table II well fit the APR predictions [68]
(see Fig. 3). The results are consistent also with the result from
the MDI [76] and MID models [77].

The parameter LS is related to the neutron-skin thickness
of the nuclei. The recent analysis of the data from heavy-ion
collisions [79] and neutron-skin experiments [80] give the
prediction L

exp
S = 70 ± 20 MeV. In general, our results are

consistent with the results from other approaches. For example,
in relativistic mean-field approaches there are mainly two
classes: (i) small εS(ρ0) ∼ 30 MeV and small LS ∼ 50 MeV
(BSP, IUFSU∗, and IUFSU) and (ii) large εS(ρ0) ∼ 37 MeV
and large LS ∼ 110 MeV (G1, G2, TM1∗, and NL3) [85]. Our
results correspond to the region somewhere in between those
two classes.

Let us discuss the third coefficient, the compressibility
of asymmetric matter. Usually, the value of the combina-
tion Kτ = KS − 6LS is discussed instead of KS (e.g., see
Ref. [81]). There are also considerations including up to
third-order derivatives of binding energy on the nuclear density
(for example, see Ref. [82]). We follow the definition of
Kτ used in Ref. [81] in discussing the third parameter
in the symmetry-energy term. But here one essential point
must be underlined: Experimental knowledge about the third
parameter Kτ is very poor. Some predictions for estimated
errors may exceed several times the absolute value of Kτ .
This is because the compressibility of the asymmetry term
Kτ , at normal nuclear matter density is strongly correlated

with the behavior of asymmetric matter at high densities. As
we already mentioned, the properties of asymmetric matter at
supranormal nuclear matter densities are not well established.
Analysis of the data related to the phenomenology of giant
monopole resonances give quite different predictions for Kτ .
For example, Kτ ∼ −320 ± 180 MeV is predicted in Ref. [69],
and values range from −566 ± 1350 MeV to 139 ± 1617 MeV
in Ref. [70] to −550 ± 100 MeV in Ref. [83]. Recent analysis
of the isotopic transport ratios in medium-energy heavy-ion
reactions predict the value −500 ± 50 MeV [81] and we
also have more or less similar results in the case of the soft
symmetry energy class (see the upper part of Table II).

As we already mentioned, the quantity K0,2 represents
the correlations between symmetric- and asymmetric-matter
properties [see Eq. (51)]. For example, the phenomenologi-
cal momentum-independent model predicts −477 � K0,2 �
−241 MeV [77]. Our predictions from Sets II and III corre-
sponding to the stiff symmetry energy class also belong to that
range (see lower part of Table II).

It is interesting also to analyze the low-density behavior
of the symmetry energy. An analysis of the giant dipole
resonance (GDR) of 208Pb with Skyrme forces predicts
the following values of symmetry energy at subnormal nu-
clear matter density: 23.3 < εS(ρ = 0.1 fm−3) < 24.9 MeV
[86]. For comparison, our results are 23.218 MeV (Set I),
23.223 MeV (Set II), and 23.238 MeV (Set III), respectively.

The pressure p in asymmetric matter as a function of
normalized density λ is shown in Fig. 4. Again our results are
consistent with the results deduced from experimental flow
data and simulations studies by Danielewicz et al. [78].

For completeness, the binding energy per nucleon ε(λ, δ) in
symmetric matter (solid curve) and in neutron matter (dashed
curve) are shown in Fig. 5. One can see that our results are
consistent with the APR predictions [68] in both cases.

C. M− �= 0 corrections

If one tries to be more correct, without ignoring the term
proportional toM2

− in Eq. (29), the binding energy per nucleon
in symmetric matter, Eq. (32), takes the form

εV = f1m
∗(f2) + 3f3

8{�2(f2) + �4(f2)}
+ (

α0
pζs

)−3/2M2
− �2 − mN. (52)
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FIG. 4. (Color online) The pressure p in asymmetric matter as a
function of normalized density λ = ρ/ρ0. The parameters of medium
functionals are given in Table II [C5 is defined by Eq. (50)]: the solid
curve corresponds to Set I, the dashed one to Set II, and the dotted
curve to Set III.

The results of a minimization procedure in this case are given
in Table III. One can see that ignoring isospin-breaking effects
in the mesonic sector practically does not change the results.

The symmetry energy is defined by asymmetric matter
near δ = 0. Therefore, the values of its coefficients presented
in Table II also practically do not change after M− = 0
corrections have been taken into account. However, in the pure
neutron matter case one should estimate the contributions to
the asymmetry energy εA(λ, δ) from terms higher than O(δ2).
This is now an easy task while all of the medium functions
are already defined. Let us estimate the contribution from the
term containing γ 2 in Eq. (23). First of all we note that α00

s

increases with increasing density and remains at the order of 1
in the present work. Furthermore, a∗ is at the order of an MeV
and in the case of neutron matter one has

2a∗γ 2 = a∗C4λ

12mπα00
s (λ)

∼ 10−3λ � 1
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FIG. 5. (Color online) The energy per nucleon ε(λ, δ) as a func-
tion of normalized nuclear matter density λ = ρ/ρ0. The parameters
are taken from Model II (see the lower part of Table II). The
solid curve represents symmetric nuclear matter (δ = 0) while the
dashed curve represents neutron matter (δ = 1). For comparison, APR
predictions [68] are marked by crosses and stars.

TABLE III. The variational parameters and the coefficients of the
volume term at the saturation density ρ0. Here the isospin-breaking
effect in the mesonic sector is taken into account, i.e., M− = 0. C5

is defined by Eq. (50) and its values are given in Table II.

Set C1 C2 C3 εV (ρ0) K0 Q

(MeV) (MeV) (MeV)

I −0.279 0.737 1.782 −16 240 −411
II −0.274 0.644 1.858 −16 250 −280
III −0.276 0.488 2.120 −16 260 −179

for the given values of C4 in Table II. Consequently, one can
ignore the γ dependence in solutions F = F (x; β) and ignore
terms higher than O(δ2) in the EoS for pure neutron matter.

VI. SUMMARY AND OUTLOOK

We have considered an in-medium modified chiral solitonic
model which takes into account the isospin-breaking effects in
the mesonic sector and reproduces the corresponding isospin-
breaking effects in the baryonic sector. We have discussed the
interplay between the isospin-breaking effects in the nuclear
medium and the modifications of asymmetric nuclear matter
properties. The results are in qualitative and quantitative
agreement with the phenomenological indications and the
results from other approaches.

The approach can be extended to the case of finite nuclei
using the local density approximation as has been done in
Refs. [19,20]. At this stage one should adjust the densities
of the finite nuclei and, then, one can evaluate the contri-
butions from the surface and Coulomb terms. Moreover, the
calculations of the polarization-transfer double ratio R during
the proton knock-out, 4He(�e, e′, �p)3H and 16O(�e, e′, �p)15N,
reactions can also be done easily.

In relation to the properties of finite nuclei one can make
here a quick comment. Initial studies of mirror nuclei proper-
ties in the framework of an in-medium modified Skyrme model
could qualitatively describe the Nolen-Schiffer anomaly, but at
the quantitative level there was a big discrepancy between the
theoretical calculations and the experimental indications [20].
That big discrepancy was a result of the large renormalization
of the nucleon’s in-medium effective mass. Artificial cor-
rections of the in-medium nucleon mass lead to the correct
description of NSA at the quantitative level too (see Table II
in Ref. [20] and the corresponding discussions). It is expected
that the present version of the model naturally reproduces
the correct order of the NSA while the effective mass of the
in-medium nucleon is not much changed.

It will be also interesting to apply the ideas of the present
work to solitonic approaches where the Skyrme term is
replaced by the explicit mesonic degrees of freedom, as is
done in Ref. [87] in the case of symmetric nuclear matter.
Then the model can be used for discussions of vector meson
properties in asymmetric nuclear matter.

Summarizing the peculiarities of our model one may ask,
“How far can one go in studying low-energy nuclear many-
body problems at least at the qualitative level?” The answer
may indicate whether the approach can be used for providing
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descriptions at the quantitative level. Our main purpose in
future work will be to address these questions. The ideas and
outcome results from the present approach would be useful in a
more consistent theory describing nuclear many-body systems,
their constituents, and interactions among the constituents on
the same footing, starting from the same Lagrangian. The
in-medium modified Skyrme model may serve as a simple
case with the simplest self-consistent Lagrangian.
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