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Strength of the scissors mode in odd-mass Gd isotopes from the
radiative capture of resonance neutrons

J. Kroll,1,* B. Baramsai,2 G. E. Mitchell,2 U. Agvaanluvsan,3 F. Bečvář,1 T. A. Bredeweg,4 A. Chyzh,2

A. Couture,4 D. Dashdorj,3 R. C. Haight,4 M. Jandel,4 A. L. Keksis,4 M. Krtička,1 J. M. O’Donnell,4
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Radiative neutron capture reaction was measured in the resolved resonance region for 152,154,156,158Gd targets
with the Detector for Advanced Neutron Capture Experiments γ -ray calorimeter at the Los Alamos Neutron
Science Center. The γ -ray energy spectra for different multiplicities were obtained for several s-wave resonances
in each nucleus. These spectra were analyzed within the extreme statistical model to provide unique information
on the photon strength functions and especially on the scissors mode in odd Gd isotopes. The main result of this
analysis is that in all nuclei scissors-mode resonances are built on excited levels and not only on their ground
states. The strength of the mode found in 153Gd and 155Gd is comparable to the strength observed in well-deformed
even-even Gd isotopes while it is substantially higher in 157,159Gd. The difference in observed strengths of the
scissors mode indicates an existence of an even-odd effect in this quantity.
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I. INTRODUCTION

In medium and heavy mass nuclei detailed information
about the properties of nuclear levels and transitions between
them usually exists only at low excitation energies. In this
region the spacing between levels is sufficient to observe
individual γ transitions and to place them in the level scheme.
As the nuclear level density (NLD) rapidly increases with the
excitation energy it becomes impossible to resolve transitions
between individual levels and determine their intensities using
the present state-of-the-art of γ spectroscopy.

It is believed that average γ -decay properties of levels in this
region of high NLD can be described by the extreme statistical
model in terms of the NLD and a set of photon strength
functions (PSFs) for different types and multipolarities of
transitions. Knowledge on these quantities is important for the
correct description of reaction rates in many different reactions
and is especially needed in nuclear astrophysics and in the
development of advanced nuclear reactors.

One of the ways to examine PSFs and NLD at excitation
energies up to the neutron separation energy is via study of the
properties of spectra of γ rays accompanying neutron capture
at isolated neutron resonances. The subject of this paper is
analysis of these spectra measured for 152,154,156,158Gd targets
at isolated s-wave neutron resonances using the highly seg-
mented Detector for Advanced Neutron Capture Experiments
(DANCE) detector array [1,2] installed at the pulsed neutron
beam at the Los Alamos Neutron Science Center (LANSCE)
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at Los Alamos National Laboratory [3]. Neutron resonances
are resolved using the neutron time-of-flight (TOF) technique.
Thanks to the high granularity of the DANCE array, we could
measure the γ -ray spectra of interest separately for individual
multiplicities of the observed γ cascades.

The primary aim of these measurements was to obtain
information on the role of the scissors-mode (SM) magnetic-
dipole nuclear vibration in the γ decay of excited heavy
deformed nuclei and to clarify whether the strength of this
type of vibration in odd nuclei is the same as in even-even
nuclei. Our previous results for 155,157Gd targets, based on the
same method, which are addressing a wider range of problems
concerning PSFs, have been published [4,5].

The existence of the SM, predicted from theory [6,7], has
been confirmed in high-resolution electron inelastic scattering
experiment at low momentum transfer on 156Gd [8]. Much in-
formation on SM properties in even-even nuclei was obtained
by analyzing the intensities of ground-state M1 transitions
in (γ ,γ ′) reaction [9]. These experiments established that the
γ -ray energy at which the enhancement of M1 transitions due
to the SM reaches a maximum in rare-earth nuclei is close
to 3 MeV. In addition, it was found that the total reduced
M1 strength,

∑
B(M1)↑, belonging to the SM is proportional

to the square of the nuclear deformation [10] and reaches
a maximum of ≈ 3μ2

N. The SM strength observed in (γ ,γ ′)
experiments with odd nuclei represents only a fraction of the
true strength due to difficulties in the analysis caused by the
significantly higher NLD in these nuclei. As a consequence,
properties of the SM in odd nuclei are not that well established.

In addition to (γ ,γ ′) and (e, e′) experiments, the SM was
also studied via radiative neutron capture, and in (3He,3He′γ )
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and (3He,αγ ) reactions. Analysis of γ -ray spectra from
radiative neutron capture [4,11,12] and from 3He-induced
reaction [13–15] demonstrated that the SM enhances not only
the ground-state transitions, but also plays an important role
in transitions between excited levels.

Moreover, the data from two-step cascades (TSCs) follow-
ing thermal neutron capture in 162Dy also indicated that the
strength of the mode in odd 163Dy is significantly higher than
that in neighboring even-even nuclei [9],

∑
B(M1)↑≈ 6μ2

N
[11]. However, 3He-induced reaction data do not seem to
show any odd-even effect on the strength of the mode. The
strength from these reactions in both even-even and odd
nuclei is comparable to that obtained in Ref. [11]. The main
goal of this paper is to shed more light on the behavior of
the SM in odd Gd nuclei and to clarify whether the SM
strength is stronger compared to that in even-even deformed
nuclei.

In Sec. II the experimental technique used to measure the
γ spectra with the DANCE calorimeter is described. The
modeling of the statistical γ cascades, an important ingredient
of our analysis, is described in Sec. III. The results of this
analysis based on comparison of the measured and simulated
γ -ray spectra are presented in Sec. IV and compared with other
available experimental data in Sec. V. A summary is provided
in Sec. VI.

II. EXPERIMENT

A detailed description of the experimental setup and the
data processing steps has been published [4,16,17]; here
we describe only the basic features related to obtaining the
experimental spectra analyzed in this paper.

A. Setup

The experiment was performed at the neutron source
LANSCE [18]. The pulsed 800 MeV H− beam from the
LANSCE linac was injected into the proton storage ring after
being stripped to H+ by a thin foil. The nominal proton current
was 100 μA. The proton-pulsed beam is then extracted with a
repetition rate of 20 Hz and strikes a tungsten spallation target.
A white spectrum of neutrons with energies from subthermal
up to about 1 MeV is obtained. These neutrons are sent to flight
path 14 at the Manuel Lujan Jr. Neutron Scattering Center. The
DANCE detector array is installed at 20 m on this flight path.

The DANCE spectrometer [1,2] is designed for studying
neutron capture cross sections on small samples. DANCE
consists of 160 BaF2 scintillation crystals surrounding a
sample and covering a solid angle of �3.5π . Each crystal
serves as a γ spectrometer. A 6-cm thick 6LiH shell is placed
between the sample and the BaF2 crystals in order to reduce
the scattered neutron flux striking the crystals. The remaining
background due to scattered neutrons that penetrate the 6LiH
shell and interact with the BaF2 crystals is subtracted in the
offline analysis. In addition to the BaF2 crystals, the DANCE
setup includes two detectors that are used to monitor the
neutron flux—a proportional counter filled with BF3 + Ar gas,
and an n-type surface barrier Si detector, which views a thin
layer of 6LiF.

The DANCE acquisition system [19] is based on dig-
itization of signals from all 160 detectors using four-
channel Acqiris DC265 digitizers with a sampling rate of
500 megasamples per second.

Intensities of the fast (τ ≈ 600 ps) and the slow (τ ≈
600 ns) components of the scintillation signal from a specific
BaF2 crystal are collected independently. The ratio of these
two components of the signal is used for discrimination against
the α background from natural radioactivity of Ra, which is
inevitably present in the BaF2 crystals [2].

For each detected neutron capture event the acquisition sys-
tem recorded the neutron time-of-flight belonging to the event
and the list of the crystals that fired simultaneously together
with the corresponding detector pulse-height information. All
of this information was stored in list mode for offline analysis.

The energy calibration of the individual DANCE crystals
was performed with a combination of radioactive γ -ray
sources: 137Cs, 88Y, and 22Na and the intrinsic radioactivity
in the BaF2 crystals due to 226Ra and its daughters. The latter
calibration was conducted on a run-by-run basis to provide
energy alignment of all crystals in the offline analysis.

The detection efficiency of the DANCE detector array for
a 1 MeV γ ray is 86% and the total efficiency for detection of
a photon from a cascade exceeds 95%. The energy resolution
is about 16% and 7% for 1 and 6 MeV γ rays, respectively.

The 156Gd and 158Gd targets were prepared at the Oak
Ridge National Laboratory as self-supporting metal foil. The
152Gd and 154Gd targets were prepared at Lawrence Livermore
National Laboratory by electroplating enriched Gd on Be foil,
which was glued to an aluminum ring. Isotopic composition
and thickness of the targets are listed in Table I. Data were
accumulated for about 100 hours for each target.

TABLE I. Information related to Gd targets. In addition to isotopic composition and the average thickness of the Gd targets used in the
measurements, the neutron separation energy Sn of the product nucleus is given together with the range of sum energies used in the data
processing (E(used)

� ), and the critical energy Ecrit used in simulations.

Target Isotope abundance (%) Aver. thick. Sn E
(used)
� Ecrit

152Gd 154Gd 155Gd 156Gd 157Gd 158Gd 160Gd (mg/cm2) (MeV) (MeV) (MeV)

152Gd 42.49 4.38 15.93 13.91 7.82 9.56 5.91 1.0 6.247 5.4–6.4 0.58
154Gd 0.05 67.34 21.11 5.65 2.24 2.32 1.29 1.0 6.435 5.8–6.6 0.66
156Gd 0.01 0.11 1.96 93.79 2.53 1.20 0.41 10.3 6.360 5.4–6.5 0.81
158Gd 0.1 0.1 0.96 1.7 3.56 92.0 1.82 9.3 5.943 5.2–6.2 0.71
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B. Data reduction and analysis

To ensure that the signals from individual BaF2 detectors
belong to the same event, a condition that they occur in a
10 ns coincidence window was imposed.

Often an emitted capture γ ray does not deposit its full
energy just in one crystal. Therefore the number of crystals
that fire is usually higher than the true multiplicity of a γ
cascade following the capture. In our approach all contiguous
crystals that have fired during an event are combined into a
cluster and considered as a response of the detector array to a
single γ ray. Hereafter, the number of clusters observed in a
capture event is referred to as the cluster multiplicity M . This
multiplicity is much closer to the true multiplicity of the γ
cascade of the event than is the crystal multiplicity, i.e., to the
total number of crystals that fire.

In the offline analysis of the list-mode data, we determined
the cluster multiplicity m and the γ -ray energies deposited in
all clusters for each capture event. Using the information on the
sum of deposited energies we then constructed the sum-energy
spectra for different multiplicities m corresponding to strong s-
wave neutron resonances, identified using the TOF technique.
An example of sum-energy spectra is given in Fig. 1. the spin
and parity assignment of these resonances is Jπ = 1/2+. The
TOF spectrum after its transformation to a neutron-energy
scale is shown in Fig. 2 for the 156Gd target.

Each sum-energy spectrum consists of (i) a full-energy
peak, occurring at the energy sum near the neutron separation
energy, Sn, of a given (n,γ ) reaction, and (ii) a low-energy tail
that corresponds to γ cascades for which a part of the emitted
energy escaped the detector array. In practice the position of
the peak is slightly shifted down with respect to Sn due to
a contribution of internal electron conversion for transitions
between the lowest levels of the product Gd nuclei. The shape
of the sum spectrum at low energies (<3 MeV) is strongly
influenced by the background from natural β activity in the
BaF2 crystals for multiplicity m = 2. As only events with a
sum of deposited energies exceeding 5 MeV are used in our
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FIG. 1. (Color online) Experimental sum-energy spectra for
cluster multiplicities M � 2 for two neutron resonances of 156Gd
target nucleus. Individual spectra were normalized as described in
the text. Only events in the gray area were used for construction of
MSC spectra.
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FIG. 2. Time-of-flight spectrum for 156Gd target after its trans-
formation to neutron-energy scale. There are 400 (exponentially dis-
tributed) neutron energy bins per decade. Only events corresponding
to m = 2–7 and detected energy sum in the region of 5.4–6.5 MeV
were considered.

analysis, see the intervals E
(used)
� in Table I, the role of this

background is not important.
As seen from Fig. 1, at energies exceeding Sn the intensities

of sum-energy spectra are not zero. The dominant part of this
effect, especially for low multiplicities, comes from the capture
of scattered neutrons in Ba in the BaF2 crystals. For higher
multiplicities, there is also a small contribution from neutron
captures on impurities in samples, which are mainly the odd
isotopes 155,157Gd.

We restricted our further analysis to events, which con-
tribute to the full-energy peak in the sum-energy spectra. The
ranges of sums of deposited energies, E(used)

� , we chose for this
purpose for individual (n,γ ) reactions studied are specified
in Table I. The range adopted for 157Gd product nucleus is
demarked in Fig. 1 by gray areas.

With these constraints we accumulated what we call
experimental multistep cascade (MSC) spectra. For a given
resonance, a MSC spectrum for multiplicity m was constructed
by incrementing counts in the m bins corresponding to energies
deposited in the m individual clusters for each event. The MSC
spectra with sufficient statistics were obtained for (i) seven
resonances of 152Gd at 12.4, 36.9, 39.3, 42.7, 74.3, 85.2, and
92.4 eV, (ii) six resonances of 154Gd at 22.3, 47.1, 49.5, 65.1,
100.7, and 124.0 eV, (iii) six resonances of 156Gd at 33.2, 80.1,
150.4, 198.5, 341.0, and 376.7 eV, and (iv) seven resonances of
158Gd at 22.3, 101.1, 242.7, 277.2, 344.8, 409.1, and 503.3 eV.
These spectra or their averages for individual nuclei were used
for further analysis.

There is a background in the MSC spectra constructed
in this way, which arises from neutron capture on Ba in
the detector and on the odd Gd isotopes in samples. This
background was very small for strong resonances, see Fig. 2,
and was subtracted. The shape of the background in the
MSC spectrum for each multiplicity M was inferred from
off-resonance regions. The absolute size was then obtained
with the help of the sum-energy spectra for energies above the
full-energy peak.

To facilitate the comparison of the data with model
predictions, all sum-energy and MSC spectra for a given
resonance were normalized such that the number of counts in
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FIG. 3. (Color online) Experimental MSC spectra for three
neutron resonances of 156Gd target nucleus. Spectra for individual
resonances were normalized as described the text.

the gray area in Fig. 1 is the same. In this way it was ensured
that the integral of the sum-energy spectrum for multiplicities
m = 2–7 in the E

(used)
� range took a prefixed value common

for all resonances. Only multiplicities m = 2–7 were used in
the analysis. The spectrum for m = 1 is strongly dominated by
background contributions and was omitted from the analysis.
There are virtually no events for m � 8.

Experimental MSC spectra for three strong resonances in
156Gd(n,γ ) are shown in Fig. 3. The difference of MSC spectra
in other isotopes is similar. As seen from the figure, the spectra
from different resonances are very similar, especially for M >
2. They differ slightly from each other because of Porter-
Thomas fluctuations of the primary γ -transition intensities
[20]. This result also holds true for the other Gd isotopes.

For comparison with simulations the MSC spectra were
prepared in the form of histograms with a bin width of
250 keV, comparable to the detector resolution. The use of
these relatively wide bins facilitated the comparison between
the experimental and simulated MSC spectra by suppressing
the fluctuations without noticeably smearing the gross struc-
tures in these spectra.

III. SIMULATION OF MSC SPECTRA

The MCS spectra represent the main observables analyzed
in this paper. As they are products of an interplay between level
density and PSFs, they carry information on these quantities.
Unfortunately, the interplay is quite complex and one cannot
retrieve the PSFs and NLD directly from the MSC spectra.
Therefore we adopted a trial-and-error approach in which we
compared the experimental MCS spectra with the analogous
spectra obtained from simulations under various assumptions
about the shape and size of the NLD and PSFs. The degree
of agreement between the experimental and simulated spectra
allowed us to choose which of these models are most likely to
be valid.

A. Algorithms

In each trial we proceeded as follows. Based on the
statistical model, we simulated at random a γ cascade initiating
at neutron capturing level with spin and parity Jπ = 1/2+ and
determined subsequently the response of the DANCE array to
this cascade.

Repeating these steps many times we mimicked an outcome
of a fictitious experiment in which the product nucleus emits
cascades governed by the postulated NLD and PSFs for a given
trial. Then we followed the steps described in Sec. II B and
accumulated a set of simulated MSC spectra under the same
constraints as for the experimental MSC spectra.

The γ cascades were generated using the DICEBOX al-
gorithm [21], while the response of the detector array was
obtained from simulations of the detection process with the
aid of GEANT4 code [22].

In the DICEBOX algorithm, below some critical energy, Ecrit,
all of the characteristics of the decay scheme of a product
nucleus, i.e., the level energies, spins, and parities, as well
as their decay pattern, are taken from existing experimental
data. The choice of the critical energy was made with
care to guarantee that the information for energies below
Ecrit is complete. The required data on low-lying levels
for the isotopes of interest were taken from the ENSDF
database [23–26]. The values of Ecrit we adopted are listed in
Table I.

Above Ecrit the level system of the nucleus and its complete
decay scheme are generated with the DICEBOX algorithm
assuming the validity of an a priori chosen NLD function
ρ(E, J, π ) and PSFs for multipolarities E1, M1, and E2. All
higher multipolarities are neglected.

When generating transition intensities, a random partial
radiation width 	aγb for a transition between an initial level a
and a final level b is assumed to be

	aγb =
∑
XL

ξ 2
XLf (XL)(Eγ , T )E2L+1

γ

ρ(Ea, Ja, πa)
, (1)

where f (XL) stands for the photon strength functions for
transitions of type X (electric or magnetic) and multipolarity
L, and ξXL is a random number generated from a normal
distribution with zero mean and unit variance. This random
number ensures that the individual widths 	aγb fluctuate
according to the PT distribution [20]. The argument T stands
for nuclear temperature of the product nucleus exited at final
level b. This argument is optional, as only some of the models
considered in our analysis predict T -dependent PSFs. The
sum in Eq. (1) is over all allowed types and multipolarities of
transitions. Internal electron conversion, which is important in
transitions between the lowest excited levels in Gd isotopes, is
correctly treated throughout the simulations.

From the full set of partial radiation widths simulated
according to Eq. (1) decay branching intensities, Ia→b, for
transitions from initial levels a to various levels b are calcu-
lated. The ratio Ia→b = 	aγb/	aγ , where 	aγ = ∑

b′ 	aγb′ is
the total radiation width of the initial level a.

Hereafter the simulated system of all levels, together
with their branching intensities, is referred to as a nuclear
realization. Due to PT fluctuations of partial widths 	aγb, there
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is an infinite number of nuclear realizations that differ from
each other even for fixed models of PSFs and NLD. Therefore
any predicted simulated observable is subject to an inherent,
irreducible uncertainty originating from PT fluctuations of
the partial radiation widths. In each trial we simulated 20
independent nuclear realizations for each of the PSF and NLD
model combinations tested. Knowing all branching intensities
and level energies, a large number of random γ cascades, in
most cases 105, were generated separately for each nuclear
realization. Each of the simulated cascades started at the
neutron capturing level, which in our case was an isolated
Jπ = 1/2+ neutron resonance.

As already mentioned, the cascade γ -ray energies are
used as an input for the GEANT4-based simulation code to
account for the detector response in order to construct the
simulated MSC spectra. These MSC spectra, averaged over
the nuclear realizations, together with the rms values of their
inherent uncertainties were obtained and in the process of
trial-and-error compared with their experimental counterparts.
In addition, the total neutron radiation widths, which were
obtained directly from DICEBOX simulations, were compared
with the corresponding experimental values for individual
target nuclei.

B. Photon strength functions

1. Electric-dipole transitions

It is well known that for γ -ray energies above Sn the
electric-dipole (E1) transitions play a dominant role. The E1
PSF at these energies in axially deformed nuclei seems to be
consistent with the sum of two Lorentzian terms

f
(E1)
SLO (Eγ ) = 1

3(πh̄c)2

2∑
i=1

σGi
Eγ 	2

Gi(
E2

γ − E2
Gi

)2 + E2
γ 	2

Gi

. (2)

Here EGi
, 	Gi

, and σGi
are the parameters of the giant electric

dipole resonance (GEDR), which is split into two components
(i = 1 and 2) in axially deformed nuclei. The model given
by Eq. (2) is known as the Brink-Axel or standard Lorentzian
(SLO) model [27].

The SLO model describes the data from photonuclear
reactions very well. Unfortunately, the values of its parameters
EGi

, 	Gi
, and σGi

obtained from these data are not available for
the Gd nuclei of our interest. For this reason, in our simulations
we relied on values of EGi

, 	Gi
, and σGi

obtained from (γ, n)
reactions on the nearby nuclei 154Sm and 160Gd [28]. This
seems to be justified, as these parameters are expected to vary
smoothly with A. In addition, the (γ, n) data do not display any
pronounced odd-even A effect. In our case, the fit of f (E1) from
(γ, n) data on 154Sm and 160Gd is almost indistinguishable at
γ -ray energies below about 9 MeV. As for the interpretation
of the main observables—the sum-energy, the MCS spectra,
and the total resonance radiation width—our primary interest
was the sizes and shapes of f (E1) at Eγ < Sn.

Although there is essential agreement on the energy
dependence of the giant resonance at energies accessible
from (γ, n) experiments, the shape of the E1 PSF below the
neutron separation energy Sn is not well known. There are

many available parametrizations of the E1 PSF in this region
of γ -ray energies that modify the Lorentzian shape of the
low-energy tail of the GEDR. Usually one of two models is
used. The first one was proposed by Kadmenskij, Markushev,
and Furman [29] for the description of the E1 PSF at low Eγ in
spherical or weakly deformed nuclei and is known as the KMF
model. Although there is no justification for the applicability
of this model to well-deformed nuclei, it is often adopted for
these nuclei.

A second widely used model was proposed for spherical
nuclei by Chrien [30] in order to match the behavior of the SLO
model at energies near the GEDR maximum and the KMF
model at very low Eγ . This phenomenological model was
later generalized for deformed nuclei by Kopecky et al. [31]
by introducing an ad hoc parameter k. The systematics of
this parameter in Ref. [27] was based on the requirement to
reproduce the total neutron radiation widths. Since the width
strongly depends on the NLD model below Sn, as well as the
PSFs for other multipolarities, we considered the parameter k
to be a free parameter in our simulations. This model is known
as the enhanced generalized Lorentzian (EGLO) model. The
model, as introduced in Ref. [31], is

f
(E1)
EGLO(Eγ , T )

=
2∑

i=1

σGi
	Gi

3(πh̄c)2

[
A(Eγ , T ) + FK	Gi

(Eγ = 0, T )

E3
Gi

]
, (3)

A(Eγ , T ) = Eγ 	Gi
(Eγ , T )(

E2
γ − E2

Gi

)2 + E2
γ 	2

Gi
(Eγ , T )

. (4)

Here, the factor FK = 0.7 [29,32], and the temperature-
dependent width 	(Eγ , T ) is given by

	Gi
(Eγ , T ) = 	Gi

E2
γ + 4π2T 2

E2
Gi

[
k + (1 − k)

Eγ − E0
γ

EGi
− E0

γ

]
,

(5)

with the temperature T = T (E) ≡ √
(E − �)/a; E is the

excitation energy of a final level, E0
γ = 4.5 MeV [31], a

the shell-model NLD parameter and � the pairing energy.
The values of a were adopted from Refs. [33,34]. The values
of � were then obtained according to the formula for proton
pairing in Ref. [35]—it was assumed that there is no neutron
pairing in odd nuclei. Our results are insensitive to a change
of � of up to at least 200 keV.

The EGLO model, which was tested in our previous
Gd measurements [4,5] differed from the original model in
the second term on the right-hand side of Eq. (3), which
describes the behavior of the model at very low γ -ray energies.
Specifically, the model, which will be denoted as the modified
generalized Lorentzian (MGLO) in the following, assumed
that k ≡ 1 in this second term of Eq. (3), so that the expression
for the MGLO E1 PSF reads

f
(E1)
MGLO(Eγ , T )

=
2∑

i=1

σGi
	Gi

3(πh̄c)2

[
A(Eγ , T ) + 4π2 FK 	Gi

T 2

E5
Gi

]
. (6)
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The MGLO model is similar to the KMF one for k ∼ 2. For
the EGLO and MGLO models we decided to fix the parameter
E0

γ , but to let the parameter k vary in the simulations.
In addition, many other models of the E1 PSF can be

found in the literature. The RIPL-3 database [27]—probably
the database most widely used by experimentalists—lists
several additional closed-form models. These include the
so-called hybrid model (GH) [36], the generalized Fermi
liquid (GFL) model [37], and a family of modified Lorentzian
(MLO) models; there are at least three different MLO models
in the database. For a comprehensive description of all
these models, the reader is referred to Ref. [27]. Further, a
PSF model originating from Hartree-Fock-Bogoljubov (HFB)
calculations is in RIPL-3. All of these models have been tested
in our analysis. Many of them use values of EGi

, 	Gi
, and σGi

as parameters. The same values of these parameters as in the
SLO model were adopted in all models considered.

For a complete description of γ decay one needs informa-
tion on the PSFs at all excitation energies. In some models,
the dependence on any quantity other than Eγ is neglected.
This assumption is known as the Brink hypothesis [38],
which was formulated for E1 transitions originating from the
fragmentation of the GEDR. Experimental data from average
resonance capture [39] and from 3He-induced reaction [15]
seem to confirm at least the approximate validity of the
hypothesis in the region of excitation energies below Sn.

From the above list of closed-form models for E1 PSF,
only the SLO model is assumed to follow the strict form of the
Brink hypothesis. In addition, the hypothesis must be invoked
for the description of transitions between excited states in
combination with the E1 PSF from HFB calculations. The
remaining models predict a weak dependence of the PSF on
the nuclear temperature T .

The γ -ray energy dependence of the PSFs for several of
the models considered is shown in Fig. 4. There are two
curves for the KMF, MGLO, and MLO models of E1 PSF
shown. They indicate how these models change as a function
of temperature—the lower curve corresponds to T = 0 while
the upper one to T = √

(Sn − Eγ − �)/a. To keep the figure
readable we only display a representative sample of the
models.

In addition to the models listed above, a modification of
the KMF model, which satisfies the Brink hypothesis, a KMF
model with fixed temperature T (KMF-T model), is sometimes
used. This is especially true in the analysis of data measured
with the Oslo method [15,40], which relies on the validity
of the Brink hypothesis. During analysis of MSC spectra in
156Gd we found that simulations with this model reproduce
experimental spectra for T = 0.3 − 0.35 MeV [5]. This value
of T is in very good agreement with the value obtained
from Oslo measurements in deformed nuclei, usually T ≈
0.3 [14,15].

2. Magnetic-dipole transitions

Magnetic-dipole (M1) transitions also play an important
role in the decay of highly excited nuclear states below Sn. In
the mid 1970s, Hilton [6] and later Lo Iudice and Palumbo [7],
using the geometrical two rigid rotors model, and Iachello [41],

0 2 4 6
0

1x10-7

2x10-7

M1 model:
 SM+SF+SP

f (
M

eV
-3
)

E
γ
 (MeV)

E1 models:
 SLO
 KMF
MGLO (k =5)
MLO2

Experimental data:
 (n,γ) primaries - E1
 (n,γ) primaries - M1
156Gd ARC

FIG. 4. (Color online) Energy dependence of SLO, KMF, MGLO
(k = 5), MLO2 E1 PSFs models together with the composite f M1 =
f M1

SM + f M1
SF + f M1

SP model. For more detailed description see Secs.
III B 1 and III B 2. The experimental data for f (E1) and f (M1) in
155,157,159Gd, at energies 5.9, 6.0 and 5.1 MeV, respectively, are from
the RIPL database [32] (155,157Gd) and Ref. [42] 159Gd. Data from
average resonance capture (ARC) in 155Gd are from Ref. [37].

using the proton-neutron interacting boson model, predicted an
isovector M1 collective vibrational mode in deformed nuclei.
This mode, known as the scissors mode, was initially observed
for ground-state transitions in 156Gd by Bohle et al. [8] via
high-resolution electron inelastic scattering at low momentum
transfer.

A systematic study of ground-state transitions for Eγ �
4 MeV in even-even rare-earth nuclei was performed with the
(γ ,γ ′) reaction [9]. The low density of J = 1 states (average
spacing of several tens of keV) allows observation of a majority
of the dipole transition strength at these energies. In these
experiments the total observed M1 strength in the energy
range Eγ ≈ 2.5–4.0 MeV in even-even rare-earth nuclei is
fragmented into several transitions and is proportional to the
square of the nuclear deformation [10]. For well-deformed
nuclei the strength reaches

∑
B(M1)↑≈ 3μ2

N . All of the M1
strength in this energy range is usually ascribed to the SM.
The centroid of the SM strength is located near 3 MeV and is
almost independent of A in rare-earth nuclei [43].

The spacing between the levels near 3 MeV in odd nuclei is
of the order of keV, which is too small to resolve all transitions
populating these levels from the ground state. If fragmentation
of the SM strength follows the Porter-Thomas distribution,
a significant fraction of the strength has to be carried by
many weak transitions, which may not be detected. Therefore
the SM strength determined for odd nuclei from (γ, γ ′)
reaction is underestimated. This seems to be documented
by NRF experimental data—a significantly smaller total M1
strength is observed for odd nuclei compared to neighboring
even-even nuclei [44–46]. For example, data for two odd Gd
isotopes yield

∑
B(M1)↑= 0.34 and 1.02 μ2

N for 155Gd and
157Gd, respectively. This values are much lower than those for
neighboring even-even nuclei [9].
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Furthermore, as the type and multipolarity of the observed
transitions in odd nuclei cannot be easily determined in (γ, γ ′)
experiments, the strength carried by the observed transitions
from the ground state to the 3 MeV region may include a
contribution from E1 transitions. Usually all of the strength
observed in (γ ,γ ′) experiments on odd nuclei is attributed to
the SM contribution.

Attempts to estimate the missing strength in (γ, γ ′) reac-
tions were made. The aim was to reconcile the data on the full
M1 strength for odd nuclei with those for even-even nuclei.
For this purpose a fluctuation analysis of the γ -ray spectra was
developed [46,47]. However, for 163Dy this type of analysis
does not work properly [44]. Thus, the fluctuation-based
corrections of the NRF data for missing strength in the
remaining odd nuclei studied seem questionable.

Later, the analysis of data on TSCs following thermal
neutron capture in 162Dy suggested that a resonancelike
structure of M1 character and equal strength couples not
only to the ground state, but also to all levels in 163Dy [11].
It is thus natural to assume that the SM obeys the Brink
hypothesis. A similar finding was corroborated by the behavior
of MSC γ -ray spectra obtained from isolated resonances of
odd Gd nuclei [4,5] and also by data on 3He-induced photon
production [13].

The analysis of TSC spectra in Ref. [11] indicated that
the reduced SM strength in odd 163Dy is higher compared
to that deduced from (γ, γ ′) measurements on neighboring
even-even nuclei. The total SM strength reported in Ref. [11]
is

∑
B(M1)↑≈ 6.2μ2

N . Comparable strength of the scissors
mode in odd and even-even nuclei was reported from 3He-
induced reactions on Dy nuclei [15,40]. Interestingly, data
from the same reaction yielded about 1.7 times higher strength
of the SM in odd 167Er than in even-even 166Er [48]. The
total strength reported in Ref. [15] is ≈6 − 7μ2

N for all Dy
nuclei. However, the SM strength deduced from 3He-induced
reactions depends strongly on the assumed shape of the E1
PSF and may be significantly smaller, see the discussion in
Sec. V.

The data from (n, γ ) and 3He-induced reactions indicate
that the SM is pronounced in the M1 PSF as a resonance-
like component with a half width of ≈0.7 − 1.5 MeV. The
maximum of the resonance structure is close to 3 MeV in
the (n, γ ) reaction, while it is slightly shifted down—to about
2.7–2.8 MeV—in data from the latter reactions.

Our recent analysis of MSC spectra from resonance
neutron capture in the odd 155,157Gd isotopes indicated [4,5]
that the strength of the SM in even Gd nuclei is slightly
smaller than the total M1 strength observed for ground-state
transitions from the (γ ,γ ′). In addition, a nonresonant part
of M1 strength f

(M1)
SP must be added to the SM in order to

reproduce experimental MSC spectra. It was also observed
that the parameters of the SM determined from studies of
3He-induced reactions in neighboring even-even Dy isotopes
[14,15,40] were not consistent with our data on even-even Gd
isotopes.

The M1 strength is more complex than just the contribution
of the SM. Usually, one of two models is used for the remaining
part of the M1 strength. In the spin-flip (SF) resonance
model, f

(M1)
SF (Eγ ), it is often assumed that the resonance has

a Lorentzian shape with an energy of about 7 MeV and a
width of 4 MeV [27], while in the single-particle (SP) model,
f

(M1)
SP is a constant independent of γ -ray energy. The M1

strength corresponding to the spin-flip mode was obtained
from inelastic proton scattering on several even-even rare-earth
nuclei [49]. A double-humped structure was observed between
5 and 10 MeV and we adopted this form of the SF resonance in
our simulations. The Lorentzian shape was assumed for both
resonance components. In some cases a sum of the strengths
from the two models, f (M1)

SP and f
(M1)
SF , is used for the M1 PSF.

In our earlier analysis of MSC spectra in even-even Gd isotopes
[4,5] we were only able to reach a reasonable agreement
between the simulations and experiment with a composite
model for M1 strength: f (M1) = f

(M1)
SM + f

(M1)
SF + f

(M1)
SP with

f
(M1)
SP ≈ (1 − 2.5) × 10−9 MeV−3.

In our simulations the SM was always represented with a
single Lorentzian resonance term and the search for the SM
parameters was the main focus of this work. The absolute
values of the SP and SF models were adjusted to obtain the
ratio of R = f (E1)/f (M1) ≈ 7 at 7 MeV. This value seems to
be reasonably well determined in rare-earth nuclei from aver-
age resonance capture experiments [39]. In models adopting
the sum of SP and SF contributions, we varied f

(M1)
SP and

adjusted the size of the SF contribution to reproduce the ratio
R. The strict validity of the Brink hypothesis was assumed for
SP and SF M1 models.

The γ -ray energy dependence of an M1 PSF, given by
the sum of SP, SF, and SM contributions, is shown in Fig. 4.
The parameters of the scissors mode were ESM = 2.9 MeV,
	SM = 1.0 MeV, and σSM = 0.5 mb. The SP strength was
adjusted to f

(M1)
SP = 2 × 10−9 MeV−3 and the size of the SF

contribution was adjusted to obtain the ratio R ≈ 7 at 7 MeV
with respect to the KMF model for E1 PSF.

3. Electric-quadrupole transitions

In addition to dipole transitions, electric quadrupole (E2)
transitions might also play a role in neutron resonance
decay. We found that E2 transitions are not important in the
interpretation of our data; we adopted a simple single-particle
model (f (E2)

SP = const.) in our simulations. The strength of
f

(E2)
SP was taken to reproduce the ratio of partial radiation

widths at about 7 MeV measured in average resonance
capture experiments in even-even deformed nuclei, which is
	(E1)/	(E2) � 100 [39].

C. Nuclear level density

There are many NLD models in the literature. We tested
three different models for the energy dependence of the NLD.
Two of them were given by closed-form formulas: (i) the back-
shifted Fermi gas (BSFG), and (ii) the constant-temperature
(CT) model [33]. There are two adjustable parameters in each
of these models. Two different parameter sets were tested for
each of these NLD models; they were taken from von Egidy
and Bucurescu [33,34]. The spin dependence of the NLD for
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adjusted following two parametrizations according to Refs. [33,34].
For comparison, the experimental data from Ref. [14] on the NLD
for 161Dy are also plotted. Different predicted absolute values at
Sn = 5.94 MeV originate from the different spin distributions in the
models. The resonance spacing of s-wave resonances [27] is the same
in all models.

both of the models was adopted in the standard form [27,33,
34]; no parity dependence was assumed above Ecrit.

In addition to these closed-form models, we also tested the
NLD calculated within the Hartree-Fock-Bogoljubov (HFB)
approach. This density is available in tabulated form as a
function of energy for levels with each spin and both parities
[27,50].

In order to bring the calculations into agreement with
experimental data, the HFB level density was multiplied
by a constant factor to reproduce the spacing of s-wave
neutron resonances. Even after this absolute renormalization,
the model may fail to reproduce the number of levels at very
low excitation energies—this happened for 157,159Gd. In this
case, additional renormalization of the energy dependence of
the HFB NLD model must be applied [27].

All known levels below Ecrit are taken into account in the
simulations. The level density formula is thus applied only
above this energy. There are NLDs inferred from 3He-induced
measurements in neighboring odd Dy isotopes [14,15]. The
energy dependence of NLD in 161Dy seems to be much closer
to that given by the BSFG model than by the CT model, see
Fig. 5.

IV. RESULTS FROM MSC SPECTRA

Several hundred model combinations of PSFs and NLD
functions were used in simulations for each Gd isotope.
To quantify the degree of agreement between the simulated
and experimental MSC spectra, extremely time-consuming
simulations would be needed as contents of individual bins in
MSC spectra are mutually correlated in a complicated fashion
and the corresponding correlation matrix is not known a priori.
As a consequence, the degree of agreement was only checked
visually. Proper quantitative characterization of the degree of

the agreement would require simulations of an extremely large
number of nuclear realizations.

To characterize uncertainties due to Porter-Thomas and
NLD fluctuations we do not plot a set of spectra calculated
for individual realizations, but only the standard confidence
region of spectral intensity, characterizing the behavior of this
set. This confidence region is plotted in Figs. 7–11 in form of a
gray band; each band has a width of two sigma (the average ±
one sigma) with the mean and sigma taken from the 20 nuclear
realizations. The size of fluctuations among the experimental
spectra for different resonances is reasonably well reproduced
by the simulations.

We should stress that within the enormous domain of PSFs
and NLD functions the adopted trial-and-error method does not
guarantee finding a model and its parameters yielding the best
agreement between simulated and experimental MSC spectra.
Nevertheless, we did find several combinations of PSFs and
NLD function, which lead to reproduction of the experimental
spectra, see below.

As an influence of the E2 PSF on the shape of simulated
MSC spectra is negligible, we restrict the discussion only on
the NLD, E1 and M1 PSFs.

A. Nuclear level density

With the CT model for the NLD, we found that for any of
Gd isotopes studied none of the tested combinations of PSFs
yielded an acceptable prediction of the MSC spectra. On the
other hand, for all of the nuclei studied we were able to find
several PSFs models, see below, which reproduce the data in
combination with the BSFG model.

A slightly better agreement with experimental MSC spectra
is obtained with the older parametrization of the model [33].
The new parametrization [34] cannot be ruled out, which
illustrates the limited sensitivity of our analysis to the spin
dependence of the NLD. The difference in the spin distribution
can be seen from Fig. 5—the total level density near Sn is
rather different in the two BSFG parametrizations despite
the fact that the spacing of s-wave resonances is the same.
Using the calculations based on the HFB approach for NLD
in our simulations of the MSC spectra for 153Gd and 155Gd
we reached an acceptable agreement with experiment. For two
heavier isotopes 157,159Gd the agreement is not as good as
with the BSFG model even if a renormalization of the energy
dependence was applied to this model. However, we cannot
completely rule out this model for any of the isotopes studied.

B. Electric dipole PSF

An acceptable agreement between simulated and experi-
mental MSC spectra was obtained with several models of the
E1 PSF. Specifically, for all nuclei a reasonable reproduction
of the MSC spectra was obtained with the KMF, KMF-T, GH,
MLO1, MGLO, and SLO models.

In the case of the MGLO model, the range of optimum
values of the parameter k in simulations for 153,155Gd was
found to be k ≈ 1.5–3.0, while for 157,159Gd we needed k ≈
2.5–5.5. With the KMF-T model agreement was achieved with
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FIG. 6. (Color online) A comparison between averaged experi-
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was over the full set of strong J π = 1/2+ resonances with energies
specified in Sec. II B. For convenience, the MSC intensities were
rescaled to ensure that the sum of areas under the MSC spectra over
all m is the same for all four nuclei.

a temperature of T = 0.25–0.40 MeV. For the 157,159Gd nuclei,
an acceptable agreement between simulations and data was
also reached with the MLO2 and MLO3 models. On the other
hand, the simulations that relied on the GFL, EGLO, and HFB-
based models were found to be in sharp disagreement with the
experimental MSC spectra. In addition, as will be apparent
from further discussion in Sec. V, it is very unlikely that the
SLO model is valid.

Our analysis did not allow us to make a unique choice
out of the above-listed acceptable models for the E1 PSF. As
discussed below, this is at least partly an artifact of the strong
role of SM M1 strength at Eγ ≈ 3 MeV. This drawback did
not allow us to say much about the E1 PSF, but did give us
more confidence in the parameters determined for the SM.
The limited sensitivity of our experiments to the E1 strength
prevented us from confirming or rejecting the need for the
temperature dependence of the E1 PSF.

C. Magnetic dipole PSF

The MSC spectra for all isotopes have similar shapes.
Specifically, there is a pronounced bump in the middle of
the M = 2 spectra. A distinct bump is also present between
2 and 3 MeV in the M = 3 spectra. As the mass of the nucleus
increases, the bump in the M = 2 spectrum becomes more
pronounced and at the same time the intensity of the spectrum
for M > 3 becomes weaker, which is apparent from Fig. 6.

The presence of this bump indicates that a PSF includes
a resonancelike component with a maximum near 3 MeV.
Without postulating such a component our simulations could
not reproduce the bump in the experimental MSC spectra, see
the example shown in Fig. 7.

Further, comparison of simulations with experimental MSC
spectra clearly shows that the resonance enhancement near
3 MeV of the postulated photon strength does not lead to a
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FIG. 7. A comparison between the averaged experimental MSC
spectra for 157Gd (solid line) and the simulated spectra for cluster
multiplicities m = 2, 3, 4, and > 4. The simulations assumed the
BSFG model for the NLD, the KMF model for the E1 PSF, and the
SF model for the M1 PSF, neglecting any resonancelike structure
at Eγ ≈ 3 MeV in a PSF. The simulated MSC intensities and their
uncertainties are represented by gray areas, see the main text. The
relative uncertainties of the experimental MSC intensities are less
than 2%.

good agreement if it is attributed purely to E1 transitions.
This is documented for the case of 157Gd in Fig. 8. A similar
disagreement was found for all remaining nuclei. We note
that the sensitivity of the MSC spectra to the multipolarity
responsible for the bump in MSC spectra is substantiated by
the fact that the parity of s-wave resonances is opposite to that
of the ground state for each of odd Gd nuclei.

We can not unambiguously distinguish between the M1
and E2 character of that part of the resonance enhancement
responsible for the bump in the MSC spectra. This is because
the sensitivity of these spectra to both multipolarities is very
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FIG. 8. A comparison between the averaged experimental MSC
spectra for 157Gd (solid line) and the simulated spectra. The
simulations were performed assuming the BSFG model for the NLD,
and the SF model for the M1 PSF. For the E1 PSF a combination of
the KMF model and a Lorentzian resonance structure postulated at
3 MeV was used. For other details see the caption of Fig. 7.
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SM + f M1
SF + f M1

SP ; f M1
SP = 2 × 10−9 MeV−3. The SM parameters

as well as the energies of neutron resonances for each product nucleus are indicated.

similar, due to the same parity selection rules for M1 and
E2 transitions. Nevertheless, we interpret the bump as an
artifact of a resonancelike component of the M1 PSF. This
interpretation is corroborated by the enhanced M1 ground-
state transitions observed near 3 MeV in (γ, γ ′) reactions on
deformed nuclei.

Adding a Lorentzian term into the M1 PSF the simulations
led to excellent agreement between the experimental and
simulated MSC spectra. This agreement was achieved for all
odd Gd nuclei studied and for several E1 PSF models, see
above. This is illustrated for the MGLO model in Fig. 9.

In an attempt to find the best agreement between sim-
ulations and experiment, we proceeded as follows. (i) We
selected one of the models for the E1 PSF and NLD and
kept these models common to all four Gd isotopes studied.
(ii) We performed separate simulations of the MSC spectra for
individual isotopes for various combinations of values of SP
M1 PSF and SM parameters. (iii) Finally, we estimated values
of these parameters which provided the best agreement. Steps
(i)–(ii) were repeatedly performed using all of the E1 PSF and
NLD models listed in Sec. III. With this approach we found
the best parameter estimates for ESM (the centroid energy of
the SM), 	SM (the width of the SM), σSM (the maximum SM

cross section), and f
(M1)
SP for each choice of fixed E1 PSF and

NLD models. Naturally, these estimates differed from each
other for different E1 PSF models, but their variation was not
very large, which is documented in Table II, where the ranges
of parameter estimates are listed. The values in the Table II
correspond to the minimum and maximum acceptable values
and their ranges include uncertainties due to our inability to
decide which of the E1 PSF models is closer to the actual
photon strength.

We stress that in each simulation trial the Lorentzian SM
parameters were independent of excitation energy. In the
spirit of the Brink hypothesis, this agreement suggests that
the SM affects not only the ground-state transitions, as seen
from (γ, γ ′) data, but also transitions to any exited nuclear
level.

To examine this further, we undertook simulations assum-
ing that the SM is coupled only to the levels with energies
below certain excitation energy Emax. The result for 157Gd and
Emax = 3 MeV is displayed in Fig. 10. Rejection of this option
can be made with high confidence for all of the nuclei studied
and for Emax � 4–5 MeV. In practice, for higher values of
Emax we lose sensitivity as SM resonances built on levels above
4 or 5 MeV do not influence the decay following the resonance
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TABLE II. Minimum and maximum acceptable values of the SM parameters obtained from the analysis considering the KMF, KMF-T, GH,
MGLO, and MLO models of E1 PSF. For the SLO model the value of σSM would be much higher, see the text for discussion of this model. Values
for the even-even Gd isotopes, published in Refs. [4,5], are included. The meaning of the individual values of reduced transition probability∑

B(M1)↑ is explained in Sec. V D. Theoretical nuclear deformation parameters β2 for studied Gd nuclei are taken from Refs. [53,54].

Product ESM 	SM σSM �BNRF(M1)↑ �BNRF(SP + SF)↑ �Btot(SM)↑ β2

(MeV) (MeV) (mb) μ2
N μ2

N μ2
N [53] [54]

153Gd 2.8–3.0 0.9–1.3 0.2–0.25 1.7–2.3 0.3(2) 2.1–3.4 0.320 0.215
155Gd 2.5–2.7 1.0–1.2 0.2–0.4 1.8–3.4 0.6(1) 2.5–5.8 0.340 0.252
156Gd 2.7–3.1 0.8–1.4 0.07–0.32 1.6–2.5 0.5(2) 1.9–3.5 0.330 0.271
157Gd 3.0–3.1 0.8–1.2 0.6–1.0 4.0–6.1 0.1(1) 6.5–9.6 0.360 0.271
158Gd 2.8–3.1 0.6–1.6 0.07–0.25 1.3–2.2 0.5(1) 1.4–2.8 0.340 0.271
159Gd 2.9–3.1 0.8–1.1 0.6–1.0 3.9–6.2 0.1(1) 6.9–10.9 0.360 0.280

neutron capture. We also tried linear increase or decrease of
parameters ESM, 	SM, and σSM with excitation energy. The
results indicated that all of these parameters are very stable,
i.e., they do not vary significantly with excitation energy.

For 153,157,159Gd nuclei our values for the SM energy, ESM,
are very close to 3 MeV, see Table II. However, for 155Gd
nucleus this energy is apparently shifted towards lower values.
We have no explanation for this finding. The damping width
of the SM is in all cases very close to 1 MeV. As expected,
estimates of the parameters ESM and 	SM from simulations
were found to be insensitive to the postulated E1 PSF.

On the other hand, estimates of σSM differ more significantly
from each other for various considered E1 PSF models.
Referring to Table II, this sensitivity is reflected by a relatively
broad range of estimates of σSM. As an example, the E1
PSF values predicted by the MGLO model with k = 5 are
significantly higher compared to those corresponding to the
KMF or GH models in the SM energy region, see Fig. 4.

0

50

100

m = 2

In
te

ns
ity

 (
ar

b.
 u

ni
ts

)

0

100

200

300

157Gd

m = 4

0 2 4 6
0

100

200

300
m = 3

E
γ
 (MeV)

0 2 4
0

100

200
m > 4

E
γ
 (MeV)

(a) (c)

(b) (d)

FIG. 10. A comparison between the averaged experimental MSC
spectra for 157Gd and the simulated spectra. The KMF model was
adopted for the E1 PSF, while BSFG model for the NLD. For M1
PSF a model, the f

(M1)
SF + f

(M1)
SP component was assumed to follow

the Brink hypothesis while the SM resonance structure centered at
3 MeV and with strength of 7.2 μ2

N was considered only on levels up
to 3 MeV of excitation energy. The SM resonance in M1 PSF was
completely absent for transitions to higher excitation energies. For
details see the caption of Fig. 7.

Consequently, in order to reproduce the bumps in M = 2 and
3 in the experimental MSC spectra, higher values of σSM are
needed for the MGLO model as compared to those for the KMF
model. The sensitivity of σSM to the postulated E1 strength is
indeed observed: the values of σSM based on the validity of
the KMF or GH models are close to the lower limits for this
quantity, while the values for the MLO or MGLO models with
k ≈ 3–5 are near the upper limits from Table II.

In the SM γ -ray energy region the values of the E1 PSF
according to the SLO model are significantly higher than the
values predicted by the remaining E1 models, see Fig. 4.
To mimic the 3 MeV bump in experimental MSC spectra
assuming this E1 PSF model, values of σSM = 0.6–0.8 mb
and σSM = 1.6–2.0 mb would be required for 153,155Gd and
157,159Gd, respectively. These values are a factor of three higher
compared to what we obtained from simulations relying on
the other E1 PSF models. As shown in Sec. V, it is highly
unlikely that the SLO model can be a reasonable description
of the E1 PSF due to huge problems with the total radiative
width predicted by this model.

As mentioned in Sec. III B 2, in order to reproduce the
MSC spectra in even-even Gd isotopes [4,5] we needed to
use a composite model for the M1 strength: f (M1) = f

(M1)
SM +

f
(M1)
SF + f

(M1)
SP . The odd Gd nuclei are sensitive to the f

(M1)
SP

part of the M1 PSF. Adding f
(M1)
SP with the strength needed in

even-even nuclei, f
(M1)
SP ≈ (1–2.5) × 10−9 MeV−3, improves

the agreement between simulated and experimental MSC
spectra in 153,155Gd, but it does not significantly change the
agreement in 157,159Gd. If a larger f

(M1)
SP is used, the agreement

with experiment is worse. There is virtually no sensitivity to
the parameters of the SF mode used in simulations.

In spite of difficulties in determining the E1 photon
strength, we could still make several firm conclusions. Our
analysis indicated that values of σSM for 157,159Gd are higher,
by a factor of ≈3, compared to 153,155Gd. Although estimates
of σSM vary with the choice of an E1 PSF model, there is a
marked difference between the values of σSM for heavier and
lighter Gd nuclei, which persists with a fixed E1 PSF model.
The significance of this difference is apparent in Fig. 11 for
157Gd. It is clear that the estimated value of σSM from 153,155Gd
data, and also from even 156,158Gd data [4,5] is too low to
account for the bump at 3 MeV at the MSC spectra for 157Gd.
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FIG. 11. A comparison between the experimental MSC spectra
for 157Gd with simulations. The KMF model was adopted for the
E1 PSF, while BSFG model for the NLD. For M1 PSF a composite
f

(M1)
SF + f

(M1)
SP + f

(M1)
SM model, with the SM strength of 2.6 μ2

N was
used. This model nicely reproduced MSC spectra of 153,155Gd and
156,158Gd. For details see the caption of Fig. 7.

V. COMPARISON WITH OTHER DATA

A. Available data

There are several relevant measurements that provide
information on the PSFs at the low-energy tail of GEDR in
the A ∼ 150–165 mass region.

First, there are extensive data from the (n, γ ) reaction:
(i) values of the PSFs were obtained from the intensities
of primary transitions from resonance neutron capture in
155,157,159Gd [32], (ii) information on the PSFs was obtained
for two even Gd isotopes, 156,158Gd, from analysis of MSC
spectra [4,5], (iii) two-step cascade measurements provided
information on the PSFs in 163Dy [11] and 160Tb [51] including
the SM parameters, and (iv) information on the total radiation
widths of s-wave neutron resonances is available for all stable
isotopes [27,52].

Apart from the (n, γ ) reaction, data on mixed dipole
(E1-plus-M1) PSFs are available from 3He-induced γ pro-
duction for 160−164Dy isotopes [14,15]. In addition, data on γ
transitions from the ground states were available from (γ ,γ ′)
measurements [44–46] for all even-even rare-earth nuclei and
some odd nuclei in the same mass region, including 155,157Gd.

B. Total radiation width

The total radiation width of s-wave neutron resonances,
	γ , is the only quantity simulated with the DICEBOX code that
depends on the absolute values of the PSFs. All other simulated
observables depend only on the ratios of PSFs for different
types and multipolarities of transitions; more precisely, on
the energy-dependent ratios of PSFs but not on their absolute
values. The value of 	γ is a sum of contributions of different
transition types and multipolarities, in our case 	γ = 	(E1)

γ +
	(M1)

γ + 	(E2)
γ . The contribution from the E2 strength and the

SF M1 strength is very small—on the level of a few percent of
	γ . The possible contribution of the SP M1 is at most about

TABLE III. Contribution of different models to the total radiation
widths. The SM contribution corresponds to the width of the SM
	SM = 1.0 MeV in all cases and the maximum cross section σSM =
0.2, 0.3, 0.7, and 0.7 mb for 153,155,157,159Gd, respectively. The energy
of the SM was ESM = 3.0 MeV for all isotopes except 155Gd, where
it is 2.6 MeV.

	(E1)
γ or 	(M1)

γ (meV) 153Gd 155Gd 157Gd 159Gd

SLO 128(4) 127(3) 143(6) 140(9)
KMF 33(1) 35(1) 41(2) 38(3)
MGLO(k = 2) 34(1) 37(1) 44(2) 40(3)
MGLO(k = 5) 69(2) 71(2) 83(4) 77(6)
MLO1 60(2) 61(2) 69(3) 63(4)
MLO2 81(2) 81(2) 92(4) 88(6)
MLO3 70(2) 69(2) 77(3) 74(5)

SM 6(1) 12(1) 24(1) 24(2)

Experiment [32] 54(5) 75(6) 88(12) 105(10)
Experiment [52] 55(3) 74(3) 88(12) 90(6)

10% of 	γ . The implication is that about 85–95 % of 	γ comes
from the E1 PSF and M1 SM strengths. Experimental values
of 	γ together with predictions of individual models are listed
in Table III.

Based on the absolute values of the predicted 	(E1)
γ we

can exclude the SLO model for the E1 PSF. Noting that the
MSC spectra can only be reproduced with the BSFG model
for the NLD, 	(E1)

γ simulated with the SLO model is at least
about 130 meV in all nuclei studied, see Table III. In addition
a strong scissors mode, which would contribute from about
20 meV (in 193Gd) to about 60 meV (in 157,159Gd) to the 	γ

would be required in order to describe the MSC spectra in
combination with the SLO model. The simulated values of 	γ

are by a factor of two or three larger than the experimental ones.
The total radiation widths predicted with all other allowed E1
models are significantly smaller than with the SLO model, see
values in Table III.

As the Table III shows, if we use the same combination of
models of E1 PSF and NLD with the appropriate parametriza-
tion for all of the Gd isotopes studied, then we obtain very
similar values of 	(E1)

γ independent of the specific isotope.
The contribution of the SM with the same parameters 	SM and
σSM to 	γ is almost isotope independent. As a consequence,
if the same model of E1 PSF is assumed for all nuclei, the
main difference in the simulations arises from the size of the
SM which changes with isotope. This difference is at most
about 25 meV (if the SLO model for E1 is not considered);
the total contribution of the SM is at a maximum about 30 meV
in 157,159Gd. Experimentally, there is a systematic increase of
	γ with mass number A, see Table III. However, in models
reproducing the MSC spectra the contribution of the SM alone
is responsible for less than half of the increase of 	γ . This
strongly indicates that there must be a contribution from the
E1 strength to the observed increase, which further implies
that there is no universal parameter-free E1 PSF model in the
chain of odd Gd isotopes.

It should be emphasized that, except for the MGLO, all of
the models considered for the E1 strength failed to reproduce
the total radiation widths in all nuclei simultaneously. The
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success of the MGLO model is due to introduction of the free
parameter k, the adjustment of which for individual nuclei can
mimic the anticipated change of the E1 PSF with A. Any other
tested E1 PSF model has no free parameter. The value of the
parameter k of the MGLO model needed from the requirement
to reproduce 	γ reasonably well agrees with our results from
MSC spectra. Specifically, the increase of the parameter with
A, from about k ≈ 2 for 153Gd to k ≈ 5 for 159Gd, is needed
in both cases.

C. Intensities of E1 primary transitions

An acceptable model for the E1 PSF should also reproduce
the values of the E1 PSF obtained from the intensities of
primary transitions in the (n, γ ) reaction. As seen in Fig. 4, the
experimental uncertainties of the E1 PSFs are rather large and
do not provide any strong restriction on the E1 PSF model.
Nonetheless, the experimental value for 159Gd [42] seems to
provide support for our finding from analysis of MSC spectra
and 	γ that the E1 PSF in this isotope near Sn is higher
compared to that for lighter isotopes. The models which are
acceptable from our analysis in 159Gd predict a f (E1) that is
too small near 5.1 MeV compared to experimental data from
Ref. [42], but is still within two standard deviations.

In conclusion, all available experimental data on the E1
PSF—total radiation widths, intensities of primary transitions
and results from analysis of MSC spectra—seem to be fully
compatible with the MGLO model in which the parameter k
increases with the the mass of the Gd isotope. On the other
hand, all parameter-free E1 PSF models seem to be unable to
describe all odd Gd isotopes at the same time.

D. Scissors mode

As mentioned in Sec. III B 2, only a fraction of the
ground-state transitions is observed in the (γ ,γ ′) reaction on
odd nuclei. Comparison of our results with data from (γ ,γ ′)
is thus difficult since a correction for the unobserved strength
in the (γ ,γ ′) reaction must be performed. Unfortunately, the
estimated total M1 strength inferred from the measured (γ ,γ ′)
data depends significantly on how the correction is performed,
see [44,47].

There are additional complications with the comparison
of our results with data on the M1 strength from other
reactions. The strength determined by our analysis consists
of both the resonant (SM) and nonresonant (SP + SF) com-
ponent of M1 PSF. We can compare the sum of these
components in a restricted interval Eγ = 2.7–3.7 MeV for
which the (γ ,γ ′) data are available for all isotopes. On
the other hand, only the resonant part of the M1 strength
can be compared with the data from Oslo method. For
the sake of these comparisons, in Table II we list values
of three different sums of reduced transitions probability:∑

BNRF(M1)↑ corresponds to the total (SM + SP + SF) M1
strength in the energy interval 2.7–3.7 MeV (the strength
in this interval can be compared to the NRF measure-
ments),

∑
BNRF(SP + SF)↑ is a part of

∑
BNRF(M1)↑, which

corresponds only to the nonresonant SP + SF contribution,
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FIG. 12. (Color online) Comparison of reduced M1 strength
�BNRF(M1)↑ in odd A isotopes in the Eu-Ho region as a function of
the number of neutrons N . Our results are plotted together with NRF
data [9,44] and values coming from 3He-induced reactions [14,15].
The strength for odd-odd nucleus 160Tb, obtained in TSC experiment
[51], was added.

and
∑

Btot(SM)↑ is the total SM strength (summed over
all energies). The ranges of reduced transitions probabili-
ties quoted in Table II take into account the requirement
to reproduce MSC spectra, as well as the experimental
total radiation width (within 1.5 standard deviations), see
Table III.

The values of
∑

BNRF(M1)↑ obtained from different
experiments for odd nuclei in the Gd and Dy region are
also plotted in Fig. 12. The reason for the difference between
observed (γ ,γ ′) and data from other experiments has already
been discussed. Despite a very limited number of experimental
points there seems to be a reasonable agreement between (n, γ )
data and data from the Oslo method.

This agreement between our data and the Oslo data might be
due in part to the restricted interval of Eγ used in Fig. 12—the
SM energies and partly also widths are not the same in these
two types of experiments. The total SM strengths summed
over all γ -ray energies,

∑
Btot(SM)↑, for all available nuclei

in the Gd-Dy region are shown in Fig. 13. While our and Oslo
data seem to reasonably agree for odd nuclei there is a clear
disagreement for even-even nuclei with 94 neutrons: 158Gd
from the DANCE measurement and 160Dy from the Oslo data.
While our results give significantly smaller SM strength in
even 158Gd than in neighboring odd Gd isotopes, the Oslo
data yield comparable strength in odd and even Dy isotopes.
Unfortunately, the SM parameters and therefore the total SM
strength determined from the Oslo method depend strongly
on the temperature assumed for the E1 PSF model in the fit
to Oslo experimental data—the total SM strength depends on
the product 	SM × σSM which in some cases changes by a
factor of more than two in data from the same reaction [14].
The plotted values of

∑
Btot(SM)↑ from Oslo data, are from

Ref. [15] and correspond to the KMF-T model of E1 PSF with
T = 0.3 MeV.
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FIG. 13. (Color online) Comparison of the total reduced SM
strength �Btot(SM)↑ for Gd, Tb, and Dy isotopes as a function of the
number of neutrons N . Our results (for even-even nuclei see [4,5])
are plotted together with results from 3He-induced reactions [14,15]
and from analysis of TSC spectra in odd-odd 160Tb [51].

Our data for the A = 157–159 region clearly indicate an
odd-even effect in the SM strength. A definite conclusion
about the same effect for lighter Gd isotopes cannot be made
as the broad range allowed for the SM strength in 155Gd
partly overlaps with the strength in 156Gd, see Fig. 13. To
our knowledge there is no theoretical evidence for such an
odd-even effect.

The difference in the strength of the SM in odd Gd
isotopes could be, in analogy with ground-state transitions
in even-even nuclei, due to the change of nuclear deformation.
Unfortunately, the experimental deformation values are not
available for odd nuclei. However, values of the deformation
parameter β2

2 are available from two different calculations
[53,54], see Table II. The experimental deformations [55] in
neighboring even-even nuclei are close to the average value
from the two calculations. The results of these two calculations
were used to check the deformation dependence of the SM
strength, see Fig. 14. From the figure it is evident that the
quadratic dependence of the SM strength on deformation is
very likely inadequate in odd Gd nuclei and that we are far
from the dependence observed in the (γ ,γ ’) experiment on
even-even Sm nuclei [10].

VI. SUMMARY

Measurements of γ -ray spectra from strong s-wave neutron
resonances on isotopically enriched 152,154,156,158Gd targets
were performed using the DANCE detector array at the
LANSCE spallation neutron source. The MSC γ -ray spectra
obtained from these resonances were used to test the validity
of various PSF and NLD models for the odd Gd isotopes.

The main results of our analysis can be summarized as: (i)
The energy dependence of the NLD seems to be reasonably
well described with the BSFG model, while the dependence
predicted by the CT model is highly unlikely. (ii) There is no
universal E1 model acceptable for a simultaneous description
of the MSC spectra and the total radiation width for all four
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FIG. 14. (Color online) Comparison of the total reduced SM
strength �Btot(SM)↑ as inferred from DANCE measurements of
odd Gd isotopes as a function of square of nuclear deformation.
Values from two different calculations (Goriely et al. [53] and Moller
et al. [54]) are used for β2

2 . Fits to the experimental data assumed
zero strength for nondeformed nuclei. For comparison, the dotted line
shows the deformation dependence observed for even Sm isotopes by
Ziegler et al. [10].

odd Gd isotopes. The MGLO model with different values of
the parameter k is the only one of the tested models that can
reproduce all experimental data from the (n, γ ) reaction. (iii)
The experimental total radiation widths of the s-wave neutron
resonances indicate that the E1 PSF in studied nuclei is almost
surely not described by the Lorentzian extrapolation of the
GDER. To reach the Lorentzian shape at energies above Sn,
the energy dependence must be very steep at Eγ between
about 4 and 8 MeV. (iv) The shapes of MSC spectra are
compatible with the following two assumptions: first, there
is a resonance in M1 PSF near 3 MeV, which we identify
with the SM, that is built on all levels in nuclei studied, and
second, the shape of the SM can be described by the Lorentzian
curve. (v) Assuming the Lorentzian shape of the SM, the
total strength of the mode in odd Gd isotopes,

∑
Btot(SM)↑

increases with the mass number and estimated ground-state
deformation. The dependence of the SM strength on nuclear
deformation seems to be at variance with the quadratic
dependence on β2

2 observed in even-even nuclei from the
(γ ,γ ′) measurement. (vi) Observed SM strength in 157,159Gd
significantly exceeds the strength obtained from our previous
analysis of the MSC spectra for even-even nuclei 156,158Gd
[4,5]. The observed odd-even staggering does not seem to be
present in the Oslo data [14,15] and is not anticipated from any
theory.

In conclusion, it is evident that there are still many unre-
solved problems related to the PSFs and the NLD in deformed
nuclei. Further study of these quantities is therefore clearly
needed. In any case a reasonable simultaneous description of
all experimental MSC spectra presented in this work together
with the size of expected fluctuations in these spectra indicate
that the standard picture of compound nucleus and PSFs is
justified for a description of deformed rare-earth nuclei.
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