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Pair-truncated shell-model analysis for doubly-odd nuclei around mass 130
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Low-lying states for doubly-odd nuclei in the mass A ∼ 130 region are investigated using a pair-truncated shell
model. Energy levels of the low-lying states for doubly-odd nuclei, 132Cs, 130Cs, 134La, and 132La, are reproduced
very well along with the electromagnetic transitions. The analysis of the wave functions reveals band structure
for doublet bands built on the νh11/2 ⊗ πh11/2 configuration, showing various angular-momentum configurations
of the unpaired neutron and the unpaired proton, weakly coupled with the quadrupole collective excitations of
the even-even part of the nucleus.
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I. INTRODUCTION

The study of the nearly degenerate doublet bands in doubly-
odd nuclei is a subject of special interest in recent years. A
vast amount of the experimental information about such pairs
of bands built on the νh11/2 ⊗ πh11/2 configuration has been
accumulated in the mass A ∼ 130 region [1–9]. The excitation
mechanism of the doublet bands was explained by the nuclear
chirality in angular-momentum coupling, which was predicted
by Frauendorf and Meng [10]. In that picture, three angular
momenta of the even-even part of the nucleus, the unpaired
neutron, and the unpaired proton are perpendicular to each
other in the intrinsic frame. They can form either a left-handed
or right-handed geometrical configuration, which cannot be
transformed into one another by rotation. These configura-
tions are energetically equivalent, and two degenerate bands
are constructed as linear combinations of these. The chiral
structure of the doublet bands was investigated theoretically in
the framework of the tilted axis cranking model [1,2,6,11],
the particle-rotor model [3,12], and the core-quasiparticle
coupling model [5,7,13]. However, the results of many recent
experiments and analyses do not necessarily support this
interpretation [14–17].

The pair-truncated shell model (PTSM) provides a reason-
able theoretical framework for a full shell model to describe
the nuclear collective motions and the single-particle degrees
of freedom on equal footing [18–29]. In the simplest version
of the PTSM, the full shell-model space is restricted within the
SD subspace where angular momenta zero (S) and two (D)
collective pairs are used as the building blocks. In describing
odd-mass and/or doubly-odd nuclei, additional unpaired nu-
cleons are added to the even-even nuclear states. Based on this
framework, systematic studies were carried out for the even-
even and the odd-mass nuclei in the mass A ∼ 130 region, and
excellent agreement with the experimental data was achieved
for both energy levels and electromagnetic properties [24].
The same set of interactions was applied to doubly-odd
nuclei, and excellent agreement with the experimental data
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was achieved for the energy levels of the doublet bands and
the electromagnetic transitions, especially for the staggering
of the ratios B(M1; I → I − 1)/B(E2; I → I − 2) for the
yrast states [26–28]. Through the analysis of the PTSM
wave functions, it has been confirmed that the doublet bands
turn out to be constructed by a weak coupling of various
angular-momentum configurations of an unpaired neutron and
an unpaired proton, i.e., the chopsticks configurations [26,27],
with the quadrupole collective excitations of the even-even
part of the nucleus.

For a description of the doublet bands in doubly-odd nuclei,
we have recently proposed a simple but essential model,
i.e., a quadrupole coupling model (QCM) [30–33], where the
classical core representing the even-even part of the nucleus
couples with a neutron and a proton in the high-j intruder
orbitals through a quadrupole-quadrupole interaction. The
structure of the doublet bands in the mass A ∼ 130 region was
extensively studied in terms of the QCM, and good agreement
with the experimental data was achieved for both the energy
spectra and features of electromagnetic transitions [30,31]. By
analyzing the QCM wave functions, the excitation mechanism
predicted on the basis of the previous PTSM calculations
[26–28] has been reconfirmed.

The purpose of the present paper is to reinvestigate the
excitation mechanism of the doubly-odd nuclei, 132

55Cs, 130Cs,
134

57La, and 132La, in terms of the PTSM. The model space
and the effective Hamiltonian are defined as in our earlier
systematic calculations for the even-even, odd-mass, and
doubly-odd nuclei around the mass A ∼ 130 [29]; a doubly-
closed 132

50Sn core is used and the valence space consists
of five 0g7/2, 1d5/2, 1d3/2, 0h11/2, and 2s1/2 orbitals in the
major shell of 50 � N (Z) � 82 for neutrons (protons). The
effective interactions consist of single-particle energies and
monopole and quadrupole pairing plus quadrupole-quadrupole
interactions, whose strengths are assumed to be linearly
changed as functions of the number of nucleons so as to
describe the level schemes of the even-even and odd-mass
nuclei. In order to clarify the internal structure of the yrast
and yrare states built on the νh11/2 ⊗ πh11/2 configuration, a
powerful method is employed, where we construct the wave
functions with specific configurations in the shell-model space
and then calculate the overlaps between them and the yrast and
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yrare states. Detailed information on the internal structure of
these states can be obtained in this method.

The paper is organized as follows: In Sec. II, we give a
brief outline of the PTSM and its effective interactions in the
model space. In Sec. III, the PTSM calculations are carried
out for even-even nuclei, 132

54Xe, 130Xe, 134
56Ba, and 132Ba. In

Sec. IV, the same set of interactions is applied to the doubly-
odd nuclei, 132Cs, 130Cs, 134La, and 132La. Theoretical energy
spectra and electromagnetic properties are compared with the
experimental data. In Sec. V, we clarify the structure of the
doublet bands through the analysis of their wave functions.
In Sec. VI, we conclude the paper with a summary. In the
Appendix, we give a brief description of the specific wave
function that is used for the analysis of the doublet bands.

II. THEORETICAL FRAMEWORK

The nuclear shell model is one of the most successful
general models to describe various aspects of nuclear structure.
It is desirable to use the full 50–82 configuration space for
studying the doublet bands in the mass A ∼ 130 region, but the
shell-model calculation in this space is impractical at present
due to its huge dimension. To avoid this problem, we adopt the
PTSM [18–29], where the full shell-model space is restricted
within the subspace of collective pairs. In its simplest version
of the PTSM, i.e., the SD version of the PTSM, even-even
nuclear states are constructed by the S and D collective pairs.
The S and D pair-creation operators are defined as

S† =
∑

j

αjA
†(0)
0 (jj ), (1)

D
†
M =

∑
j1j2

βj1j2A
†(2)
M (j1j2), (2)

where the structure coefficients α and β are determined by a
variation in each nucleus as in Refs. [19,24,29]. The nucleon
pair-creation operator with angular momentum J , and its
projection M , is defined as

A
†(J )
M (j1j2) =

∑
m1m2

(j1m1j2m2|JM)c†j1m1
c
†
j2m2

= [
c
†
j1
c
†
j2

](J )
M

, (3)

where (j1m1j2m2|JM) stands for a Clebsch-Gordan coeffi-
cient, c†jm represents either a neutron-hole creation operator or
a proton-particle creation operator, and (j,m) represents a set
of quantum numbers necessary to specify the state (n, �, j,m).
In this mass region we treat neutrons as holes and protons as
particles so that N = 82 and Z = 50 become the nearest closed
shells. The S and D pairs are constructed in each neutron or
proton space separately.

A many-body SD-pair state of like nucleons is constructed
by applying the S and D pair-creation operators on the inert
core |−〉 as

|Sns Dnd (Iη)〉 = (S†)ns (D†)nd |−〉, (4)

where I is an angular momentum of the SD-pair state, and η is
an additional quantum number required to completely specify
the state. The numbers of the S and D pairs are denoted as

ns and nd , respectively. The angular-momentum coupling is
carried out exactly, but we abbreviate its notation.

In order to describe odd-mass and doubly-odd nuclei, we
need to expand the model space to include an unpaired nucleon
in addition to the SD-pair state [24,29]. If the nucleon creation
operator c

†
jm is applied to the SD-pair state, the odd-nucleon

state, i.e., the SD-pairs plus one-particle state, is constructed as

|jSns Dnd (Iη)〉 = c
†
j |Sns Dnd (I ′η)〉, (5)

where I ′ is the angular momentum of the SD-pair state, I is the
angular momentum of the SD-pair plus one-particle state, and
η is an additional quantum number. Due to this extension, the
PTSM can treat even-even, odd-mass, and doubly-odd nuclei
on the same footing. Using the SD-pair plus one-particle
state in both neutron and proton spaces, we can express the
many-body wave function of the doubly-odd nucleus as

|�(Iη)〉 = [|jνS
n̄s Dn̄d (Iνην)〉 ⊗ |jπSns Dnd (Iπηπ )〉](I ), (6)

where 2(n̄s + n̄d ) + 1 and 2(ns + nd ) + 1 are the numbers
of valence neutron holes N̄ν and proton particles Nπ ,
respectively. The SD-pair states and the SD-pair plus
one-particle states are generally nonorthogonal and the
Schmidt orthogonalization procedure is adopted.

As an effective interaction, we employ the monopole and
quadrupole pairing plus quadrupole-quadrupole interaction.
The effective shell-model Hamiltonian is written as

Ĥ = Ĥν + Ĥπ + Ĥνπ , (7)

where Ĥν , Ĥπ , and Ĥνπ represent the neutron interaction,
the proton interaction, and the neutron-proton interaction,
respectively. The interaction among like nucleons Ĥτ (τ = ν
or π ) consists of spherical single-particle energies, monopole-
pairing (MP ) interaction, quadrupole-pairing (QP ) interac-
tion, and quadrupole-quadrupole (QQ) interaction,

Ĥτ =
∑
jm

εjτ c
†
jmτ cjmτ − G0τ P̂

†(0)
τ P̂ (0)

τ

− G2τ P̂
†(2)
τ

˜̂P (2)
τ − κτ : Q̂τ · Q̂τ :, (8)

where :: represents normal ordering, and cjmτ is either a
neutron-hole annihilation operator or a proton-particle anni-
hilation operator. The monopole pair-creation operator P̂ †(0)

τ ,
the quadrupole pair-creation operator P̂

†(2)
Mτ , and the quadrupole

operator Q̂Mτ are defined by

P̂ †(0)
τ =

∑
j

√
2j + 1

2
A

†(0)
0τ (jj ), (9)

P̂
†(2)
Mτ =

∑
j1j2

Qj1j2A
†(2)
Mτ (j1j2), (10)

˜̂P (2)
Mτ = (−)MP̂

(2)
−Mτ , (11)

Q̂Mτ =
∑
j1j2

Qj1j2

[
c
†
j1τ

c̃j2τ

](2)
M

, (12)
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with

c̃jmτ = (−1)j−mcj−mτ , (13)

Qj1j2 = −〈j1‖r2Y (2)‖j2〉√
5

, (14)

where A
†(J )
Mτ (j1j2) stands for the nucleon-pair creation operator

given by Eq. (3).
The interaction between neutrons and protons Ĥνπ is taken

as

Ĥνπ = −κνπQ̂ν · Q̂π , (15)

where Q̂τ is the quadrupole operator defined by Eq. (12). In
the present scheme, harmonic oscillator basis states with the
oscillator parameter b = √

h̄/(Mω) are used as the single-
particle basis states. The detailed framework of the model is
reported in Refs. [24,29].

The shell-model Hamiltonian in Eq. (7) is diagonalized in
terms of the many-body basis wave functions in Eq. (6) as

Ĥ |Iπη〉 = E(Iπη) |Iπη〉 , (16)

where |Iπη〉 is the normalized eigenvector for the ηth state
with total spin I and parity π , and E(Iπη) is the eigenenergy
for the state |Iπη〉.

III. NUMERICAL RESULTS FOR EVEN-EVEN NUCLEI

For the nuclei in the mass A ∼ 130 region, several valence
neutron holes and valence proton particles are coupled to the
doubly-closed shells N = 82 and Z = 50. Since the valence
neutron holes (proton-particles) occupy the 0g7/2, 1d5/2, 1d3/2,
0h11/2, and 2s1/2 orbitals, we take into account the full
50 ∼ 82 configuration space for neutrons (protons), where
valence neutrons (protons) are treated as holes (particles).
For the single-particle energies and the interaction strengths,
we have used exactly the same values given by the set
of equations used in previous systematic studies of A ∼
130 nuclei [29]. The single-particle energies εjτ (τ = ν
or π ) employed in the present calculations are listed in
Table I.

The determined functional dependencies of the correction
terms σν and σπ to the constant single-particle energies are as
follows (in MeV):

σν = +0.02N̄ν + 0.06Nπ − 0.02, (17)

σπ = −0.02N̄ν − 0.15Nπ + 0.15, (18)

where N̄ν indicates the number of valence neutron-holes and
Nπ indicates the number of valence proton particles. Note that

TABLE I. Adopted single-particle energies εjτ (τ = ν or π )
for neutron holes or proton particles (in MeV). The numerals are
extracted from experimental excitation energies in Refs. [34–36],
and the correction terms σν and σπ are given in Eq. (18).

j 2s1/2 0h11/2 1d3/2 1d5/2 0g7/2

εjν 0.332 0.242 + σν 0.000 1.655 2.434
εjπ 2.990 + σπ 2.793 + σπ 2.708 + σπ 0.962 0.000

the experimental excitation energies of 131Sn are given when
N̄ν = 1 and Nπ = 0, and those of 133Sb are given when N̄ν = 0
and Nπ = 1.

For these valence spaces, the two-body interaction strengths
were determined by a least-squares fit of the low-lying energy
levels as for the even-even Xe, Ba, and Ce isotopes [29]. To
reproduce overall spectra of the preceding nuclei, the linear
dependence of the interaction strengths on the number of the
valence neutron holes and/or proton particles was introduced.
The adopted interaction strengths are as follows (G0 of MP
interaction in units of MeV, and G2 of QP interaction and κ
of QQ interaction both in units of MeV/b4):

G0ν = 0.150 − 0.010N̄ν − 0.002Nπ,

G2ν = 0.004 + 0.001N̄ν + 0.002Nπ,

κν = 0.070 − 0.001N̄ν + 0.001Nπ,

G0π = 0.150 − 0.010N̄ν, (19)

G2π = 0.008 − 0.0005N̄ν + 0.001Nπ,

κπ = 0.020 + 0.002Nπ,

κνπ = −0.060 − 0.001N̄ν + 0.002Nπ.

The concrete difference between the present and previous
PTSM calculations are as follows: In the previous PTSM
studies [26–28], the single-particle energies were extracted
from experimental excitation energies and were fixed constant
for all the nuclei. The previous results for even-even Xe, Ba,
Ce, and Nd isotopes reproduced well the energy levels for both
the yrast and quasi-γ bands and the intraband and interband
B(E2) values [24]. However, the previous results of the
odd-mass isotopes were not satisfactory enough to describe the
relative positions of the energy levels of positive-parity states
and those of negative-parity states, especially for proton-odd
nuclei. A similar situation was also seen in the previous PTSM
results for the doubly-odd nuclei [27]. The doublet bands with
the νh11/2 ⊗ πh11/2 configuration in theory were reproduced
higher in energy than experimental ones. These results clearly
indicate a need to shift the single-particle energy of the 0h11/2

orbital relative to the others. Thus, in the present study, we as-
sume that the single-particle energies of some orbitals besides
the 0h11/2 orbital change linearly with the number of valence
particles.

In Fig. 1, the energy spectra of the PTSM are compared
with the experimental data for even-even nuclei, 132Xe, 130Xe,
134Ba, and 132Ba. For all the nuclei, the calculations reproduce
well the energy levels for both the yrast band and quasi-γ
bands (the 2+

2 , 3+
1 , 4+

2 , 5+
1 , and 6+

2 states). The theoretical
E2 transition rates and branching ratios also agree well with
the experimental data. Some other details were presented in
Ref. [29].

IV. NUMERICAL RESULTS FOR DOUBLY-ODD NUCLEI

A. Energy spectra of yrast and yrare states
with νh11/2 ⊗ πh11/2 configuration

Using the set of the interaction strengths mentioned in
the previous section, the energy spectra are obtained for
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FIG. 1. (Color online) Comparison between experimental energy spectra (expt.) and those of the PTSM (PTSM) for (a) 132Xe, (b) 130Xe,
(c) 134Ba, and (d) 132Ba. The level sequences on the left represent the yrast states, and the level sequences on the right represent the 2+

2 , 3+
1 , 4+

2 ,
5+

1 , 6+
2 , and 0+

2 states. The experimental data are taken from Refs. [37–43].

doubly-odd nuclei. In Fig. 2 the experimental energy spectrum
based on the νh11/2 ⊗ πh11/2 configuration is compared with
the PTSM calculation for 132Cs (even-even core: 132Xe). In
experiment the 6+

1 , 7+
1 , and 8+

1 states are not observed, but
the PTSM calculation predicts the 6+

1 , 7+
1 , and 8+

1 states to lie
near the 9+

1 state. For the yrast states with spins greater than
9, calculated energy levels are in excellent agreement with the
experimental data. For the yrare states, the PTSM calculation
reproduces the observed levels at the correct positions, except
that some states are not found in experiment.

In Fig. 3, the energy levels of the low-lying states in theory
are compared with the experimental data for 130Cs (even-even
core: 130Xe). For the yrast states, calculated energy levels are
in good agreement with experiment. There is no experimental
evidence for the 6+

1 , 7+
1 , and 8+

1 states, but in theory the 6+
1 ,

7+
1 , and 8+

1 states appear slightly higher in energy than the 9+
1

state. For the yrare states, the PTSM calculation reproduces
the experimental energy levels, although the model predicts a
few low-spin states that are not experimentally observed.

In Figs. 4 and 5, the theoretical energy levels of the PTSM
are compared with the experimental data for 134La (even-even
core: 134Ba) and 132La (even-even core: 132Ba), respectively.
Similar to 130Cs, the 7+

1 and 8+
1 states are not found in

experiment for 134La. In the PTSM calculation, they are located
near the 9+

1 state. For higher spin states, the PTSM gives a
reasonable description for the energy levels of the yrast and
yrare states. In 132La, the experimental 7+

1 and 8+
1 states lie

lower in energy than the 9+
1 state. In theory the 7+

1 and 8+
1

states are a bit higher in energy than the 9+
1 state, but there

exists a one-to-one correspondence between the theoretical
and experimental levels. For an accurate description of the

ordering and position of these low-lying states, we may need
higher-angular-momentum pairs such as angular-momentum-
four (G) collective pairs and/or hexadecapole interactions,
both of which are missing in the present scheme.

B. Electromagnetic transitions

To clarify the band structure with the νh11/2 ⊗ πh11/2

configuration, we calculate the M1 and E2 transition rates
in the following. The M1 transition rate is calculated as

B
(
M1; Iπ

η → Jπ
ξ

) = 1

2I + 1
|〈Jπξ‖T̂ (M1)‖Iπη〉|2, (20)

where |Iπη〉 represents the wave function for the ηth state with
total spin I and parity π given by Eq. (16). The M1 transition
operator is defined as

T̂ (M1) = μN

√
3

4π

∑
τ=ν,π

[g�τ ĵ τ + (gsτ − g�τ )ŝτ ], (21)

where μN [=eh̄/(2mc)] represents the nuclear magneton, and
g�τ and gsτ (τ = ν or π ) represent the gyromagnetic ratios
for orbital angular momentum and spin, respectively. The
angular momentum and spin operators are denoted as ĵ and ŝ,
respectively. The E2 transition rate is calculated as

B
(
E2; Iπ

η → Jπ
ξ

) = 1

2I + 1
|〈Jπξ‖T̂ (E2)‖Iπη〉|2. (22)

The E2 transition operator is defined as

T̂ (E2) = eνQ̂ν + eπQ̂π , (23)

where eτ (τ = ν or π ) represents the effective charge of the
nucleon, and Q̂τ is the quadrupole operator with the oscillator
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FIG. 2. (Color online) Comparison of experimental energy levels
(expt.) based on the νh11/2 ⊗ πh11/2 configuration with PTSM results
(PTSM) for 132Cs. In the right panel, two level sequences of �I = 1
on the right represent the yrast band, and two level sequences of
�I = 1 in the middle, the yrare band. Two levels on the left denote
the third lowest-energy states for each total spin I . The experimental
data are taken from Refs. [44–46].

parameter b = 1.005A1/6 fm in Eq. (12). The adopted values
of the gyromagnetic ratios and the effective charges are the
same as used in the previous PTSM calculations [29].

In Fig. 6, the theoretical transition ratios B(M1; I →
I − 1)/B(E2; I → I − 2) along the yrast states for all the
doubly-odd nuclei are shown together with the experimental
data. In the case of 132Cs, the theoretical transition ratios
of the 13+

1 , 15+
1 , and 17+

1 states are larger compared to the
experimental ones, but the staggering pattern is in phase. In
the cases of 130Cs and 134La, the large-amplitude staggering
of the B(M1)/B(E2) ratios are in excellent agreement with
the experimental data, except for the 16+

1 state of 134La. This
anomalous behavior might be due to band crossing between the
yrast band and the yrare band. As an indication, irregular level
sequences in the yrast bands were reported on the neighboring
Pr isotopes [51–53]. In particular, the positive-parity yrast
bands with the νh11/2 ⊗ πh11/2 configuration in 134Pr exhibit
irregular level sequences due to band crossing at spins 15 and
16 [51]. In the case of 132La, the PTSM calculation successfully
reproduces the basic staggering feature, but the staggering
amplitude of the theoretical B(M1)/B(E2) ratios is larger
compared with that of the experimental ones. This is a delicate
problem and by changing the wave functions slightly we may
reproduce the experimental data. There is a conjecture that the
staggering phenomenon is closely related to the deformation
of the core (even-even part of the nucleus) as discussed in
Ref. [31]. There it is conjectured that the staggering becomes
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FIG. 3. (Color online) Same as Fig. 2, but for 130Cs. The
experimental data are taken from Refs. [5,7,47,48].

weak when the system approaches to the well-deformed
nucleus. This issue is further examined in Sec. V.

In Fig. 7, the theoretical B(E2; I → I − 2) values for the
yrast and yrare states of all the doubly-odd nuclei are shown as
functions of spin I . The strong E2 transitions connect the yrast
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FIG. 4. (Color online) Same as Fig. 2, but for 134La. The
experimental data are taken from Refs. [3,49].
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FIG. 5. (Color online) Same as Fig. 2, but for 132La. The
experimental data are taken from Refs. [4,9,44,50].

states with spin I (I � 12) to the yrast states with spin I − 2.
In contrast, the B(E2) values are found to be small from the
yrast states to the yrare states (I � 12). Thus, the strong E2
transitions for the yrast states indicate that the even-spin and
the odd-spin states, respectively, form two �I = 2 E2 bands
starting from the bandhead states of 10+

1 and 11+
1 . For the yrare

states, the odd-spin states (I � 11) and the even-spin states
(I � 12) are respectively linked by the strong E2 transitions.
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FIG. 6. (Color online) Comparison between experimental
B(M1)/B(E2) ratios of yrast states and those in PTSM for (a) 132Cs,
(b) 130Cs, (c) 134La, and (d) 132La. The experimental data are taken
from Refs. [3,4,6,7].
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FIG. 7. (Color online) Theoretical B(E2; I → I − 2) values for
(a) 132Cs, (b) 130Cs, (c) 134La and (d) 132La. The filled circles, open
squares, open circles and filled squares represent the transitions
between yrast states, between yrare states, from yrast to yrare states
and from yrare to yrast states, respectively. Solid lines indicate the
transitions between the odd-spin states, and the dotted line indicates
the transitions between even-spin states. In the lower panel for each
nucleus, the yrast states with spin I and the yrare states with spin
I − 2 are connected by solid or dotted lines.

For the transitions from the yrare states to the yrast states,
the B(E2; 11+

2 → 9+
1 ) and B(E2; 10+

2 → 8+
1 ) values are the

largest compared with other transitions for all the nuclei. On
the basis of the theoretical B(E2) values, the odd-spin states
(9+

1 , 11+
2 , 13+

2 , 15+
2 ) and the even-spin yrare states respectively

form two �I = 2 E2 bands with their bandhead states of 9+
1

and 12+
2 . From analysis of the B(E2) values, we conclude

that the following members form five �I = 2 E2 bands, each
starting from the first member as the bandhead state: (a) 11+

1 ,
13+

1 , 15+
1 , 17+

1 ; (b) 10+
1 , 12+

1 , 14+
1 , 16+

1 ; (c) 9+
1 , 11+

2 , 13+
2 , 15+

2
(15+

3 for 132Cs); (d) 8+
1 , 10+

2 ; (e) 12+
2 , 14+

2 , 16+
2 .

In Fig. 8, the calculated B(M1; I → I − 1) values of
the yrast states and the yrare states for 132Cs, 130Cs, 134La
and 132La are shown as functions of spin I . For all the
nuclei, the B(M1) values between the yrast states (I � 11)
are large for the transitions from the odd-spin states to
the even-spin states, and small for the transitions from the
even-spin states to the odd-spin states. In contrast, for both
cases B(M1) values are found to be small for the yrare
states (I � 12). Furthermore, with respect to the other �I = 1
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FIG. 8. (Color online) Theoretical B(M1; I → I − 1) values for
(a) 132Cs, (b) 130Cs, (c) 134La, and (d) 132La. The filled circles, open
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between yrast states, between yrare states, from yrast to yrare states,
and from yrare to yrast states, respectively. In the lower panel for
each nucleus, the yrast states with spin I and the yrare states with
spin I − 1 are connected by solid lines.

transitions, large B(M1) values (�0.40μ2
N ) are predicted

for the 10+
1 → 9+

1 → 8+
1 , 12+

1 → 11+
2 → 10+

2 , 14+
1 → 13+

2 ,
and 16+

1 → 15+
2 (16+

1 → 15+
3 for 132Cs) transitions in all

the nuclei. [B(M1; 16+
1 → 15+

3 ) = 2.01μ2
N for 132Cs.] These

strong M1 transitions indicate that the �I = 1 M1 bands are
composed of the following four level sequences: (1) 8+

1 , 9+
1 ,

10+
1 , 11+

1 ; (2) 10+
2 , 11+

2 , 12+
1 , 13+

1 ; (3) 13+
2 , 14+

1 , 15+
1 ; (4) 15+

2
(15+

3 for 132Cs), 16+
1 , 17+

1 .
The partial level scheme of 134La constructed from the

results of the M1 and E2 transition rates is shown in Fig. 9.
We do not display other figures, but similar level schemes are
deduced also for 132Cs, 130Cs, and 132La. The PTSM gives five
�I = 2 E2 bands starting from the bandhead states of 8+

1 ,
9+

1 , 10+
1 , 11+

1 , and 12+
1 . The states within bands are connected

by the strong M1 transitions to the same members of the
�I = 2 E2 bands, and by the strong M1 transitions to the
states in the neighboring �I = 2 E2 bands. Here, it should be
noted that the structure of the even-spin yrare states (12+

2 , 14+
2 ,

and 16+
2 ) are quite different from those of the other �I = 2 E2

bands, since these states are not connected by the strong M1
transitions to any member of other �I = 2 E2 bands. The
detailed analysis of their structure is presented in Sec. V.

C. Energy spectra of other low-lying states

In this paper our main concern is the structure of
the yrast and yrare states built on the νh11/2 ⊗ πh11/2

configuration. However, one of the advantages of the PTSM
is to simultaneously describe the low-lying positive-parity
and negative-parity states other than those states on the
unique-parity 0h11/2 valence neutron and/or proton orbitals.
In Figs. 10–13, theoretical energy levels arising from the
unpaired nucleons with positive-parity are compared with
the experimental data for 132Cs, 130Cs, 134La, and 132La. For
134La, the position of the 9+

1 state with the νh11/2 ⊗ πh11/2

configuration relative to the ground state with positive parity
(the 1+

1 state) remains unknown.
In experiment, the ground states are assigned to have

positive parity for 132Cs, 130Cs, and 134La, while in 132La
the ground state is assigned to have negative parity, and
the lowest state with positive parity, the (2)+ state, has an
excitation energy of 0.155 MeV. In the cases of 132Cs, 134La,
and 132La, the calculated levels agree with the experimental
ones and, especially, the spins and parities of the ground states
are reproduced. In the case of 130Cs, the theoretical 1+

1 state
appears higher in energy than the experimental one. However,
the theoretical levels of the 1+

1 , 2+
1 , 2+

2 , 2−
1 , and 5−

1 states are
in reasonable correspondence with the experimental data.

D. Comparison between present results and our previous results

Now we compare the present numerical results with our
previous calculations in the PTSM [27] and the quadrupole
coupling model (QCM) [30,31]. The previous PTSM calcu-
lation reproduced successfully the relative energies between
the ground states with positive parity and the states with
the νh11/2 ⊗ πh11/2 configuration. However, the theoretical
lowest states based on the νh11/2 ⊗ πh11/2 configuration were
located at excitation energies of 1.75, 1.79, 1.29, and 1.34 MeV
in 132Cs, 130Cs, 134La, and 132La, respectively, which are
rather high in energy compared with the experimental data.
In contrast, as shown in Figs. 10–13, the present PTSM
calculations almost perfectly reproduce their relative positions.
Moreover, a good correspondence with experiment is achieved
for the energy levels of the negative-parity states. With respect
to the electromagnetic transition rates, the previous PTSM
results were already in good agreement with the experimental
staggering feature of the B(M1)/B(E2) ratios, although a
slight difference between theory and experiment in absolute
values was seen. However, in the present study, the PTSM
gives a better description of the absolute values for the
B(M1)/B(E2) ratios (shown in Fig. 6), especially for 130Cs
and 132La.

The PTSM is a quantum theoretical framework which
incorporates both particle number and angular-momentum
conservation. However, it has a practical limit due to particle
number. At present we need to limit the particle number up
to nine due to the computational capability. In contrast the
quadrupole coupling model (QCM) provides a reasonable the-
oretical framework to describe the doubly-odd nuclei in place
of the PTSM. In this model the core representing the even-even
part of the nucleus couples with a neutron and a proton in
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FIG. 9. (Color online) Partial level scheme of 134La suggested by the PTSM calculation. The green arrows indicate E2 transitions
[B(E2) � 0.02e2b2], and the orange arrows denote M1 transitions [B(M1) � 0.40μ2

N ]. The numerals on the right side of the E2 transitions
denote the B(E2) values (in 10−2e2b2), and those beneath the M1 transitions denote the B(M1) values (in μ2

N ). Schematic illustrations of the
chopsticks configurations are presented below each �I = 2 E2 band. The red and the blue arrows indicate the angular momenta of the neutron
and the proton for the bandhead state, respectively. Six �I = 2 E2 bands have the configurations shown by the schematic illustrations below.

the high-j intruder orbitals through a quadrupole-quadrupole
interaction. The QCM calculations were performed for the
doublet bands in the mass A ∼ 130 region, and excellent

FIG. 10. (Color online) Comparison of experimental energy
levels (expt.) with the PTSM results (PTSM) for 132Cs. For the
PTSM results, two level sequences of �I = 2 on the left represent
the negative-parity states arising from the unpaired positive-parity
neutron, and four level sequences of �I = 2 in the middle represent
the negative-parity states arising from the unpaired positive-parity
proton. The level sequences on the right denote the positive-parity
states arising from the unpaired nucleons with positive-parity. The
experimental data are taken from Refs. [44–46].

agreement was obtained for both energy spectra and features
of electromagnetic transitions [30,31]. Due to its simple
applicability, the QCM can be applied to doublet bands for
a wide range of doubly-odd nuclei, but instead deals only with
the states built on the high-j orbitals of a neutron and a proton.
Moreover, interaction strengths must be adjusted to reproduce
the energy levels of the doublet bands. In contrast, the PTSM
can systematically treat even-even, odd-mass, and doubly-odd
nuclei on the equal footing. It should be noted that the energy

FIG. 11. (Color online) Same as Fig. 10, but for 130Cs. The
experimental data are taken from Refs. [5,7,47,48].
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FIG. 12. (Color online) Same as Fig. 10, but for 134La. The
experimental data are taken from Refs. [3,49].

levels and the electromagnetic transition rates for the doublet
bands are thus naturally obtained in the present PTSM study.

For the description of the doublet bands, the energy spectra
obtained by the present PTSM calculations give almost the
same results as those of the QCM results [30,31]. However,
with respect to the low-lying states with spins less than 9, the
PTSM gives better agreement with experiment than the QCM.
Moreover, except for 132La, the staggering amplitudes of the
B(M1)/B(E2) ratios in the present PTSM study are in better
agreement with the experimental data. In spite of the above
differences between the QCM and the PTSM, the picture for
the doublet bands remains the same in both models.

V. ANALYSIS OF WAVE FUNCTIONS

A. Specific configurations

A detailed understanding of the structure of the yrast and
yrare states with the νh11/2 ⊗ πh11/2 configuration can be

FIG. 13. (Color online) Same as Fig. 10, but for 132La. The
experimental data are taken from Refs. [4,9,44,50].

achieved by examining the wave functions. For even-even
nuclei, it is useful to calculate the expectation values of the
numbers of various collective pairs. However, since the PTSM
wave functions for doubly-odd nuclei are rather complicated
and composed of various components in doubly-odd nuclei,
we need another way of analyzing their wave functions.
In the present study, we construct the wave functions of a
specific configuration in the shell-model space and calculate
the overlaps between them and the doubly-odd nuclear states
given in Eq. (16). From the previous studies [26–28,30,31],
it is understood that the main structure of the yrast and yrare
states of the doubly-odd nuclei in the mass A ∼ 130 region
is described in terms of a weak coupling of the chopsticks
configurations [26–28], which represent two angular momenta
of the unpaired neutron and the unpaired proton, to the
quadrupole collective excitations of the even-even part of
the nucleus. Thus, we construct the specific configuration by
adding one neutron hole and one proton particle both in the
0h11/2 orbital to an even-even nuclear state, which is obtained
by the diagonalization of the shell-model Hamiltonian in the
S and D pair subspace. The specific configuration with total
spin I is defined as

|�(LRi ; I )〉 = 1√〈LRi ; I |LRi ; I 〉 |LRi ; I 〉 , (24)

with

|LRi ; I 〉 = [|jνjπ ; L〉 ⊗ |Ri〉](I ) , (25)

where L represents the angular momentum of the two-particle
state of one neutron hole and one proton particle |jνjπ ; L〉,
and |Ri〉 is the wave function for the ith state with spin R
of the even-even nucleus (the even-even core). The energy
spectra are shown in Fig. 1. A detailed description is given
in the Appendix. The probabilities of finding the specific
configuration |�(LRi ; I )〉 in the doubly-odd nuclear state
|Iπη〉 is

P (LRi ; Iη) = |〈Iπη|�(LRi ; I )〉|2 . (26)

We denote the component of the state |�(LRi ; I )〉 shortly as
(L,Ri) in the following.

In Tables II–IV, the overlap probabilities between the
components (L,Ri) and the yrast and yrare states built on
the νh11/2 ⊗ πh11/2 configuration are shown for 134La. We
do not discuss other nuclei, since similar results are obtained
also for 132Cs, 130Cs, and 132La. For the yrast states up to
spin 11, the 11+

1 , 10+
1 , 9+

1 , and 8+
1 states are principally

made of the components (11, 01), (10, 01), (9, 01), and (8, 01),
respectively. Although the component (10, 21) in the 11+

1 state
is not negligible, we can say that the 0+

1 component (the ground
state of 134Ba) plays an important role in describing these
states and that the two-particle state of one neutron hole and
one proton particle carry a dominant part of the total spin of
doubly-odd nucleus (134La).

In the appendix of Ref. [27], effective angles were calcu-
lated between two angular momenta of the neutron hole and
the proton particle in the 0h11/2 orbital. The effective angle θ
for the two-particle state of the neutron and the proton with
angular momenta L = 11, 10, 9, and 8 turns out to be 32◦, 57◦,
75◦, and 90◦, respectively. The effective angles never become
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TABLE II. Overlap probabilities P (LRi ; Iη) (in percentage) of the components (L, Ri) for the yrast and yrare states with spins I = 8, 9,
10, and 11 in 134La. Only the values with probability larger than 5% are shown. The main components are indicated in bold font.

Iπ
η (8, 01) (9, 01) (10, 01) (11, 01) (7, 21) (8, 21) (9, 21) (10, 21) (11, 21) (8, 41) (9, 41) (9, 22) (10, 22)

8+
1 43 7 16

8+
2 22 14 11 11 5

9+
1 42 7 5 17

9+
2 27 11 16

10+
1 44 15 11

10+
2 47 13

11+
1 41 29

11+
2 51 5 12

zero because of quantum fluctuations, even though two angular
momenta point in the same direction. From the above results
on the effective angles, the 8+

1 state of 134La is constructed
from perpendicular coupling of the two angular momenta of
the neutron hole and the proton particle, while the 11+

1 state is
built by their parallel coupling.

Concerning the yrare states up to spin 11, the 11+
2 , 10+

2 ,
9+

2 , and 8+
2 states are made mainly of the components (9, 21),

(8, 21), (8, 21), and (7, 21), respectively. In contrast to the yrast
states, the 2+

1 component (the 2+
1 state of 134Ba) is dominant

among other components.
Next we focus our attention on the states which contain the

same even-even core with higher angular momenta (R = 2, 4,
and 6). The odd-spin yrast states (I ) (I = 13, 15, and 17),
the even-spin yrast states (I − 1), and the odd-spin yrare
states (I − 2) are built mainly on the L = 11, 10, and 9
configurations, respectively. This means that the two angular
momenta of the neutron and proton, like a pair of chopsticks,
close with increasing total spin I for the states with the same
even-even core. Furthermore, it is found that the simple sum
of the angular momenta of the even-even core (R) and the
two-particle state (L) is equal to the total spin (I = R + L). In
other words, they have parallel configurations of the angular
momenta of the even-even core and the two-particle state.
For the other states, the 12+

2 , 14+
2 , and 16+

2 states are mainly
made of the L = 11 component. They are different from the
13+

1 , 15+
1 , and 17+

1 states, since the angular momenta of the
even-even core and the two-particle state point in different
directions from each other.

As discussed in Sec. IV B, the large B(E2) values obtained
by the PTSM calculations form five �I = 2 E2 bands each

starting from the first member as the bandhead state: (a)
11+

1 , 13+
1 , 15+

1 , 17+
1 ; (b) 10+

1 , 12+
1 , 14+

1 , 16+
1 ; (c) 9+

1 , 11+
2 ,

13+
2 , 15+

2 ; (d) 8+
1 , 10+

2 ; (e) 12+
2 , 14+

2 , 16+
2 . The members

of each �I = 2 E2 band are made mainly of the same
chopsticks configurations. In Fig. 9, schematic illustrations
of the chopsticks configurations are presented below each
�I = 2 E2 band. For instance, the 11+

1 , 13+
1 , 15+

1 , and 17+
1

states [band (a)] have the parallel chopsticks configuration
with angular momentum 11, while the 8+

1 and 10+
2 states

have the perpendicular chopsticks configuration with angular
momentum 8. The large E2 transition rates along the �I =
2 E2 band are interpreted to come from the collective
excitations of the even-even part of the nucleus. In particular,
the yrast states (the 0+

1 , 2+
1 , 4+

1 , and 6+
1 states) of the even-even

core become dominant.
For the large M1 transition rates, the following members

form four �I = 1 M1 bands: (1) 8+
1 , 9+

1 , 10+
1 , 11+

1 ; (2) 10+
2 ,

11+
2 , 12+

1 , 13+
1 ; (3) 13+

2 , 14+
1 , 15+

1 ; (4) 15+
2 , 16+

1 , 17+
1 . These

large M1 transition rates are explained in the following way:
The members of each �I = 1 M1 band are built mainly on
the same even-even core. Then, the two angular momenta of
the neutron and the proton close with increasing spin I within
each �I = 1 M1 band. For instance, the 10+

2 , 11+
2 , 12+

1 , 13+
1

states [band (2)] have mainly the Ri = 21 component. The pair
of chopsticks closes as spin I increases, causing strong M1
transition rates between them.

Now let us discuss the difference between the chiral scheme
and that of the PTSM. In the chiral picture [10,11], the total
angular momentum is tilted with respect to the planes defined
by the three principal axes, i.e., the short, long, and intermedi-
ate axes of the triaxial core. This situation is realized when the

TABLE III. Same as Table II, but for the yrast and yrare states with spins I = 12, 13, and 14.

Iπ
η (10, 21) (11, 21) (9, 41) (10, 41) (11, 41) (9, 61) (10, 61) (10, 22) (11, 22) (9, 31) (10, 31) (11, 31) (10, 42) (10, 43)

12+
1 58 9 8

12+
2 39 5 24 5

13+
1 67 16

13+
2 52 12 5

14+
1 64 5 5

14+
2 50 5 17
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TABLE IV. Same as Table II, but for the yrast and yrare states with spins I = 15, 16, and 17.

Iπ
η (11, 41) (9, 61) (10, 61) (11, 61) (9, 81) (10, 42) (10, 51) (11, 51) (11, 62) (10, 71) (10, 63) (11, 63) (11, 64) (10, 72)

15+
1 78 8

15+
2 30 21 23

16+
1 65 9

16+
2 61 7

17+
1 80 6

17+
2 7 19 12 13 21 12

angular momenta of the valence particle, the valence hole, and
the triaxial core tend to align with the short, long, and interme-
diate axes, respectively. This implies that the unpaired neutron
and the unpaired proton are strongly coupled to compose the
characteristic configuration of their angular momenta, even
for the high-spin yrast states. However, the physical situation
realized in the PTSM largely deviates from the ideal chiral
picture. In the PTSM calculations, the odd-spin yrast states
with spins greater than 11 are made by totally parallel coupling
of the two angular momenta of the neutron and proton. Since
the sum of the angular momenta of the even-even core (R), and
the two-particle state (L) is equal to the total spin (I = R + L),
three angular momenta of the core, the neutron, and the proton
point toward the same direction. It indicates that the doublet
bands are so constructed that the chopsticks configurations are
weakly coupled with the quadrupole collective excitations of
the even-even part of the nucleus.

B. Staggering origin of M1 transitions

In order to understand the staggering origin of the M1
transition rates for yrast states, we take up simplified wave
functions for the doubly-odd nuclear states. For example, we
consider the weak M1 transition from the 12+

1 state to the 11+
1

state and the strong M1 transition from the 11+
1 state to the

10+
1 state. Through the analysis of the wave functions, we can

assume that each state is made mainly of one component. They
are expressed as

|12+, 1〉 = α|(L,R + 2)〉 + · · · , (27)

|11+, 1〉 = β|(L + 1, R)〉 + · · · , (28)

|10+, 1〉 = γ |(L,R)〉 + · · · , (29)

where α, β, and γ represent the amplitudes of the main
components (L,R + 2), (L + 1, R), and (L,R) (here L =
10 and R = 0), respectively, and the contribution from the
remaining parts + · · · are expected to be small. Then the
reduced matrix elements for the M1 transition operator in
Eq. (21) can be written as

〈11+, 1‖T̂ (M1)‖12+, 1〉
≈ αβ〈(L + 1, R)‖T̂ (M1)‖(L,R + 2)〉, (30)

〈10+, 1‖T̂ (M1)‖11+, 1〉
≈ βγ 〈(L,R)‖T̂ (M1)‖(L + 1, R)〉. (31)

Thus the reduced matrix element 〈(L +
1, R)‖T̂ (M1)‖(L,R + 2)〉 in Eq. (30) vanishes because

the core angular momenta (R and R + 2) differ by two
units for the components (L + 1, R) and (L,R + 2);
namely, the M1 operator T̂ (M1) does not connect different
angular-momentum states of the core. On the other hand,
the reduced matrix element 〈(L,R)‖T̂ (M1)‖(L + 1, R)〉
in Eq. (31) can remain finite because the core angular
momenta are the same for both the components (L,R) and
(L + 1, R), and the M1 operator T̂ (M1) does connect the
different angular-momentum two-particle states |L〉 and
|L + 1〉. These facts clearly show that the large interband M1
transition rates come only by closing the two angular momenta
of the neutron and the proton as if a pair of chopsticks close.

This analysis also explains why, in general, the staggering
amplitude of the B(M1)/B(E2) ratios becomes weaker when
the system approaches a well-deformed region. In well-
deformed nuclei the components (L,R + 2), (L + 1, R), and
(L,R) are almost equally mixed and it is expected that the
B(M1) selection rules discussed above do not apply.

C. Interpretation of level structure

Finally, we give a shell-model interpretation for the level
structure of the doublet bands. The bandhead states of the
�I = 2 E2 bands are built on the chopsticks configurations
of one neutron hole and one proton particle both in the
0h11/2 orbitals. From a property of the QQ interaction
between neutrons and protons, the chopsticks configuration
with angular momentum 8 becomes the lowest state, and the
excitation energy of a chopsticks configuration increases as
the angular momentum of the coupled neutron and proton
becomes larger, as given in the appendix of Ref. [27]. The
collective excitations of each �I = 2 E2 band are built on the
yrast states of the even-even core (weak coupling limit).

Here we consider the limiting case in which there is no
interaction between the chopsticks configurations and the
even-even cores. This situation leads to the spectrum shown
in Fig. 14, each energy of which is obtained just by simply
adding both the energy of a chopsticks configuration and the
energy of a yrast state of the even-even core. The spins of
these states are also obtained by the simple sum of the angular
momenta of the chopsticks configurations and the even-even
cores. This means that these angular momenta point in the
same direction. This is an ideal situation. In reality the doublet
bands are so constructed that the chopsticks configurations are
weakly coupled with the quadrupole collective excitations of
the even-even part of the nucleus, because the configuration
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FIG. 14. (Color online) Band scheme predicted by the PTSM
calculation in weak-coupling limit. The vertical arrows from top to
bottom indicate E2 transitions, and the horizontal arrows from right to
left indicate M1 transitions. Schematic illustrations of the chopsticks
configurations are presented below the band scheme.

mixing washes away this ideal band structure, especially at
high energy.

VI. SUMMARY

In this work, we apply the pair-truncated shell model
(PTSM) to the structure study of the four doubly-odd nuclei,
132Cs, 130Cs, 134La, and 132La. The main aim of our study is
to investigate the internal structure of the doublet bands built
on the νh11/2 ⊗ πh11/2 configuration. It is worth emphasizing
that in our calculations we have consistently employed the
same Hamiltonian as used in the previous systematic studies
of A ∼ 130 nuclei [29], without any modification. The PTSM
calculations reproduce well the energy levels of not only
the yrast and yrare states based on the νh11/2 ⊗ πh11/2

configuration, but also other states with positive and negative
parities. The theoretical electromagnetic transitions agree well
with the even-odd staggering nature of the ratios B(M1; I →
I − 1)/B(E2; I → I − 2) along the yrast line.

In order to examine the underlying physics for the yrast
and yrare states, we construct the wave functions with specific
configurations in the shell-model space and calculate the
overlap probabilities between them and the PTSM wave
functions of the doubly-odd nuclei. The specific configuration
is so constructed by coupling the two-particle state of one
neutron hole and one proton particle both in the 0h11/2 orbital
to the even-even nuclear states which are obtained after di-
agonalizing the shell-model Hamiltonian in the SD subspace.
The results of the probabilities show that the angular momenta
of the neutron and the proton, like a pair of chopsticks, close
with increasing spin I within each �I = 1 M1 band [26–28].
This chopsticks motion provides the large M1 transition rates.
In contrast, the large E2 transition rates along the �I = 2 E2
band come from the collective excitations of the even-even
core. Especially, the yrast states of the even-even core play
important roles in describing the �I = 2 E2 bands.

In conclusion, the experimentally identified yrast and yrare
states with the νh11/2 ⊗ πh11/2 configuration are interpreted
as arising from the chopsticks configurations, which represent
the two angular momenta of the unpaired neutron and
the unpaired proton, weakly coupled with the quadrupole
collective excitations of the even-even core. The chopsticks
configurations and the even-even core produce characteristic
�I = 1 M1 and �I = 2 E2 bands.
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APPENDIX: SPECIFIC CONFIGURATION OF EVEN-EVEN
CORE AND TWO-PARTICLE STATE

In this appendix, we briefly describe how to construct a
specific configuration of the even-even core and two-particle
state. The creation operator of the two-particle state of one
neutron in the j1 orbital and one proton in the j2 orbital is
defined as

[
c
†
j1ν

c
†
j2π

](L)
M

=
∑
m1m2

(j1m1j2m2|LM)c†j1m1ν
c
†
j2m2π

, (A1)

where L is the angular momentum of the two-particle state, and M is its projection. A many-body wave function of the even-even
nucleus is written as

|Ri〉 =
∑
ην ,ηπ

C(i, ηνηπ )[|Rνην〉 ⊗ |Rπηπ 〉](R), (A2)

where |Rτητ 〉 (τ = ν or π ) is the SD-pair states given by Eq. (4) and C(i, ηνηπ ) is obtained by diagonalizing the shell-model
Hamiltonian in Eq. (7).
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Using the above creation operator and the many-body wave function, the even-even core plus two-particle state is constructed
as

|LRi ; I 〉 = [[
c
†
j1ν

c
†
j2π

](L)|Ri〉
](I )

=
∑
ην ,ηπ

C(i, ηνηπ )
[[

c
†
j1ν

c
†
j2π

](L)
[|Rνην〉 ⊗ |Rπηπ 〉](R)](I )

=
∑
ην ,ηπ

C(i, ηνηπ )
∑
JνJπ

√
(2L + 1)(2R + 1)(2Jν + 1)(2Jπ + 1)

⎧⎨
⎩

j1 j2 L
Rν Rπ R
Jν Jπ I

⎫⎬
⎭

[[
c
†
j1ν

|Rνην〉
](Jν ) ⊗ [

c
†
j2π

|Rπηπ 〉](Jπ )](I ),

(A3)

with

[c†j |Rη〉](J )
M =

∑
m1m2

(jm1Rm2|JM)c†jm1
|Rm2η〉. (A4)

Since this state is usually not normalized, the specific configuration in Eq. (24) is normalized as

|�(LRi ; I )〉 = 1√〈LRi ; I |LRi ; I 〉 |LRi ; I 〉. (A5)
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