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Shape evolution of giant resonances in Nd and Sm isotopes
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Giant multipole resonances in Nd and Sm isotopes are studied by employing the quasiparticle-random-phase
approximation on the basis of the Skyrme energy-density-functional method. Deformation effects on giant
resonances are investigated in these isotopes, which manifest a typical nuclear shape change from spherical to
prolate shapes. The peak energy, the broadening, and the deformation splitting of the isoscalar giant monopole
(ISGMR) and quadrupole (ISGQR) resonances agree well with measurements. The magnitude of the peak
splitting and the fraction of the energy-weighted strength in the lower peak of the ISGMR reflect the nuclear
deformation. The experimental data on ISGMR, isoscalar giant dipole (ISGDR), and ISGQR are consistent with
the nuclear-matter incompressibility K � 210–230 MeV and the effective mass m∗

0/m � 0.8–0.9. However, the
high-energy octupole resonance (HEOR) in 144Sm seems to indicate a smaller effective mass, m∗

0/m � 0.7–0.8.
A further precise measurement of HEOR is desired to determine the effective mass.
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I. INTRODUCTION

Giant resonance (GR) is a typical high-frequency collective
mode of excitation in nuclei [1]. Effects of the nuclear defor-
mation on the GRs have been investigated both experimentally
and theoretically. Among them, the deformation splitting of
the isovector giant dipole resonance (GDR), due to different
frequencies of oscillations along the major and minor axes [2],
is well established. A textbook example of the evolution of
the GDR as a function of the mass number can be found
in Refs. [3,4]. Emergence of a double-peak structure of the
photoabsorption cross section of 150Nd and 152Sm clearly
indicates an onset of the deformation in the ground state. For
the GRs with higher multipolarity, although the deformation
splitting is less pronounced, the peak broadening has been
observed [1]. The detailed and systematic investigations on
the GRs would give us unique information on the shape phase
transition in nuclei.

In contrast to low-energy modes of excitation in nuclei,
the GRs substantially reflect bulk nuclear properties. Thus,
their studies may provide information on the nuclear matter.
The GRs can be qualitatively investigated by using various
macroscopic models, such as fluid dynamical models, which
properly take account of deformation of the Fermi sphere
[5]. However, a quantitative description of the GRs requires
a microscopic treatment of nuclear response. For heavy
deformed open-shell nuclei, the leading theory for this purpose
is currently the quasiparticle-random-phase approximation
(QRPA) based on the nuclear energy-density-functional (EDF)
method [6]. The QRPA based on the deformed ground-state
configuration with superfluidity is able to treat a variety of
excitations in the linear regime. The role of deformation
on GRs has been studied by means of the deformed QRPA
employing the Gogny interaction in the light mass region [7].
GRs in heavy systems have been investigated using Skyrme
functionals, where the separable approximation is employed
for the residual interaction [8], the relativistic EDF [9], and the
Gogny interaction with a help of the parallel computing [10].

The Hartree-Fock-Bogoliubov (HFB) mean field formu-
lated in the two-dimensional cylindrical coordinates and the
deformed quasiparticle-random-phase approximation (QRPA)
in the quasiparticle basis have been developed recently [11].
The application, however, was restricted to light systems [12]
because of the large computer memory demanded for storing
the matrix elements and the time-consuming calculation for di-
agonalizing a nonsymmetric matrix of several tens or hundreds
of thousands of dimensions. The deformed Skyrme-QRPA
calculation utilizing the transformed harmonic oscillator basis
is also restricted to light nuclei due to the same stumbling block
[13]. In Ref. [14], Terasaki and Engel developed a parallelized
computer code for the deformed Skyrme QRPA and it was
applied to heavy nuclei. Recently, the finite-amplitude method
[15,16] was applied to the harmonic-oscillator-basis-deformed
QRPA and the calculation for heavy systems became possible
with an inexpensive numerical cost [17], but it has been
restricted to the Kπ = 0+ mode so far. The iterative Arnoldi
method has been also tested as an efficient calculation of
the strength functions, but also so far has been restricted to
spherical nuclei [18].

In this article, we develop a calculation code for the
deformed HFB and QRPA for use in massively parallel
computers to examine the applicability of the Skyrme-EDF-
based QRPA to the excitation modes in heavy deformed
systems. Using this new parallelized code, we discuss the
deformation effects on the GRs in Nd and Sm isotopes.
Part of the results has already appeared in Ref. [19], where
we demonstrated that the deformed QRPA can describe well
the broadening and the deformation splitting of the isovector
GDR in nuclei undergoing the shape phase transition. In the
present paper, we perform numerical analysis for the GRs of
multipolarity L = 0–3 with both isoscalar (IS) and isovector
(IV) characters and examine the incompressibility and the
effective mass both in spherical and deformed nuclei. It should
be noted that in Ref. [20] the deformation splitting of the giant
monopole resonance (GMR) in neutron-rich Zr isotopes is
predicted by utilizing the calculation code in this article.
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The article is organized as follows: In Sec. II, the deformed
Skyrme-EDF-QRPA method is recapitulated. In Sec. II B,
some technical details to reduce the computational cost are
given. In Sec. III, results of the numerical analysis of the GRs
in the Nd and Sm isotopes with shape changes are presented.
Finally, the summary is given in Sec. IV.

II. DEFORMED HFB + QRPA

A. Basic equations

The axially deformed HFB in the cylindrical-coordinate
space with the Skyrme EDF and the QRPA in the quasiparticle
(qp) representation can be found in Ref. [11]. Here, we briefly
describe the outline of the formulation.

To describe the nuclear deformation and the pairing corre-
lations, simultaneously, in good account of the continuum, we
solve the HFB equations [21,22](

hq(rσ ) − λq h̃q(rσ )
h̃q(rσ ) −(hq(rσ ) − λq)

)(
ϕ

q
1,α(rσ )

ϕ
q
2,α(rσ )

)

= Eα

(
ϕ

q
1,α(rσ )

ϕ
q
2,α(rσ )

)
(1)

in real space using cylindrical coordinates r = (ρ, z, φ). Here,
q = ν (neutron) or π (proton). We assume axial and reflection
symmetries. Since we consider the even-even nuclei only, the
time-reversal symmetry is also assumed. A nucleon creation
operator ψ̂†(rσ ) at the position r with the intrinsic spin σ is
written in terms of the qp wave functions as

ψ̂†(rσ ) =
∑

α

ϕ1,α(rσ̄ )β̂†
α + ϕ∗

2,α(rσ )β̂α. (2)

The notation ϕ(rσ̄ ) is defined by ϕ(rσ̄ ) = −2σϕ(r − σ ).
For the mean-field Hamiltonian h, we mainly employ the

SkM* functional [23] because the deformation properties were
taken into account in the fitting procedure, and we expect the
evolution of deformation to be well described by SkM*. For
the pairing energy, we adopt the one in Ref. [24] that depends
on both the isoscalar (�) and the isovector (�1) densities, in
addition to the pairing density (�̃):

Hpair(r) = V0

4

∑
q

gq[�, �1][�̃(r)]2, (3)

with

gq[�, �1] = 1 − η0
�(r)

�0
− η1

τ3�1(r)

�0
− η2

[
�1(r)

�0

]2

. (4)

Here �0 = 0.16 fm−3 is the saturation density of symmetric
nuclear matter, with the parameters (η0, η1, and η2) given
in Table III of Ref. [24]. Because of the assumption of
the axially symmetric potential, the z component of the qp
angular momentum, �, is a good quantum number. Assuming
time-reversal symmetry and reflection symmetry with respect
to the x-y plane, the space for the calculation can be reduced
into the one with positive � and positive z only.

Using the qp basis obtained as a self-consistent solution of
the HFB equations (1), we solve the QRPA equation in the

matrix formulation [25]

∑
γ δ

(
Aαβγ δ Bαβγ δ

−Bαβγ δ −Aαβγ δ

)(
Xi

γ δ

Y i
γ δ

)
= h̄ωi

(
Xi

αβ

Y i
αβ

)
. (5)

The residual interaction in the particle-hole (p-h) channel
appearing in the QRPA matrices A and B is derived from the
Skyrme EDF. The residual Coulomb interaction is neglected
because of the computational limitation. We expect that
the residual Coulomb plays only a minor role [26–29]. In
Ref. [27], effects of neglecting the residual Coulomb interac-
tion are discussed in detail in a framework of the self-consistent
RPA with the Skyrme interaction: The centroid energy of
the GDR can be shifted by about 400 keV at maximum.
A similar analysis for the Gogny interaction indicates a
slightly larger peak shift for the GDR in 208Pb [30]. However,
this amount of change does not affect the discussion in the
present paper. We also drop the so-called “J 2” term CT

t

both in the HFB and QRPA calculations. It should be noted
that these terms were neglected when the functionals were
originally determined [22,23,31]. The residual interaction in
the particle-particle (p-p) channel is derived from the pairing
EDF (3). It is noted here that we have an additional contribution
to the residual interaction in the p-h channel coming from the
pairing EDF (3) because of the squared η2 term in Eq. (3) (see
Appendix A).

B. Details of the numerical calculation

For solution of the HFB equations (1), we use a lattice
mesh size �ρ = �z = 0.6 fm and a box boundary condition
at ρmax = 14.7 fm, zmax = 14.4 fm. The differential operators
are represented by use of the 11-point formula of finite
difference method. Since the parity (π ) and the magnetic
quantum number (�) are good quantum numbers, the HFB
Hamiltonian becomes in a block diagonal form with respect
to each (�π, q) sector. The HFB equations for each sector
are solved independently with 48 processors for the qp
states up to � = 23/2 with positive and negative parities.
Then, the densities and the HFB Hamiltonian are updated,
which requires communication among the 48 processors. The
modified Broyden’s method [32] is utilized to calculate new
densities. The qp states are truncated according to the qp
energy cutoff at Eα � 60 MeV.

We introduce the additional truncation for the QRPA
calculation, in terms of the two-quasiparticle (2qp) energy,
as Eα + Eβ � 60 MeV. This reduces the number of 2qp states
to, for instance, about 38 000 for the Kπ = 0− excitation in
154Sm. The calculation of the QRPA matrix elements in the
qp basis is performed in the parallel computers. In the present
calculation, all the matrix elements are real and we use 512
processors to compute them. We found near-linear speed-up by
employing 1024 cores for a calculation of the matrix elements.
The two-dimensional block cyclic distribution employed in
SCALAPACK [33] shows a good performance in load balancing.
Note that it is difficult to perform the QRPA calculation without
the cutoff due to the demand for large memory resources even
if one uses 1024 distributed memory cores.
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To save the computing time for diagonalization of the QRPA
matrix, we employ a technique to reduce the non-Hermitian
eigenvalue problem to a real symmetric matrix of half
the dimension [5,34]. For diagonalization of the matrix, we
use the ScaLAPACK PDSYEV subroutine [35]. To calculate the
QRPA matrix elements and to diagonalize the matrix, it takes
about 390 CPU hours and 135 CPU hours, respectively on the
RICC, the supercomputer facility at RIKEN.

The similar calculations of the HFB + QRPA for axially
deformed nuclei have been recently reported [7,9,13,14].
Among them, the one by Terasaki and Engel in Ref. [14]
is analogous to ours. They adopt the canonical-basis rep-
resentation and introduce a further truncation according to
the occupation probabilities of 2qp excitations. In contrast,
we adopt the qp representation and truncation simply due
to the 2qp energies. However, we have a drawback in the
computing time. Carrying out the numerical integration for
the p-h matrix elements in the qp basis takes four times as
long as the calculation in the canonical basis. For reference,
we show the matrix elements of the QRPA in the qp basis in
Appendix A.

Since the full self-consistency between the static mean-field
calculation and the dynamical calculation is slightly violated
by neglecting two-body Coulomb interaction and truncating
the 2qp space, the spurious states may have finite excitation
energies. In the present calculation, the spurious states for the
Kπ = 0+, 1+, 0−, and 1− excitations appear at 0.35, 0.34,
1.46i, and 1.60i MeV, respectively in 154Sm. We see in
Sec. III B the contamination of the spurious component in GRs
to be small because the GRs are well apart from the spurious
states in energy.

The transition strength distribution as a function of the
excitation energy E is calculated as

Sτ
λ (E) =

∑
i

∑
K

γ/2

π

∣∣〈i|F̂ τ
λK |0〉∣∣2

(E − h̄ωi)2 + γ 2/4
. (6)

The smearing width γ is set to 2 MeV, which is supposed to
simulate the spreading effect, �↓, missing in the QRPA. It is
noted that in Ref. [19] we showed that the constant smearing
parameter of γ = 2 MeV reproduces well the total width of
the GDR in the Nd and Sm isotopes with N = 82–92.

Here we define the operators as

F̂ τ=0
λ=0 =

∑
τ3=1,−1

∫
d rr2ψ̂†

τ3
(r)ψ̂τ3 (r), (7)

F̂ τ=1
λ=0 =

∑
τ3=1,−1

∫
d rτ3r

2ψ̂†
τ3

(r)ψ̂τ3 (r), (8)

F̂ τ=0
λ=1,K =

∑
τ3=1,−1

∫
d rr3Y1K (r̂)ψ̂†

τ3
(r)ψ̂τ3 (r), (9)

F̂ τ=1
λ=1,K =

∫
d rrY1K (r̂)

{
Z

A
ψ̂†

ν (r)ψ̂ν(r) − N

A
ψ̂†

π (r)ψ̂π (r)

}
,

(10)

F̂ τ=0
λ=2,K =

∑
τ3=1,−1

∫
d rr2Y2K (r̂)ψ̂†

τ3
(r)ψ̂τ3 (r), (11)

F̂ τ=1
λ=2,K =

∑
τ3=1,−1

∫
d rτ3r

2Y2K (r̂)ψ̂†
τ3

(r)ψ̂τ3 (r), (12)

F̂ τ=0
λ=3,K =

∑
τ3=1,−1

∫
d rr3Y3K (r̂)ψ̂†

τ3
(r)ψ̂τ3 (r), (13)

F̂ τ=1
λ=3,K =

∑
τ3=1,−1

∫
d rτ3r

3Y3K (r̂)ψ̂†
τ3

(r)ψ̂τ3 (r). (14)

The spin index is omitted for simplicity in the above definition
because the spin direction is unchanged by these operators.

III. RESULTS AND DISCUSSION

A. Ground-state properties

We summarize in Table I the calculated ground-state
properties of the Nd and Sm isotopes. Around N = 82,
the systems are calculated to be spherical. The calculated
quadrupole moment of 142,144Nd and 144,146Sm are very small
but finite. This is due to the numerical error originating from
the finite mesh size and breaking of the spherical symmetry
of the rectangular box employed. Increase in the neutron
number, the deformation gradually develops. As shown in
Fig. 1 of Ref. [19], the calculation well reproduces the
evolution of quadrupole deformation for N � 86.

TABLE I. Ground-state properties of Nd and Sm isotopes obtained by the deformed HFB calculation with the SkM* and pairing EDFs.
Chemical potentials λq , deformation parameters β

q
2 , quadrupole moments 〈Q2〉q , average pairing gaps 〈�〉q , and root-mean-square radii

√〈r2〉q

for neutrons and protons are listed.

142Nd 144Nd 146Nd 148Nd 150Nd 152Nd 144Sm 146Sm 148Sm 150Sm 152Sm 154Sm

λν (MeV) −8.79 −6.42 −6.65 −6.73 −7.03 −6.69 −9.12 −6.99 −7.21 −7.42 −7.58 −7.25
λπ (MeV) −5.23 −5.83 −6.25 −6.90 −7.72 −8.46 −4.39 −4.99 −5.37 −5.99 −6.60 −7.13
βν

2 0.00 0.00 0.12 0.18 0.26 0.30 0.00 0.00 0.12 0.20 0.27 0.30
βπ

2 0.00 0.00 0.14 0.21 0.30 0.34 0.00 0.00 0.14 0.22 0.30 0.33
〈Q2〉ν (fm2) ∼0 ∼0 328 530 796 939 ∼0 ∼0 323 563 805 939
〈Q2〉π (fm2) ∼0 ∼0 251 389 568 644 ∼0 ∼0 257 435 597 668
〈�〉ν (MeV) 0.00 0.82 0.93 1.06 0.99 0.78 0.00 0.86 0.98 1.10 1.07 0.90
〈�〉π (MeV) 1.71 1.67 1.48 1.30 0.87 0.54 1.75 1.72 1.57 1.35 1.04 0.90√

〈r2〉ν (fm) 4.95 4.99 5.03 5.08 5.15 5.20 4.97 5.00 5.04 5.10 5.16 5.20√
〈r2〉π (fm) 4.86 4.87 4.90 4.93 4.99 5.02 4.89 4.90 4.93 4.98 5.02 5.06
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FIG. 1. (Color online) The IS dipole and octupole transition-strength distributions in 144Sm and in 154Sm in the low-energy region (upper
panels) and the GR energy region (lower panels). The results obtained with ηK = 0 and η

(3)
K = 0 are shown by dotted lines.

The pairing gap disappears at N = 82 associated with the
spherical magic number of neutrons. The obtained pairing
gaps are in good agreement with the empirical values for
deformed nuclei, while they are overestimated in the spherical
systems. This is consistent with the findings of Ref. [36] that
the pairing gaps of deformed nuclei are underestimated if we
use the pairing functional adjusted to the experimental data
for spherical nuclei. Note that the pairing functional employed
in the present calculation is constructed by adjusting to the
experimental pairing gaps of deformed nuclei [24].

B. Mixing of spurious center-of-mass motion

The isoscalar (IS) dipole operator, Eq. (9), contains the
component of the center-of-mass motion. For deformed nuclei,
the Kπ = 0− and 1− octupole operators may also excite the
spurious center-of-mass motion. To examine the mixing of the
spurious modes, we use the corrected operator,

F̂ τ=0
λ=1,K =

∑
τ3

∫
d r(r3 − ηKr)Y1K (r̂)ψ̂†

τ3
(r)ψ̂τ3 (r), (15)

instead of using Eq. (9). Here, the correction factor in the
isoscalar dipole operator originally discussed for a spherical
system (η) to subtract the spurious component of the center-of-

mass motion [37] was extended to a deformed system (ηK ) [11]
and coincides with ηK = η = 5/3 in the spherical limit. For
the octupole operators, we use a technique similar to that in
the case of the dipole operator [38];

F̂ τ=0
λ=3,K =

∑
τ3

∫
d r

[
r3Y3K (r̂) − η

(3)
K rY1K (r̂)

]
ψ̂†

τ3
(r)ψ̂τ3 (r).

(16)

It is noted that the correction factor η
(3)
K vanishes in the

spherical limit.
In Fig. 1 we show the IS dipole and octupole transition-

strength distributions in the low-energy region in 144Sm and
154Sm, calculated with and without the correction terms, ηK

and η
(3)
K . In 144Sm, because the transition strengths calculated

with finite ηK are approximately identical to those with ηK =
0, the low-energy dipole states around 8 MeV are almost free
from the spurious center-of-mass motion. However, for the
lowest K = 1 dipole state in 154Sm, we see a large difference
between the two calculations. This implies that the full self-
consistency is necessary to describe quantitatively the low-
lying dipole states. The contamination of the spurious mode is
smaller in the low-lying octupole excitations and in the GRs
as shown in the lower panel of Fig. 1.
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C. Giant resonances

Let us discuss properties of GRs. In order to quantify
the excitation energy of the GR, two kinds of definition are
utilized. The centroid energy Ec is frequently used in the
experimental analysis, defined by

Ec = m1

m0
, (17)

where mk is a kth moment of the transition strength distribution
in an energy interval of [Ea,Eb] MeV,

mk ≡
∫ Eb

Ea

EkSτ
λ (E)dE. (18)

Here Sτ
λ (E) is defined by Eq. (6) in the calculation. We take

the upper and lower limits, [Ea,Eb], the same as those used
in the experimental analysis.

Another definition of the excitation energy is denoted as
Ex . This is extracted by fitting the strength distribution of the
GR, Sτ

λ (E), by the Lorentz curve with two parameters, the
peak energy Ex and the width �.

1. Positive-parity excitation

Figure 2 shows the strength distributions of IS monopole
and quadrupole excitations in the Nd and Sm isotopes. We
discuss first the giant quadrupole resonance (GQR). Both in
the Nd and Sm isotopes, ISGQRs are located around 12–
14 MeV. With increase in the mass number, the peak energy
of the ISGQR becomes smaller. This is consistent with the
experiment on the systematic observation of the ISGQR energy
in the Sm isotopes [39,40]. Figure 3 shows the centroid energy
of the ISGQR in the Sm isotopes. Here we used the energy
interval of [9,15] MeV. Open squares in Fig. 3 are obtained
from the strength distribution in Ref. [39]. The present results
well reproduce the experimental data. The calculated centroid
energy is well fitted by the 65.6A−1/3 line, which agrees with
the empirical behavior, (64.0 ± 1.7) × A−1/3 [1]. Dependence
on the choice of the Skyrme functional is discussed later.

The phenomenological pairing-plus-quadrupole (P + Q)
model is known to fail to reproduce the ISGQR in deformed
nuclei. The P + Q model predicts peak splitting that is too
large due to deformation. In fact, the deformation splitting for
154Sm is calculated to be about 7 MeV [42]. This failure can
be attributed to the violation of the nuclear self-consistency
between the shapes of the potential and the density distri-
butions [42,43]. In order to satisfy the self-consistency in the
P + Q model, we need higher-order terms [44]. Figure 4 shows
the IS quadrupole transition-strength distribution in 154Sm
for the Kπ = 0+, 1+, and 2+ excitations. The K splitting,
EK=2 − EK=0, for the ISGQR is 2.8 MeV in the present
calculation, which is much smaller than the value (about 7
MeV) of the P + Q model. This indicates the fact that the
present calculation based on the EDF naturally takes into
account the nuclear self-consistency. Since the energy splitting
associated with the deformation is comparable to the smearing
parameter, the deformation splitting, which is clearly visible
in the photoabsorption cross sections [19], does not appear in
the ISGQR. Instead, we find a broadening of the width for the

FIG. 2. The strength distributions (shifted) of ISGMR [(a), (b)]
and ISGQR [(c), (d)] in Nd and Sm isotopes.

ISGQR associated with the development of the deformation
(see the table in Appendix B).

Next, let us discuss the monopole excitation. In the spherical
nuclei, we can see a sharp peak at around 15 MeV, which
is identified as the ISGMR. In 144Sm, the peak energy and
the width are Ex = 14.8 MeV and � = 2.61 MeV. This is
compatible with the observed values of Ex = 15.40 ± 0.30
and � = 3.40 ± 0.20 MeV [40].

The ISGMR in deformed nuclei has a double-peak struc-
ture. The lower energy peak (8 < E < 13.5 MeV) and the
higher energy peak (13.5 < E < 19 MeV) exhaust 31.4% and
60.6% of the IS monopole energy-weighted-sum-rule (EWSR)
value, 3.38 × 105 fm4 MeV, in 154Sm. The higher energy peak
of the IS monopole strength is identified as a primal ISGMR
and the lower energy peak is associated with the coupling to
the Kπ = 0+ component of the ISGQR. The lower peak of the
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FIG. 3. (Color online) The centroid energies of the ISGQR in
the Sm isotopes with a fitted line. The experimental data [40,41] are
denoted by open symbols.

ISGMR, around 11 MeV, is located at the peak position of the
Kπ = 0+ component of the ISGQR shown in Fig. 4.

Figure 5(a) shows the peak energy of the ISGMR in the
Sm isotopes. The calculation shows an excellent agreement
with the experimental data both in spherical and deformed
nuclei. As the deformation develops from 148Sm, the higher
energy peak of the ISGMR slightly increases. In Fig. 5(b),
the energy difference of the upper and lower peaks of the
ISGMR is shown as a function of the deformation parameter
of the ground state. The results are compared with the
predictions by the fluid dynamics model and the simple scaling
model with the effective mass m∗/m = 0.8 and the Landau
parameter F0 = −0.25 [45]. The result of the fluid dynamics
model is consistent with our result, although it underestimates
the excitation energy of the low-energy peak of ISGMR.
The deformation dependence of the splitting energy is well
reproduced. On the other hand, the simple scaling model
significantly overestimates the ISGMR peak energy, which
results in splitting of the peak energies that is too large.

Since the experimental studies for the detailed structure of
the ISGMR in 154Sm are available [40,46], we are going to
discuss here the properties of the calculated ISGMR in 154Sm.
Table II summarizes the parameters of the ISGMR in 154Sm.
The peak energy Ex and the width � in a deformed system are
obtained by fitting the strength distribution with a sum of two
Lorentz lines. The calculations are compared with inelastic
α scattering experiments at Texas A&M University [40] and
at RCNP, Osaka University [46]. Results of the calculations

FIG. 4. (Color online) The IS quadrupole transition-strength
distribution in 154Sm for the Kπ = 0+, 1+, and 2+ excitations. The
eigenenergies obtained with use of the P + Q model are denoted by
the arrows, and the peak position of the GQR was adjusted to the
experimental data [42].

employing the SLy4 [31] and SkP [22] functionals and other
models [45,47] are also shown. The same pairing energy
functional, Eq. (3), is used in all the calculations.

The excitation energies are described best by the SkM*
functional among three kinds of functionals. The ratio of the
energy-weighted sum of the strengths for the upper peak to that
for the lower peak varies from 1.6 (SLy4) to 3.2 (SkP), and the
SkP gives better agreement with the experimental data. This
implies that the coupling effect between the GMR and the GQR
is weaker for the SkP functional than for the SkM* and SLy4
functionals. As discussed above, the coupling is determined by
the quadrupole moment (deformation parameter) of the ground
state. Indeed, the mass deformation parameter obtained in the
present calculation is β2 = 0.29 for SkP, while β2 = 0.31 for
SkM* and SLy4.

Figure 6 shows the strength distributions for the isovector
(IV) monopole and quadrupole excitations. Although the
experimental data for the IVGMR and IVGQR are unavailable
in the mass region under investigation, the present calculation
suggests the existence of these GR modes in the Nd and
Sm isotopes. The energy of IVGQR is approximately fitted
by 129.5 and 130.3 ×A−1/3 MeV for Nd and Sm isotopes,
respectively. This is consistent with the experimental observa-
tions ∼130A−1/3 MeV in A = 140–240 nuclei [48]. The K
splitting of the IVGQR in deformed nuclei is invisible because
the K splitting is small.

A double-peak structure can be seen in deformed nuclei for
the IVGMR as well as for the ISGMR. The lower peak around
20 MeV in the deformed nuclei emerges and is associated
with the coupling to the Kπ = 0+ component of the IVGQR.
The upper peak around 30 MeV may be identified as a primal
IVGMR because the resonance peak appears in this energy re-
gion in the spherical nuclei. Similarly to the ISGMR, the upper
peak of the IVGMR is upward shifted with increasing neutron
number. This is due to the stronger coupling between the
IVGMR and the IVGQR in nuclei with larger deformation.
The energy difference between the upper and lower peaks
of the IVGQR in 154Sm approaches about 10 MeV, which is
more than twice as large as the energy difference seen in the
ISGMR.

2. Negative-parity excitation

Figure 7 shows the strength distributions of the IS com-
pression dipole and octupole excitations. In the IS octupole-
transition-strength distributions, we can see a high-energy
octupole resonance (HEOR) at around 25 MeV. Furthermore,
we find a broadening of the width associated with the
deformation as observed in the experiment [49]. We show
the centroid energy of the HEOR and the low-energy octupole
resonance (LEOR) in the Sm isotopes in Fig. 8(b). The centroid
energy of HEOR and LEOR is evaluated in the energy range
of [17,33] MeV and [3,10] MeV, respectively. The calculated
energy of HEOR is best fitted to a 124.8 × A−1/3 line, and
agrees with the experimental observation [39]. However, this
excitation energy is significantly higher than the systematic
value of 110 ± 5 × A−1/3 MeV [1].

Below 10 MeV, we find low-lying collective (discrete)
states and the LEOR. The right panels of Fig. 9 show the
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FIG. 5. (Color online) (a) The excitation energies of the ISGMR in the Sm isotopes. The experimental data [39] are denoted by open
symbols with error bars. The energies of the upper and the lower peaks are indicated by squares and circles. (b) The energy difference of the
upper peak and the lower peak of the ISGMR in 148,150,152,154Sm as a function of the deformation parameter β2. The lines are results of the fluid
dynamical and scaling models [45].

low-energy part of the IS octupole transition strengths in the
Sm isotopes. We find that the low-lying collective K = 2, 3
states are overlapping with the LEOR in the well-deformed
nuclei. The present calculation gives 6.5% and 24% of the
IS octupole EWSR value in 154Sm for the energy intervals
0–3 MeV and 0–7 MeV, respectively. This is compatible
to the experimental value of 7% and 19% for the discrete
states only and for the low-lying states including the discrete
levels and the LEOR, respectively [50]. The early theoretical
calculation employing the pairing plus octupole interaction
model gives also an excellent agreement with the observed
value by adjusting the interaction strengths [51].

The calculated octupole strength carries 51–53% of the
EWSR value in the HEOR energy region of 17–33 MeV. On
the contrary, the experiment [39] has reported decrease of
the strength in the same energy region from 75% to 30% of
EWSR as increasing the mass number in the Sm isotopes. This
inconsistency may be attributed to the uncertainty of the choice
of the continuum in the experimental analysis and the strong
overlap with the ISGDR [1].

We have the ISGDR at around 25 MeV corresponding to the
3h̄ω excitation, and this energy region is where the HEOR is
located. We show the centroid energy of the ISGDR in the Sm
isotopes in Fig. 8(a). The calculated energy is best fitted to the
130.7 × A−1/3 line. The fitted energy of the ISGDR is slightly
higher than that of the HEOR. The ISGDR in spherical nuclei
is investigated in the framework of the HF-BCS + QRPA
approach employing several Skyrme functionals [52]. The
excitation energy obtained in Ref. [52] in 144Sm is consistent
with our result.

A deformation effect on the ISGDR can be seen in the
increase of its width. This is due to the deformation splitting
of the K = 0 and 1 components of the ISGDR similarly in
the photoabsorption cross sections. Furthermore, the width
becomes even larger due to the coupling to the K = 0 and 1
components of the HEOR. Figures 10(a) and 10(c) show the
strength distributions of the IS dipole and octupole excitations
in 154Sm. The resonance structure at 26–28 MeV appears due
to the deformation splitting of the primal ISGDR, and the
structure at 20–23 MeV is due to the coupling to the K = 0, 1

TABLE II. The parameters of the ISGMR in 154Sm. By fitting the strength function S0
0 (E) with γ = 2 MeV by a sum of two Lorentz lines,

the peak energy Ex and the width � are extracted. The energy-weighted sum (EWS) of the transition strength is calculated in the energy range
of [8,13.5] MeV and [13.5,19] MeV for the lower peak and upper peak of the ISGMR in the calculation using the SkM* functional. The energy
range is slightly changed according to the shift of peak positions of the ISGMR in the calculations using the SLy4 and SkP functionals. The
experimental values are taken from Refs. [40,46]. Results of other calculations employing different kinds of models in Refs. [45,47] are also
included.

Lower peak Upper peak Ratio of EWS

Ex � EWS Ex � EWS upper/lower
(MeV) (MeV) (%) (MeV) (MeV) (%)

SkM* 11.5 3.75 31.4 15.6 2.73 60.6 1.9
SLy4 12.1 3.62 36.3 16.2 2.68 57.0 1.6
SkP 10.3 3.48 21.8 14.7 2.78 70.8 3.2
TAMU [40] 11.05 ± 0.05 3.2 ± 0.1 32 ± 2 15.17 ± 0.05 4.0 ± 0.1 80 ± 5 2.5 ± 0.2
RCNP [46] 11.0 ± 0.8 (5.1) 17.5 ± 5 15.6 ± 0.2 (3.9) 69 ± 5 3.9 ± 1.2
Fluid dynamics [45] 10.1 21.5 15.6 76.3 3.5
Scaling [45] 11.0 16.6 18.1 83.4 5.0
Cranking [47] 10.4 21 15.9 79 3.8

034309-7



KENICHI YOSHIDA AND TAKASHI NAKATSUKASA PHYSICAL REVIEW C 88, 034309 (2013)

FIG. 6. The strength distributions (shifted) of IVGMR [(a), (b)]
and IVGQR [(c), (d)] in Nd and Sm isotopes.

components of the HEOR. Because of these two effects, the
total strength distribution becomes very broad. When we fit
the calculated strength distribution with a Lorentz line in
the energy region of [15,35] MeV, we obtain the width � =
13.4 MeV. The large width is observed experimentally as
22.6 ± 4.2 MeV in Ref. [39], while the rather small width
(11.8 ± 0.5 MeV) is reported in Ref. [40].

We furthermore find a low-energy (LE) ISGDR at about
14 MeV. We also find that the low-lying dipole states appear
below 5 MeV with possession of large transition strengths in
the deformed systems as shown in the left panels of Fig. 9.
This is due to the coupling to the low-lying octupole modes of
excitation.

The strength distribution in 154Sm obtained by the (α, α′)
experiment in Ref. [40] shows a three-peak structure at around

FIG. 7. Strength distributions (shifted) of ISGDR [(a), (b)] and
ISGOR (HEOR) [(c), (d)] in Nd and Sm isotopes.

the excitation energies of 12–16, 20–24, and 26–29 MeV.
The data were compared with the fluid dynamics results of
Ref. [45]; however, the mechanism for appearance of the
second peak was unclear. According to the present calculation,
it is suggested that the first peak corresponds to the low-energy
ISGDR, the second peak is associated with the coupling to the
K = 0 and 1 components of the HEOR, and the third peak is
the primal ISGDR.

Figure 11 shows the strength distributions of IV dipole
and octupole excitations. The IV giant octupole resonance
(GOR) is seen above 30 MeV, and we find a bump structure at
around 10 MeV corresponding to the IV-LEOR. The strength
is smaller than that of the IV-HEOR. Note that the strength of
the IS-LEOR is compatible to that of the IS-HEOR.
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FIG. 8. (Color online) (a) The centroid energies of the low-energy
and high-energy components of the ISGDR in the Sm isotopes. (b)
The centroid energies of the HEOR and the LEOR in the Sm isotopes.
The centroid energy of LEOR is evaluated in the energy range of
[Ea, Eb] = [3, 10] MeV. The dotted line is obtained by fitting the
results with an A−1/3 line. The experimental data [39] are denoted by
open symbols with error bars.

In the deformed systems, we see an appearance of the
shoulder structure at about 15 MeV. Figures 10(b) and 10(d)
presenting the IV dipole and octupole strength distributions
in 154Sm show that the shoulder structure is associated with
the deformation splitting of the GDR and its coupling to the
IV-LEOR.

3. Low-lying collective states

In this subsection, we are going to discuss the low-lying
states. As shown in Fig. 9, we see an appearance of the
collective mode for the IS dipole excitation below 2 MeV
associated with an onset of deformation. This is due to the
strong coupling to the collective octupole mode of excitation.

What has to be mentioned here is an absence of the
collective K = 0 mode in 148Sm. In the present calculation, we
have two imaginary solutions in the Kπ = 0− channel, one of
which is associated with the spurious center-of-mass motion.
In 150Sm, we have the K = 0 mode at 0.72 MeV. The excitation
energy of the collective K = 0 mode becomes higher when
increasing the neutron number. Thus, we can consider that the
second imaginary solution in 148Sm indicates the instability
against the axially symmetric octupole deformation. In fact, the
largest B(E3; 0+

1 → 3−
1 ) value is measured in 148Sm among

the even-even Sm isotopes [53].

FIG. 9. (Color online) The low-energy IS dipole and octupole
transition strengths in the Sm isotopes. The strengths with different
K are all identical for the spherical nuclei.

Before going to the next subsection, we summarize the
energy of the low-lying collective states in the spherical and
the well-deformed Nd and Sm isotopes. Figure 12 shows the
excitation energies of the lowest Kπ = 0+, 2+, 0−, and 1−
states. The available experimental data [53] are also shown. For
the experimental values, we neglect the rotational correction,
which is 30 keV at most in 154Sm. Figure 12 shows that the
observed isotopic dependence is well reproduced.

The excitation energies of the quadrupole-vibrational states
agree with the experimental data within 0.5–1 MeV. This result
is close to the one obtained in Ref. [54], where the authors
obtained the γ -vibrational state at 2.5 and at 2.3 MeV in 152Nd
and 154Sm, respectively, despite the use of a different pairing
functional from ours. Reproduction of the experimental values
of the octupole-vibrational states in the deformed nuclei is
extremely good.

Table III summarizes the excitation energy of the low-lying
collective states in 154Sm obtained by the QRPA calculations
employing the different kinds of Skyrme functionals. All the
Skyrme functionals under consideration give a reasonable
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FIG. 10. (Color online) (a) The IS compression dipole strength
distribution in the ISGDR energy region in 154Sm. (b) The IV
dipole strength distribution in the GDR energy region. (c) The
IS octupole strength distribution. (d) The IV octupole strength
distribution.

agreement with the measurements, and the quality is at the
same level found in Ref. [14].

D. Incompressibility and effective mass in GRs

In this subsection, we investigate how the calculated
properties of the GRs depend on the Skyrme EDFs with
the different nuclear matter properties, effective mass, and
incompressibility. We take 144Sm and 154Sm as examples of
spherical and deformed nuclei, respectively. The experimental
data for all the isoscalar multipole excitations are available for
these isotopes. Nuclear matter and deformation properties for
the functionals we employ are listed in Table IV.

As we discussed in Sec. III C 1, the experimental value
for the peak energies of the ISGMR is fairly reproduced in
the calculation for all the functionals under investigation. The
excitation energies of the upper peak of the ISGMR in 154Sm
and the ISGMR in 144Sm are shown in the upper-left panels of
Fig. 13 as functions of the square root of the incompressibility.
We can see a clear correlation between them. This result is
consistent with the fact that the GMR energy is proportional
to the square root of the incompressibility [55]. The excitation
energy is given in the scaling model as

ωs
M =

√
5(m/m∗

0)(1 + F0)� =
√

5K/3m〈r2〉, (19)

where F0 is the Landau-Migdal parameter and h̄� �
41A−1/3 (MeV) [45], and the excitation energy of the upper
peak of the ISGMR in deformed systems is given in Eq. (3.10)
of Ref. [45]. Note here that as we saw in Sec. III C 1 the scaling
model overestimates the energy of the compressible modes,
while it gives the qualitative understanding of GRs [45]. Since
the SkP functional has a small incompressibility, the calculated
excitation energy of the ISGMR is lower than the experimental
data and the results obtained by using the SkM* and SLy4
functionals.

FIG. 11. The strength distributions (shifted) of IVGDR [(a), (b)]
and IVGOR [(c), (d)] in Nd and Sm isotopes.

For the GMR in 154Sm, the SkM* functional gives the
excitation energy which is very close to the observation [39].
However, in 144Sm the SkM* underestimates the observation,
and the SLy4 gives the reasonable energy. The experimental
data reported in Refs. [40,56] for the GMR centroid energy
in 144Sm are 15.39 ± 0.28 MeV and 15.40 ± 0.30 MeV.
Therefore, the present calculation suggests that the nuclear-
matter incompressibility is about 15.22 = 231 MeV deduced
from the comparison for 144Sm and 14.62 = 213 MeV for
154Sm. As mentioned in Sec. III A, the pairing properties
in 144Sm and 154Sm are quite different. Thus it would be
interesting to investigate in detail the pairing effects on the
GMR [57,58], taking the deformation effect into account.

The upper-right panel of Fig. 13 shows the centroid energy
of the ISGDR. Here, we evaluate the centroid energy in the
energy region of the second and the third peaks as done in
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FIG. 12. The excitation energies of the lowest Kπ = 0+, 2+, 0−

and 1− states in Nd and Sm isotopes. The experimental data for
Nd and Sm isotopes [53] are denoted by open triangles and circles,
respectively. The lines are drawn to guide the eyes.

the experimental analysis [39,40] for 154Sm. The excitation
energy of the ISGDR is given in the scaling model as [45]

ωs
D =

√
7

3

[
5K

3m〈r2〉 + 8

5

(
m

m∗
0

)]
�. (20)

It contains information not only of the incompressibility but of
the effective mass. Note that the primal ISGDR in the deformed
nuclei is the third peak as we discussed in the previous section.

In the left-lower and right-lower panels of Fig. 13, we show
the peak energy of the ISGQR and the centroid energy of the
HEOR as functions of the inverse of square root of the isoscalar

effective mass
√

m∗
0/m

−1
. We can see a linear correlation

between them: As the isoscalar effective mass is smaller, the
resonance energy is greater. This is consistent with the results
of the simple model. The excitation energy of the ISGQR and
HEOR is given by the scaling model as [45]

ωs
Q =

√
2(m/m∗

0)�, (21)

ωs
O =

√
(28/5)(m/m∗

0)�. (22)

This feature is also consistent with the finding in the GQR
energy obtained by the RPA calculations for spherical systems
[59].

TABLE III. The excitation energies (in units of million electron
volts) of the low-lying collective states in 154Sm. Experimental data
are taken from Ref. [53].

Kπ = 0+ Kπ = 2+ Kπ = 0− Kπ = 1−

SkM* 1.55 1.93 1.37 1.49
SLy4 1.46 1.81 1.25 1.66
SkP 0.95 0.92 1.44 1.64
Exp. 1.099 1.440 0.921 1.475

TABLE IV. The nuclear matter and deformation properties for
the Skyrme functionals under consideration. The table represents the
isoscalar effective mass m∗

0/m, the nuclear-matter incompressibility
K , and the deformation parameters β2 in 154Sm.

Forces m∗
0/m K (MeV) βν

2 βπ
2

SkM* 0.79 216.7 0.30 0.33
SLy4 0.70 229.9 0.30 0.33
SkP 1.00 201.0 0.28 0.30

For the ISGQR, the effective mass m∗
0/m around 1.09−2 =

0.84 gives the excitation energy, which is compatible with
the experimental results both in 144Sm and in 154Sm. For
the HEOR in 144Sm, slightly smaller effective mass around
1.16−2 = 0.74 seems to be favored in comparison with the
experimental observation [39]. In 154Sm, it is hard to deduce
the optimal value for the effective mass due to the large error
in the experiment [39].

The excitation energies of the HEOR in 144Sm and 154Sm
reported in Ref. [40] are 19.6 ± 0.5 MeV and 18.5 ± 0.5 MeV,

FIG. 13. (Color online) The peak energies of the ISGMR and
ISGQR, and the centroid energy of the ISGDR and HEOR in 144Sm
and 154Sm obtained by employing the Skyrme functionals giving the
different nuclear-matter properties. The continuous lines are drawn to
guide the eyes. Experimental data are shown by the open squares [39]
and the circles [40] with the error bars.
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respectively. The error is much smaller than that in the
experiment at RCNP [39]. However, the excitation energy is
small and it is outside of the energy region obtained by the three
types of Skyrme functionals. This indicates that the effective
mass is around 0.95−2 = 1.11 or even larger. Since the strength
distribution of the ISGDR in Ref. [40] looks similar to our
results, the large discrepancy found in the HEOR is difficult to
understand.

IV. SUMMARY

We have investigated the deformation effects on GRs
in the rare-earth nuclei by employing the newly developed
parallelized computer code for the QRPA based on the Skyrme
EDF. We found a good scalability for the calculation of
the matrix elements of the QRPA equation by the use of a
two-dimensional block cyclic distribution, which is suited for
the SCALAPACK.

The axial deformation in the ground state allows the GRs
with the multipolarity L = 0 and 2 to mix in the Kπ =
0+ channel. Accordingly, we have obtained a double-peak
structure of the ISGMR. The energy difference between the
upper and lower peaks in the ISGMR and the fraction of the
energy-weighted summed strength in the lower peak can be a
sensitive measure of the ground-state quadrupole moment. We
also predict a prominent double-peak structure of the IVGMR.

For the negative-parity excitations, the excitation modes
with L = 1 and 3 can mix in the Kπ = 0− and 1− channels.
This mixing leads to a large width for the ISGDR and
the enhancement of the low-lying dipole-transition strengths
associated with coupling to the collective octupole mode of ex-
citation. In the IV channel, the excitation energies of GDR and
LEOR are similar. In deformed nuclei, the coupling between
these two modes creates a broadening of the IV-LEOR peak.

It should be emphasized here that the origin of the observed
peak splitting in the IVGDR is different from that of the other
GRs. The double-peak structure in the IVGDR is well known to
be due to a direct consequence of the nuclear deformation [2].
Namely, this is associated with different frequencies between
K = 0 and K = 1 modes in the axially deformed system. The
same kind of deformation splitting, according to the different
K quantum numbers, also exists in the other GRs; however,
its magnitude is much smaller than the IVGDR. Typically, the

magnitude of the K splitting is about 2 MeV. Therefore, with
the smearing width of γ = 2 MeV in the present calculation,
the peak splitting disappears. The double-peak structures in
deformed nuclei for ISGMR, IVGMR, ISGDR, and IV-LEOR
observed in the present calculation are all associated with the
coupling among GRs with different multipolarity values.

Calculations using several commonly used Skyrme func-
tionals in the nuclear EDF method all give a fairly good
reproduction of the experimental data, not only for the GRs
but also for the low-lying collective modes in the spherical and
the well-deformed nuclei. Comparison of the GR results with
the experimental data obtained at RCNP [39] and TAMU [40]
was performed in detail for the spherical nucleus 144Sm and
the deformed 154Sm. The experimental data for the ISGMR
and the ISGDR indicate the incompressibility around 210–
230 MeV. The excitation energy of the ISGQR is well
reproduced with the effective mass m∗

0/m � 0.8–0.9 both in
144Sm and in 154Sm. The experimental data for the HEOR are
very different between the two experiments [39,40]. Further
experiments for HEOR are needed to confirm the value of the
effective mass.
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APPENDIX A: QRPA MATRIX ELEMENTS

Using the quasiparticle wave functions ϕ1(rσ ) and ϕ2(rσ ),
the solutions of the coordinate-space HFB equation, the matrix
elements appearing in the QRPA matrix are written as

Aαβγ δ = (Eα + Eβ)δαγ δβδ +
∑

σ1,σ2,σ
′
1,σ

′
2

∫
d r1d r2d r ′

1d r ′
2{ϕ1,α(r1σ̄1)ϕ1,β(r2σ̄2)v̄pp(12; 1′2′)ϕ∗

1,γ (r ′
1σ̄

′
1)ϕ∗

1,δ(r ′
2σ̄

′
2)

+ϕ2,α(r1σ1)ϕ2,β(r2σ2)v̄pp(12; 1′2′)ϕ∗
2,γ (r ′

1σ
′
1)ϕ∗

2,δ(r ′
2σ

′
2) − ϕ1,α(r1σ̄1)ϕ∗

2,γ (r2σ2)v̄ph(12; 1′2′)ϕ2,β (r ′
1σ

′
1)ϕ∗

1,δ(r ′
2σ̄

′
2)

−ϕ1,β (r1σ̄1)ϕ∗
2,δ(r2σ2)v̄ph(12; 1′2′)ϕ2,α(r ′

1σ
′
1)ϕ∗

1,γ (r ′
2σ̄

′
2) + ϕ1,α(r1σ̄1)ϕ∗

2,δ(r2σ2)v̄ph(12; 1′2′)ϕ2,β (r ′
1σ

′
1)ϕ∗

1,γ (r ′
2σ̄

′
2)

+ϕ1,β (r1σ̄1)ϕ∗
2,γ (r2σ2)v̄ph(12; 1′2′)ϕ2,α(r ′

1σ
′
1)ϕ∗

1,δ(r ′
2σ̄

′
2)}, (A1)

Bαβγ δ =
∑

σ1,σ2,σ
′
1,σ

′
2

∫
d r1d r2d r ′

1d r ′
2{−ϕ1,α(r1σ̄1)ϕ1,β(r2σ̄2)v̄pp(12; 1′2′)ϕ2,γ̄ (r ′

1σ
′
1)ϕ2,δ̄(r ′

2σ
′
2)

−ϕ2,α(r1σ1)ϕ2,β(r2σ2)v̄pp(12; 1′2′)ϕ1,γ̄ (r ′
1σ̄

′
1)ϕ1,δ̄(r ′

2σ̄
′
2) + ϕ1,α(r1σ̄1)ϕ1,γ̄ (r2σ̄2)v̄ph(12; 1′2′)ϕ2,β (r ′

1σ
′
1)ϕ2,δ̄(r ′

2σ
′
2)

+ϕ1,β (r1σ̄1)ϕ1,δ̄(r2σ̄2)v̄ph(12; 1′2′)ϕ2,α(r ′
1σ

′
1)ϕ2,γ̄ (r ′

2σ
′
2) − ϕ1,α(r1σ̄1)ϕ1,δ̄(r2σ̄2)v̄ph(12; 1′2′)ϕ2,β (r ′

1σ
′
1)ϕ2,γ̄ (r ′

2σ
′
2)

−ϕ1,β (r1σ̄1)ϕ1,γ̄ (r2σ̄2)v̄ph(12; 1′2′)ϕ2,α(r ′
1σ

′
1)ϕ2,δ̄(r ′

2σ
′
2)}. (A2)
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Here, the time-reversed state is defined as

ϕī(rσ ) = −2σϕ∗
i (r − σ ). (A3)

If one assumes that the effective pairing interaction is local, v̄pp is written as

v̄pp(12; 1′2′) = Vpp(r1σ1τ1, r2σ2τ2)δ(r ′
1 − r1)δσ ′

1,σ1δτ ′
1,τ1δ(r ′

2 − r2)δσ ′
2,σ2δτ ′

2,τ2 , (A4)

and for Vpp we use the form

Vpp(r1σ1τ1, r2σ2τ2) = V0gq[�(r1), �1(r1)]δ(r1 − r2)δσ1,−σ2δτ1,τ2 (A5)

in the present paper.
Similarly, the effective interaction for the p-h channel reads

v̄ph(12; 1′2′) = Vph(r1σ1τ1, r2σ2τ2)δ(r ′
1 − r1)δσ ′

1,σ1δτ ′
1,τ1δ(r ′

2 − r2)δσ ′
2,σ2δτ ′

2,τ2 , (A6)

and we take the form

Vph(r1σ1τ1, r2σ2τ2) = [a0 + a′
0τ 1 · τ 2 + (b0 + b′

0τ 1 · τ 2)σ 1 · σ 2]δ(r1 − r2)

+ [a1 + a′
1τ 1 · τ 2 + (b1 + b′

1τ 1 · τ 2)σ 1 · σ 2] × [k†2δ(r1 − r2) + δ(r1 − r2)k2]

+ [a2 + a′
2τ 1 · τ 2 + (b2 + b′

2τ 1 · τ 2)σ 1 · σ 2] × [k† · δ(r1 − r2)k]

+ (a4 + a′
4τ 1 · τ 2)(σ 1 + σ 2) · k† × δ(r1 − r2)k (A7)

with the standard notations of k and k†. The coefficients in Eq. (A7) are given in Ref. [26]. The coefficients a0, a
′
0, b0, and b′

0 are
density dependent and include the rearrangement terms. In the present paper, we have an additional contribution to these terms
coming from the pairing EDF (3). They are

−V0

2

η2

�2
0

[
�̃2

ν(r) + �̃2
π (r)

]
(for ν − ν, π − π )

V0

2

η2

�2
0

[
�̃2

ν(r) + �̃2
π (r)

]
(for ν − π ).

(A8)

APPENDIX B: PARAMETERS OF THE GIANT RESONANCES

We summarize in Tables V–VIII the peak energy and the width of the GRs obtained by the calculations with the SkM*
functional.

TABLE V. The parameters of the ISGMR and IVGMR.

ISGMR IVGMR

Ex � Ex � Ex � Ex �

(MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

142Nd 15.0 2.67 30.0 10.7
144Nd 14.5 2.79 29.6 10.2
146Nd 12.1 2.37 14.8 3.05 21.9 7.47 29.7 9.68
148Nd 11.9 2.83 15.0 3.05 21.7 4.54 29.8 9.39
150Nd 11.8 3.22 15.6 3.15 21.1 3.92 30.2 9.81
152Nd 11.5 3.40 15.7 3.20 20.7 3.91 30.3 9.76
144Sm 14.9 2.62 29.9 10.9
146Sm 14.4 2.68 29.4 10.4
148Sm 12.2 2.07 14.7 2.97 21.4 6.28 29.5 10.0
150Sm 11.9 2.79 15.0 2.97 21.6 4.27 29.8 9.52
152Sm 11.8 3.20 15.5 3.04 21.2 3.79 30.2 9.90
154Sm 11.5 3.39 15.6 3.12 20.9 3.77 30.3 9.80
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TABLE VI. The parameters of the ISGDR and IVGDR.

LE-ISGDR ISGDR IVGDR

Ex � Ex � Ex � Ex � Ex �

(MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

142Nd 14.2 7.62 26.0 6.32 14.8 4.40
144Nd 13.9 8.25 25.9 6.33 14.8 4.34
146Nd 13.8 8.90 23.4 7.49 26.7 5.15 14.1 3.65 17.0 3.20
148Nd 13.8 9.26 22.3 5.78 26.7 5.71 13.5 3.58 16.5 4.73
150Nd 13.7 11.3 21.7 7.62 27.1 5.74 12.4 2.56 15.7 5.65
152Nd 13.6 14.1 21.1 9.26 27.2 6.63 12.0 2.56 15.7 5.69
144Sm 14.3 9.52 25.9 6.20 14.8 4.38
146Sm 13.9 10.5 25.8 6.21 14.8 4.31
148Sm 14.0 10.3 23.6 7.59 26.7 4.95 14.1 3.58 16.9 3.45
150Sm 14.0 9.77 22.2 5.69 26.6 5.87 13.3 3.30 16.0 4.96
152Sm 14.0 10.8 21.4 6.44 26.8 7.87 12.4 2.46 15.7 5.68
154Sm 14.0 12.6 21.0 8.21 26.9 7.44 12.1 2.51 15.7 5.70

TABLE VII. The parameters of the ISGQR and IVGQR.

ISGQR IVGQR

Ex � Ex �

(MeV) (MeV) (MeV) (MeV)

142Nd 13.3 2.89 24.8 5.20
144Nd 12.9 2.93 24.5 5.12
146Nd 12.7 3.01 24.0 5.71
148Nd 12.6 3.51 23.5 6.69
150Nd 12.7 4.71 23.7 8.42
152Nd 12.5 5.23 23.5 9.11
144Sm 13.3 2.73 24.8 4.96
146Sm 12.9 2.77 24.5 4.91
148Sm 12.7 3.02 24.2 5.59
150Sm 12.6 3.63 23.8 6.66
152Sm 12.7 4.71 23.7 8.06
154Sm 12.6 5.14 23.5 8.64

TABLE VIII. The parameters of the HEOR and IVGOR.

HEOR IV-LEOR IV-HEOR

Ex � Ex � Ex � Ex �

(MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

142Nd 24.1 3.65 12.5 6.97 33.3 8.02
144Nd 24.0 3.73 12.4 7.68 33.1 7.85
146Nd 23.8 4.44 12.2 9.94 32.8 8.01
148Nd 23.5 5.31 11.8 8.26 16.4 4.76 32.4 8.38
150Nd 23.2 6.47 11.5 6.29 16.0 4.86 32.0 9.28
152Nd 22.9 6.84 11.5 6.01 16.0 4.55 31.7 9.73
144Sm 24.0 3.70 12.4 6.83 33.2 7.78
146Sm 24.0 3.66 12.3 7.48 33.1 7.61
148Sm 23.8 4.41 12.2 9.63 32.7 7.83
150Sm 23.4 5.51 11.9 8.28 16.2 4.56 32.3 8.32
152Sm 23.1 6.84 11.8 6.36 16.1 4.49 32.0 9.00
154Sm 22.9 6.74 11.7 6.10 16.1 4.21 31.7 9.34
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