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Anharmonicity of the excited octupole band in actinides using supersymmetric quantum mechanics
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Background: Low-lying octupole collective excitations play an important role in the description of the structure
of nuclei in the actinide region. Ground state alternating parity rotational bands combining both positive and
negative parity states are known in several nuclei. However, only recently it has been discovered in 240Pu an
excited positive parity rotational band having an octupole nature and demonstrating strong anharmonicity of the
octupole motion in the band head energies.
Purpose: To suggest a model describing both ground state and excited alternating parity bands, which includes a
description of the anharmonic effects in the bandhead excitation energies and can be used to predict the energies
of the excited rotational bands of octupole nature and the E1 transition probabilities.
Methods: The mathematical technique of the supersymmetric quantum mechanics with a collective Hamiltonian
depending only on the octupole collective variable which keeps axial symmetry is used to describe the ground
state and excited alternating parity rotational bands.
Results: The excitation energies of the states belonging to the lowest negative parity and the excited positive
parity bands are calculated for 232Th, 238U, and 240Pu. The E1 transition matrix elements are also calculated
for 240Pu.
Conclusions: It is shown that the suggested model describes the excitation energies of the states of the lowest
negative parity band with the accuracy around 10 keV. The anharmonicity in the bandhead energy of the excited
positive parity band is described also. The bandhead energy of the excited positive parity band is described with
the accuracy around 100 keV.
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I. INTRODUCTION

Collective modes play a very important role in the struc-
ture of heavy nuclei. Among them the isoscalar collective
quadrupole mode is widespread and well investigated. We
know of the one- and two-phonon quadrupole states in
vibrational nuclei, complicated spectra of the positive parity
collective states in transitional nuclei, and the well-defined
rotational bands in deformed axially symmetric nuclei. Low-
lying collective octupole excitations have also been observed
in many nuclei. However, they are known mainly as the
one-phonon vibrational excitations. The more interesting in-
formation about octupole excitations is centered in the actinide
nuclei. In these nuclei there are known long alternating parity
bands which have been observed up to angular momentum
I = 30. Beautiful new data have been obtained at the Argonne
Tandem Linac Accelerator System (ATLAS) facility at the
Argonne National Laboratory [1]. In addition to the long
ground state alternating parity rotational band an excited band
with positive parity has been observed in 240Pu. The properties
of the states of this band clearly indicate the octupole nature
of the excited band: there are strong E1 transitions to the
negative parity states of the ground state alternating parity
band, however the E2 transitions from the states of this band
to the positive parity states of the ground state band have
not been observed. Among the recent results we mention
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measurements of the electric octupole transition strength at
the Isotope Separator On Line Device (ISOLDE) at CERN,
which give clear evidence for strong octupole correlations in
the light Ra isotopes [2].

We present below a quantitative interpretation of these data
based on the following physical picture. We assume that the
main role in the description of the properties of these states
is played by the octupole mode with K = 0 (β30), which
preserves axial symmetry. We present the method to calculate
the excitation energies of the lowest negative parity states and
of the excited positive parity band and the wave functions
of these states. As shown below, the anharmonic effects
are not important at low angular momentum for the lowest
negative parity band. For the excited positive parity band the
anharmonic effects are important, however, already at low
I . With angular momentum increase the anharmonic effects
become important for all states. It was shown in Ref. [3] that
a second-order phase transition from octupole-nondeformed
to octupole-deformed states takes place at I around 12 to 14
in the ground state alternating parity bands of 232Th, 238U,
and 240Pu.

The results obtained by the authors of Ref. [4] have shown
that with the Gauss ansatz for the wave functions of the states
of the ground state positive parity band the octupole potential
at small I is very similar to the harmonic oscillator potential.
As a consequence, the energy of the band head of the excited
positive parity band (0+

2 state) is approximately equal to twice
the energy of the lowest 1− state. This strongly contradicts the
observed situation in 240Pu. To improve this it is necessary to
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modify the Gauss ansatz in such a way as to keep the previous
description of the lowest negative parity band, but improve
a description of the excited positive parity band at low I . In
other words, we should find a new ansatz for the positive parity
states of the ground state band which produces a new octupole
potential with the following properties. Up to the energies of
the states of the first excited negative parity band it is close at
every I to the previously used potential. However, around the
energies of the second excited band the new potential should
be wider than that obtained with the Gauss ansatz. As a result
the energy of the 0+

2 state will be shifted down in agreement
with the experimental situation.

Octupole excitations have been a subject of a large
number of theoretical studies. For instance, the model of
Ref. [5] has been applied to some actinides in Ref. [6].
The collective model has been applied to the description of
the octupole states in Refs. [7,8]. Alternating approaches to
negative-parity bands in the actinides have been given in
a cluster model in Refs. [9,10]. The algebraic approach to
octupole correlations [11], fully classified in Refs. [12,13],
has been applied in the actinides in Ref. [14]. The microscopic
description of the evolution from spherical to octupole-
deformed shapes has been considered in the framework
of the relativistic mean-field theory in the actinides in
Ref. [15].

There is, however, an effect observed in light Ra and Th
isotopes [16,17], which are soft with respect to the quadrupole
deformation: the parity splitting, i.e., a shift of the energy of
the negative-parity states with respect to the positive-parity
ones in the alternating parity bands, being positive at low
and medium values of I but changing the sign at high I .
This effect is produced by the band crossing with the aligned
octupole phonon or the two-quasiparticle band [18–21] and
cannot be described in the framework of our model. For this
reason we consider the states of the alternating parity band
only up to those values of I for which the parity splitting
is positive.

In the consideration below, the mathematical technique of
supersymmetric quantum mechanics is used.

II. HAMILTONIAN AND BASIC STATES

The Hamiltonian of the model used can be presented as

HI = − h̄2

2B

d2

dβ2
30

+ V
(1)
I (β30), (1)

where the subscript I indicates that the shape of the potential
depends on the angular momentum I because the potential
energy term includes also the rotational energy. We do not take
into account a possible dependence of the inertia coefficient
B on octupole deformation to restrict the number of the
parameters used. It is assumed here that the quadrupole
deformation is rigid, i.e., well-deformed axially symmetric
nuclei with the ratio E(4+

1 )/E(2+
1 ) close to 3.3 are considered.

This model has common features with the algebraic model of
Ref. [11] and the dinuclear system model [10].

We did not suggest any parametrization of V
(1)
I but follow

the procedure given by supersymmetric quantum mechanics

[22,23] to obtain the potential. The experimental data on
the excitation energies of the negative parity states of the
ground state alternating parity bands are used to determine the
parameters of the potential V

(1)
I completely. In determining

V
(1)
I we have taken into account the experimental fact that

the excitation energy of the bandhead of the excited positive
parity octupole band demonstrates strong anharmonicity, i.e.,
a strong deviation of the excitation energy of this state from
twice the energy of the first excited 1− state.

In our approach we do not calculate the energies of the
positive parity states of the ground state band. We calculate the
energy differences between the energies of the excited states
and some reference energies. For even values of the angular
momentum I the reference energies are the experimental
energies of the positive parity states of the ground state
band. For odd I the reference energies are determined by
interpolation using the energies of the neighboring positive
parity states of the ground state band. The interpolation
formula is the following [16]

E∗
inter,I+1 = (I + 1)E∗

gs,I+2 + (I + 2)E∗
gs,I

2I + 3
, (2)

where I is even.
To take into account anharmonic effects in the bandhead

energies we use the following ansatz for the positive parity
wave function of the states belonging to the ground state band.
Since being the wave function of the lowest states for a given
I this wave function has no nodes, we assume that it can be
presented by the following expression

�
(+)
I ∼ ( cosh−l λ[β30 − βm(I )] + cosh−l λ[β30 + βm(I )]),

(3)

which is the sum of the two associated Legendre polyno-
mials P l

l {tanh λ[β30 ± βm(I )]} [24]. This wave function is
symmetric with respect to a β30 → −β30 transformation.

FIG. 1. The potentials V
(1)
I as a function of β30 calculated with

I = 2 using the Legendre ansatz (L) and the Gauss ansatz (G) for
the wave functions of the ground state band. The straight solid line
indicates the position of the first excited negative parity state. Dashed
line indicates position of the lowest positive parity states. Dot-dashed
line indicates position of the second excited positive parity states. The
level energies are obtained using the Legendre ansatz.

034306-2



ANHARMONICITY OF THE EXCITED OCTUPOLE BAND IN . . . PHYSICAL REVIEW C 88, 034306 (2013)

In contrast to our previous publication [4], we use here
the associated Legendre polynomials instead of the Gauss
function. The reason is the following. The use of the Gauss
function corresponds at low I to harmonic octupole vibrations.
The corresponding potential coincides with a good accuracy
at I = 0 with the harmonic oscillator potential. The use of
the associated Legendre polynomials give us a possibility to
include the consideration of anharmonic effects even at I = 0.
The reason is a different behavior of these functions at large
β30 although they generate very similar potentials at small β30

as shown in Fig. 1. Indeed, it is seen in Fig. 1 that around the
energy of the first excited state, indicated by the solid line,
the two potentials are quite close to each other. It happens
because the parameters h̄ω, c0, and c1 are fitted separately
for both potentials so as to describe the excitation energies of
the lowest negative parity states at every I . These states are
just the first excited states in the potential. However, around
the energy of the second excited state, indicated in Fig. 1 by
the dashed line, the potentials start to deviate one from the
other. We mention that, instead of the associated Legendre
polynomials, other functions with a similar behavior around
the energies of the first and second excited states but different
asymptotic behavior and therefore with a larger number of the
parameters can be used. However, the choice of the associated
Legendre polynomials is very convenient.

Following the procedure of supersymmetric quantum
mechanics we substitute the wave function (3) into the
Schrödinger equation with the Hamiltonian (1) and obtain
the potential V

(1)
I . The potential produced in this way is a

finite depth potential. This is a consequence of the use of the
associated Legendre polynomials as the ansatz. As noted, this
ansatz has been suggested instead of the Gauss ansatz to have
a wider potential at the energy of the second excited state (two-
phonon state in the harmonic approximation) compared to the
harmonic oscillator potential. At the same time both potentials,
namely, those produced by the Legendre polynomial ansatz
and Gauss ansatz are similar at the energies of the lowest and
the first excited states.

The use of the finite depth potential means that the
number of the rotational bands in the model is restricted. This
situation is not unique. It is well known that in the interacting
boson model the anharmonicity of the quadrupole mode is
included into consideration by the use of the SU(6) dynamical
symmetry group whose generators are applied to construct the
Hamiltonian of the model. The eigenstates of this Hamiltonian
are characterized by the maximal possible number of the
quadrupole bosons (d bosons) in the basis wave functions.
In other words, the total number of the eigenstates of the
model Hamiltonian is finite. If we use the collective octupole
Hamiltonian (1) with the potential V

(1)
I as a finite depth

potential, then for every value of the angular momentum I
there is only a finite number of excited states. These excitations
belong to different rotational bands and can be considered as
the intrinsic excitations of a deformed nucleus. At the same
time it does not mean that the quadrupole and the octupole
deformation parameters are restricted from above. This would
be in contradiction to, for instance, the asymmetric fission
process. This method of the reduction of the basis is used

FIG. 2. The potentials V
(1)
I as a function of β30 calculated with

I = 2, 12, 22 using the Legendre ansatz for the ground state wave
functions.

only to describe the low-lying collective excitations which
include mainly the quasiparticle components belonging to the
valence shell. We mention that finite depth potentials have been
considered in the algebraic theory of nuclear reactions [25].

In Fig. 2 the collective octupole potentials calculated for
different values of I using the ansatz (3) are shown.

Following Ref. [3], we rewrite the expression (3) as

d�
(+)
I ∼ ( cosh−l λβm(I )[β30/βm(I ) − 1]

+ cosh−l λβm(I )[β30/βm(I ) + 1]). (4)

It is convenient to introduce instead of λ the new parameter ω

λ =
√

Bω

h̄
(5)

and the parameter

s3(I ) =
√

Bω

h̄
βm(I ) (6)

as in Ref. [3]. Then

�
(+)
I ∼ ( cosh−l s3(I )[β30/βm(I ) − 1]

+ cosh−l s3(I )[β30/βm(I ) + 1]). (7)

We see that the wave function (7) is a function of the variable
β30/βm(I ) and depends only on the parameter s3(I ).

Following the procedure of supersymmetric quantum
mechanics we first determine the supersymmetric potential
W (β30)

W (β30) = − h̄√
2B

�
′(+)
I

�
(+)
I

, (8)

which can be used to determine the potential V
(1)
I for the

Schrödinger equation, whose lowest state wave function is (7),

V
(1)
I = W 2 − h̄√

2B
W ′ + E∗

I = h̄2

2B

�
′′(+)
I

�
(+)
I

+ E∗
I (9)
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FIG. 3. The potentials V
(1)
I as a function of β30 calculated with

I = 22 using the Legendre ansatz (L) and the Gauss ansatz (G) for
the wave functions of the ground state band. The straight solid line
indicates the position of the first excited negative parity state. Dashed
line indicates position of the lowest positive parity states. Dot-dashed
line indicates position of the second excited positive parity states. The
level energies are obtained using the Legendre ansatz.

and its supersymmetric partner potential V
(2)
I

V
(2)
I = W 2 + h̄√

2B
W ′ + E∗

I

= h̄2

2B

[
2

(
�

′(+)
I

�
(+)
I

)2

− �
′′(+)
I

�
(+)
I

]
+ E∗

I . (10)

Here for even I the quantity E∗
I is the experimental

excitation energy of the lowest state with spin I and positive
parity. For odd I this energy is determined by interpolation as
was described above [see Eq. (2)].

Varying the value of the parameter s3 we have found that
the potential V

(1)
I evolves from that having one minimum at

β30 = 0 when s3 is small to the two-center potential for large
values of s3 (see Fig. 3). However, the partner potential V

(2)
I is

the one-center potential for physically interesting values of s3.
This fact makes a solution of the Schrödinger equation with
the potential V

(2)
I simpler than a solution of the Schrödinger

equation with the potential V
(1)
I since in this case some set

of orthogonal well-known special functions can be used as a
basis. At the same time the eigenvalues of the Hamiltonian
with the potential V

(2)
I coincide with those obtained using

the potential V
(1)
I , excluding the lowest eigenvalue of this

Hamiltonian. This is an important advantage related to the
application of supersymmetric quantum mechanics to this
problem.

The lowest state of the Hamiltonian with the potential V
(2)
I

can be constructed using as the basis the associated Legen-
dre polynomials P l−1

l−3+2n[tanh(s3
β30

βm(I ) )] with n = 1, 2, 3, . . ..
These functions are orthogonal∫ +∞

−∞
P m

l (tanh x)P m
k (tanh x)

dx

cosh2 x
= 2(l + m)!

(2l + 1)(l − m)!
δkl .

(11)

FIG. 4. The calculated and experimental spectra of the ground
and excited bands of octupole nature of both parities in 240Pu. The
experimental data are taken from Refs. [1,27]. The values of the
energies are given in the Tables I to IV.

The first excited state of the Hamiltonian with the potential
V

(2)
I has negative parity. The wave function of this state can be

constructed using the following basis: P l−2
l−3+2n[tanh(s3

β30

βm(I ) )].
For the second excited state of this Hamiltonian the basis is
formed by the functions P l−3

l−3+2n[tanh(s3
β30

βm(I ) )], and so on.

III. RESULTS OF CALCULATIONS AND DISCUSSIONS

It was shown in Ref. [4] based on the results of the
calculations of the parity splitting for the Gauss ansatz of
the ground state wave functions that the angular momentum
dependence of s3(I ) can be parameterized by the linear
function

s3(I ) = c0 + c1 · I, (12)

FIG. 5. The calculated and experimental spectra of the ground
and excited bands of octupole nature of both parities in 238U. The
experimental data are taken from Refs. [26,27]. The values of the
energies are given in the Tables I to IV.
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FIG. 6. The calculated and experimental spectra of the ground
and excited bands of octupole nature of both parities in 232Th. The
experimental data are taken from Ref. [27]. The values of the energies
are given in the Tables I to IV.

where c0 and c1 are the fit parameters. They are determined to
get the best description of the energies of the negative parity
members of the ground state alternating parity band. It is shown
by our present calculations that this assumption is also valid
for the Legendre ansatz suggested. The parameter c0 does
not play an important role and, as shown in Ref. [4], can be
put equal to zero without the essential loss of accuracy of
the description of the experimental data. For high values of
the angular momentum the use of this parameter reduces a
deviation of the calculated values from the experimental ones
by about 10 keV.

TABLE I. Experimental and calculated excitation energies of the
states of the lowest negative parity band for 240Pu, 238U, and 232Th
given in keV. The experimental data are taken from Refs. [1,26,
27]. The values of the parameters are the following: for 240Pu h̄ω =
170 keV, c0 = 0.0187, and c1 = 0.0305; for 238U h̄ω = 204 keV,
c0 = 0.0920, and c1 = 0.0218; for 232Th h̄ω = 206 keV, c0 = 0.0378,
and c1 = 0.0222.

I 240Pu 238U 232Th

exp cal exp cal exp cal

1 598 596 680 680 714 712
3 649 652 732 724 774 774
5 742 748 827 819 884 888
7 878 884 966 962 1043 1050
9 1056 1061 1151 1152 1250 1254
11 1277 1278 1379 1384 1499 1498
13 1540 1536 1649 1656 1785 1778
15 1841 1835 1959 1965 2102 2089
17 2182 2174 2307 2308 2445 2431
19 2560 2552 2689 2682 2813 2801
21 2973 2967 3104 3080 3204 3198
23 3420 3418 3548 3503 3616 3623
25 3900 3904 4017 3945 4050 4075
27 4410 4422 4504 4407 4506 4558

TABLE II. Experimental and calculated excitation energies of the
excited positive parity band of octupole nature for 240Pu, 238U, and
232Th given in keV. The experimental data are taken from Refs. [1,
26,27]. The values of the parameters h̄ω, c0, and c1 are the same as
have been used in Table I.

I 240Pu 238U 232Th

exp cal exp cal exp cal

0 861 982 927 1154 – 1187
2 900 1010 – 1171 – 1220
4 992 1077 – 1239 – 1306
6 1138 1186 – 1356 – 1442
8 1323 1337 1546 1522 – 1624
10 1556 1533 1787 1734 – 1848
12 1829 1775 2049 1989 – 2111
14 2136 2060 2347 2284 – 2408
16 2474 2388 2676 2615 – 2739
18 2836 2758 3032 2979 – 3100
20 3217 3166 3412 3373 – 3489
22 3626 3613 3812 3792 – 3907
24 4062 4095 4233 4233 – 4352

The next step is to fix the integer number l, which
characterizes the wave function (3) and determines the number
of eigenstate of the Hamiltonian with the potential V

(1)
I . Since

in 240Pu there are found experimentally three rotational bands:
the ground state positive parity band, the negative parity band
based on the 1−

1 state, and the excited positive parity band based
on the 0+

2 state the parameter l cannot be smaller than l = 3.
If we assume that a second excited K = 0 band of negative
parity states of an octupole nature can exist we must take l
equal to 4. The results of the calculations of the spectra of the
positive and the negative parity states, whose origin is related
to the octupole mode, are presented in Fig. 4 for 240Pu and in
Figs. 5 and 6 for 238U and 232Th, respectively. The values of

TABLE III. Calculated excitation energies of the states of the
excited negative parity collective band of octupole nature for
240Pu, 238U, and 232Th given in keV. The values of the param-
eters h̄ω, c0, and c1 are the same as given in the caption of
Table I.

I 240Pu 238U 232Th

1 1216 1438 1470
3 1274 1491 1538
5 1373 1596 1660
7 1517 1750 1832
9 1705 1951 2049
11 1933 2194 2304
13 2201 2475 2594
15 2506 2791 2916
17 2848 3139 3265
19 3224 3514 3640
21 3635 3912 4040
23 4077 4332 4463
25 4552 4769 4909
27 5057 5223 5377
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TABLE IV. Calculated excitation energies of the states of the
lowest negative parity and of the first excited positive parity bands
for 240Pu given in keV. The values of the parameters are the same
as presented in Table I for 240Pu. The results obtained using the
associated Legendre polynomials as the ansatz for the positive parity
wave functions of the states of the ground state band are marked by
“Legendre.” The results obtained using the Gauss ansatz are marked
by “Gauss.”

I E1(I−) I E2(I+)

Legendre Gauss Legendre Gauss

1 596 594 0 982 1166
3 652 646 2 1010 1187
5 748 741 4 1077 1238
7 884 878 6 1186 1325
9 1061 1057 8 1337 1453
11 1278 1278 10 1533 1628
13 1536 1538 12 1775 1848
15 1835 1840 14 2060 2112
17 2174 2181 16 2388 2427
19 2552 2561 18 2758 2786
21 2967 2978 20 3166 3190
23 3418 3432 22 3613 3637
25 3904 3920 24 4095 4129

the parameters h̄ω, c0, and c1 are given in the caption of the
Table I. We have accepted l = 4.

The results presented in the tables and the figures show
that the description of the excitation energies of the lowest
negative parity states is quite good for 240Pu up to I = 23 using
both ansatzs: based on the associated Legendre polynomials
and based on the Gaussian function (see Table IV). For 238U
and 232Th only the results obtained using the ansatz based
on the associated Legendre polynomials are presented. They
are good up to I equal to 19 and 23, respectively. The
calculated excitation energy of the excited octupole 0+ state
in 240Pu obtained using the Legendre ansatz is higher than
the experimental one by 120 keV. However, a significant part
of the anharmonic effect in the bandhead energy is taken
into account in the calculations with this ansatz. We mention
that agreement would be better for l = 3. In other words, the

experimental fact that the excitation energy of the bandhead
of the excited positive parity octupole band strongly deviates
from twice the energy of the first excited 1− state is mainly
taken into account by the new potential V

(1)
I . The results

presented in Table IV also show that if the ansatz based on
the Gaussian function is used the excitation energy of the 0+

2
state is equal to approximately twice the energy of the 1−

1 state.
It is also seen from the results presented in the Table IV that the
differences between the energies of the positive parity states
of the excited band obtained with the Legendre ansatz and the
Gauss ansatz decrease with increasing I . The reason for this
is illustrated in Figs. 1 and 3. In the case of I = 2 (see Fig. 1)
the excited positive parity state is in the region where the
difference between the potentials obtained using the Legendre
and Gauss ansatzs is much larger than for I = 22 (see
Fig. 3).

The excited positive parity states of octupole nature are
observed also in 238U for I � 8 [26]. Their description in our
calculations is quite satisfactory even for the highest observed
values of the angular momentum. There is no experimental
data on these states in 232Th. Thus the calculated result
for 232Th is a prediction. Comparing the calculated results
with the experimental data for 240Pu and 238U we see that
the experimental energies of the 0+

2 state are lower than the
calculated ones by 100 keV or more. We mention that the
parameters h̄ω, c0, and c1 are fitted so as to get a better
description of the energies of the negative parity states of the
ground state alternating parity band.

In Figs. 4 to 6 are shown also the states of the excited
negative parity bands which decay by strong E1 transitions
to the excited positive parity states discussed above. However,
there is no experimental information on these states and their
experimental detection or nondetection is of great interest. The
calculated excitation energies of the second excited 1− states
in 240Pu, 238U, and 232Th are equal to 1.2–1.4 MeV.

The results of calculations with the Legendre ansatz of the
E1 transition matrix elements

M(E1)1μ = (1 + χ )CLDAZeD1
μ0β20β30 (13)

between the lowest excited negative parity states and the
positive parity states of the ground state band and of the excited
double octupole phonon band are presented in Tables V and VI

TABLE V. Calculated E1 transition matrix elements between the ground and the lowest excited negative parity states 〈I+
1 ||E1||(I + 1)−1 〉

and between the second excited positive parity states and the lowest negative parity states 〈I+
2 ||E1||(I + 1)−1 〉 given in the units e·fm. The

calculations are done for 240Pu. The values of the parameters h̄ω, c0, and c1 are the same as presented in Table I. The values of h̄2/B are taken
to be equal to 1/172.5 MeV.

I 〈I+
1 ||M(E1)||(I + 1)−1 〉 〈I+

2 ||M(E1)||(I + 1)−1 〉 I 〈I+
1 ||M(E1)||(I + 1)−1 〉 〈I+

2 ||M(E1)||(I + 1)−1 〉
0 0.08 0.05 14 0.54 0.58
2 0.19 0.17 16 0.61 0.63
4 0.24 0.27 18 0.70 0.66
6 0.29 0.36 20 0.80 0.71
8 0.34 0.41 22 0.90 0.75
10 0.41 0.48 24 1.00 0.78
12 0.46 0.53 26 1.08 0.81
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TABLE VI. Comparison of the E1 transition matrix elements
calculated with the Legendre ansatz and the Gauss ansatz. Calcula-
tions are done for 240Pu. The calculated matrix elements are those
connecting the states of the ground state band and the lowest excited
negative parity band 〈I+

1 ||M(E1)||(I + 1)−1 〉 and those connecting
the states of the excited positive parity band and of the lowest
excited negative parity band 〈I+

2 ||M(E1)||(I + 1)−1 〉. The values of
the parameters are the same as in Table V.

I
〈I+

1 ||M(E1)||(I+1)−1 〉Gauss

〈I+
1 ||M(E1)||(I+1)−1 〉Legendre

〈I+
2 ||M(E1)||(I+1)−1 〉Gauss

〈I+
2 ||M(E1)||(I+1)−1 〉Legendre

2 1.0 1.60
4 1.0 1.75
6 1.0 1.76
8 1.0 1.96
10 0.96 1.96
12 1.0 1.94
14 0.96 1.88
16 0.97 1.86
18 0.98 1.85
20 0.98 1.76
22 0.96 1.68
24 0.95 1.57
26 0.94 1.29

for 240Pu. Only the results obtained for the 〈I+||E1||(I + 1)−〉
matrix elements are shown. In Eq. (13) we used CLD = 0.0007
fm and χ = −0.7. It is seen from these results that in
agreement with the experimental data [1]: the transition matrix
elements 〈I+

1 ||E1||(I + 1)−1 〉 and 〈I+
2 ||E1||(I + 1)−1 〉 are of

the same magnitude. It is interesting to mention that the ra-
tio 〈I+

2 ||E1||(I + 1)−1 〉/ 〈I+
1 ||E1||(I + 1)−1 〉 is approximately

equal to 2 if the Gauss ansatz for the positive parity states
of the ground state band is used. Qualitatively, it is explained
by the fact that with the Gauss ansatz we are close to the
harmonic approximation and in the case of harmonic vibrations
transition matrix elements increase with increase of the number
of phonons in the states connected by the transition operator.
Thus, the experimental data on the E1 transitions also indicate
the presence of anharmonic effects in the properties of the
states of the double octupole phonon band. It is seen from
the Table V that the E1 transition matrix elements increase
with I approximately linearly. The reason is the linear increase
of s3(I ).

In Table VII are given the calculated values of the E2
transition matrix elements. It is seen that the E2 transitions
between the excited and the ground positive parity bands
are much weaker than the intraband transitions. The nonzero
values of the intraband E2 transition matrix elements are
obtained because the wave functions depend on the angular
momentum. Would they be independent of I these E2
transition matrix elements would be equal to zero because
β20 is considered as a constant in our approach.

IV. SUMMARY

In summary, we have shown that the experimental data
on the excitation spectra of the states of octupole nature

TABLE VII. Calculated E2 transition matrix elements between
the ground band and the excited positive parity band of octupole na-
ture 〈I+

1 ||E2||(I + 2)+2 〉 and the intraband transition matrix elements
given in eb. The calculations are done for 240Pu.

I 〈I+
1 ||E2||(I + 2)+2 〉 〈I+

1 ||E2||(I + 2)+1 〉 〈I+
2 ||E2||(I + 2)+2 〉

2 0.8 4.0 3.1
4 0.7 5.2 4.7
6 0.6 6.1 5.8
8 0.5 6.9 6.6
10 0.5 7.6 7.4
12 0.4 8.2 8.1
14 0.3 8.8 8.7
16 0.3 9.3 9.2
18 0.2 9.8 9.8
20 0.2 10.3 10.3
22 0.1 10.8 10.7

belonging to the ground and the excited alternating parity
bands are described quite satisfactorily by our approach.
The mathematical technique of supersymmetric quantum
mechanics is used for the simplification of the calculations.
It is shown also that the results obtained using the Legendre
ansatz explain the experimental fact that the transition matrix
elements 〈I+

1 ||E1||(I + 1)−1 〉 and 〈I+
2 ||E1||(I + 1)−1 〉 are of

the same magnitude, in contrast to those obtained with the
Gauss ansatz. The results of the calculations of the E2
transition matrix elements demonstrate that the E2 transitions
between the excited and the ground positive parity bands are
much weaker than the intraband transitions. This approach is
based on the assumption that the main role in the description
of the properties of the ground and excited alternating parity
bands of actinides is played by the octupole mode preserving
axial symmetry. We mention, however, that in 240Pu there is
known a 0+ state located 229 keV higher than the 0+ state of
octupole nature. In contrast to the 0+

2 state this state decays by
the E0 transition to the ground state [27].

It is shown also that the use of the associated Legendre
polynomials as the ansatz for the wave functions of the positive
parity states of the ground state band instead of the Gauss
ansatz used in our previous paper [4] gives us a possibility
to include into consideration anharmonicity in the bandhead
energies.
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