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Nuclear polarization corrections to p-d atoms in zero-range approximation
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Nuclear polarization corrections to the 2P-2S Lamb shift in u-d atoms are developed in order (o), and
are shown to agree with a recent calculation. The nuclear physics in the resulting corrections is then evaluated
in zero-range approximation. The dominant part of the correction is very simple in form and differs from a
recent potential model calculation by less than 1%. It is also demonstrated how the third Zemach moment
contribution largely cancels against part of the polarization correction, as it did in e-d atoms and does so exactly
for pointlike nucleons. This suggests that it may be possible to reduce the uncertainty in the theory (of which
nuclear polarization is the largest contributor) to less than 1%.
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I. INTRODUCTION

The recent measurement of the proton root-mean-square
charge radius at the Paul Scherrer Institute (PSI) [1] has
been an exciting development in atomic and low-energy
hadronic physics. Using the 2P-2S Lamb shift in u-p

atoms the resulting (r 2>l£2 = 0.84087(39) fm is about seven
standard deviations smaller than the value of the same quantity
deduced from measurements of electron interactions with the
proton. The latter can be obtained either from electron-proton
scattering or the Lamb shift in e-p atoms; results from
those experiments have been combined and summarized in
CODATA-2010 [2]. Thus far no compelling explanation of
the large discrepancy exists, although the possibility of new
physics is a consideration. In an effort to cross-check this
result other experiments have been performed (the PSI u-d
Lamb shift experiment is currently undergoing analysis [3])
and experiments in ;-He atoms are planned.

Nuclear polarization contributions to the Lamb shift are
among the most difficult corrections to calculate accurately,
and can be quite large. These are dynamic contributions to
energy levels, and can be viewed naively as the Coulomb
attraction of the lepton pulling the protons in a nucleus
away from the nuclear center of mass (CM). The distorted
charge distribution then tries to follow the lepton in its orbit
around the nucleus, much like the tides in the Earth-Moon
system follow the Moon, and this lowers the overall energy.
This cartoon description clearly indicates that only excited
states of the nucleus contribute (they reflect the distortion),
while emphasizing the role of the dominant electric dipole
excitations in a nucleus. Indeed, the giant dipole resonance
can be naively viewed as a simple oscillation of the nuclear
protons against the neutrons [4].

A recent calculation [5] of the polarization corrections
for the u-d experiment currently undergoing analysis found
a relatively large contribution dominated by (virtual) dipole
excitations. Given the complexity of the nuclear force models
required to calculate these corrections, a reasonable question
is the size of the uncertainty given the underlying physics, even

“friarjim @aol.com

0556-2813/2013/88(3)/034003(21)

034003-1

PACS number(s): 31.30.jr

if the numerical precision is exact. We will try in this work to
provide insight into this question, not by performing another
nearly identical numerical calculation, but by performing an
approximate treatment that emphasizes some of the unique
properties of the deuteron. The weak binding of the deuteron
and the relatively short range of the nuclear force motivated
Bethe and Peierls [6] to develop the zero-range approximation,
which circumvented the nearly complete lack of information
about the nuclear force at the time of that work. We will
follow that approach, which has numerous advantages that we
summarize as follows.

Our motivation for a new polarization calculation is that
it provides (1) an alternative treatment of basic formulas
that we express as energy-weighted photonuclear sum rules;
(2) an alternative and greatly simplified treatment of the
nuclear physics; (3) estimates of neglected terms; (4) an
independent framework for treating nuclear polarization in
u-He atoms [7]; and (5) a common framework with previous
treatments of the e-d atom [8].

Why are we interested in performing an approximate
treatment of polarization corrections, when a more accurate
calculation [5] already exists? A zero-range approximation
[6] calculation will (6) produce simple and quite accurate
formulas for all contributions based only on one- and two-
nucleon observables; (7) allow uncertainty estimates based on
uncertainties in these observables (~0.2%); (8) test sensitivity
of the results to the interior part of the deuteron wave function,
which is determined by details of the nuclear force; (9) allow
independent estimates of total error (<1%); and (10) allow us
to interpret many of our results in simple terms. The leading-
order polarization correction in zero-range approximation will
be shown below to differ from the corresponding complete
calculation of Ref. [5] by only 0.9%. This small error reflects
the influence of the (quite complicated) nuclear force on
the interior part of the deuteron wave function, which part
is obviously not very important in the final result. This
insensitivity to details is the raison d’etre of the zero-range
approximation.

Item (9) in the list above is particularly apropos if the
uncertainties in the PSI u-d experiment and their p-p exper-
iment (viz., €, ~ 0.004 meV) are comparable. The estimated
uncertainty in the polarization corrections of Ref. [5] was
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0.016 meV, or 4 €,. Any insight into theoretical uncertainties
is likely to be valuable. We note that the deuteron is in all
likelihood the only nuclear case where such uncertainties can
be lower than 1% [9], and this is entirely due to its weak
binding.

Our organization of this manuscript is unusual, which
reflects in part a desire to present a rather comprehensive and
self-contained treatment of the zero-range approximation [6],
the latter being both very useful and underused. This treatment
occupies Appendix B. In order to facilitate a pedagogical
approach we have banished the most complicated remaining
mathematical details to other Appendices, and treat only the
most significant aspects in the main body of the manuscript,
including numerical estimates.

We begin in Sec. II by deriving the basic formulas for the
polarization corrections in muonic atoms, using an approach
previously developed for electronic atoms [8]. We argue that
a simple nonrelativistic approach to the atomic physics yields
the dominant contributions. This is explicitly demonstrated
by performing the rather complicated relativistic (i.e., Dirac
muon) calculations in Appendix A, where additional (but quite
small) contributions are calculated. We then present in Sec. III
numerical results for each of our individual terms in zero-range
approximation and compare them to the accurate results of
Ref. [5]. We conclude in Sec. IV. In Appendix B we present
an introduction to zero-range theory and perform all of the
calculations of our zero-range terms. The calculational part of
this Appendix is largely mathematical, and may be of little
interest to some readers, but it is self-contained and complete.
Appendix C contains some additional mathematical details
for the interested reader. Note that we work in natural units
with i = ¢ = 1, and these quantities must be inserted in our
formulas in order to obtain usable formulas in other units.

II. POLARIZATION CORRECTIONS

We require the energy shift in the nS state of a muon of
mass m interacting with a nucleus of mass m, via two-photon
exchange in their CM frame. This is conveniently expressed
in leading order in « (viz., &) in terms of their at-rest forward
scattering amplitude, as discussed in Ref. [7]. Each exchanged
photon then has four-momenta g* that are equal in magnitude
and oppositely directed as indicated in Fig. 1(a). Because
the muon mass is much greater than the other energies in
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FIG. 1. Nuclear Compton amplitude with direct (a), crossed (b),
and seagull (c) contributions illustrated. Single lines represent a
muon, wiggly lines a photon propagator (with four-momentum g*),
unshaded double lines a nuclear ground state, while shaded double
lines depict a nuclear Green’s function containing a sum over excited
nuclear states. The seagull vertex in (c) maintains gauge invariance
by incorporating the effect of “frozen” nuclear degrees of freedom,
such as nucleon-antinucleon pairs or pions [10].
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the problem, the muon moves slowly in the intermediate
state and this generates very small electromagnetic currents
(which is the opposite of the e-d problem). Consequently the
dominant terms (by far) are the interactions of the muon charge
with the deuteron charge. This dominance is conveniently
highlighted by using Coulomb gauge in the calculation, which
leads to ordinary static Coulomb interactions between the
charges. Consequently only the transverse parts of the current
and seagull contributions [the latter shown in Fig. 1(c)]
are required. The seagull amplitude is required for gauge
invariance, which is necessary in order to obtain finite results
and is useful for simplifying those results (see Appendix B of
Ref. [8]). Because we are only interested here in the inelastic
nuclear processes (viz., virtual excitations that produce the
polarization corrections), gauge invariance requires us to use
only the inelastic part of the seagull amplitude. Note that
the elastic part of the seagull amplitude (which we will not
treat) generates recoil corrections and is nuclear-structure
dependent. We will also refer below to static contributions that
require only the deuteron ground state for their calculation
as “elastic” contributions, in contradistinction to the inelastic
ones we develop herein.

We argued in the Introduction that nonrelativistic physics
is dominant for the p-d atom. This was our approach in
Ref. [7] for the pu-He atom. We will verify that dominance
in Appendix A by calculating the complete set of corrections
of appropriate size. In addition to the dominant set of nonrela-
tivistic terms, one additional small but non-negligible term of
relativistic origin is found, which we also derive below via a
simple modification of our nonrelativistic formalism [7]. Only
one new term of marginal importance is found in Appendix A,
plus neglected terms that we introduce and estimate in Sec. II1.
The interaction of the muon electromagnetic current with the
nuclear current produces that marginal term, and we therefore
ignore until later the effect of the current-current interactions.
The rather small seagull terms are primarily required to enforce
gauge invariance of the nuclear currents, and can therefore also
be ignored here (but will be incorporated in Appendix A and
estimated in Appendix B).

In Coulomb gauge for nonrelativistic muons the contribu-
tion of Fig. 1(b) vanishes for the interactions between charges
(virtual muon-pair intermediate states required by relativity
are the primary contribution). Thus we only need to calculate
the contribution of Fig. 1(a), which precisely equates to the
muon and deuteron charges interacting via static Coulomb
potentials.

The (attractive) energy shift for the nth S state of the atom
due to nuclear polarization is given to leading order in the
fine-structure constant « by
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This is nothing more than ordinary second-order perturbation
theory in nonrelativistic quantum mechanics for an energy shift
in configuration-space that has been rewritten in momentum
space (and derived as Eq. (7) in Ref. [7]).
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The (virtual) nuclear excitations driven by the muon are
localized inside the nucleus at the center of the atom, which
accounts for the factor of |¢,(0)|> = (Zam,/n)*/m, the
square of the muon wave function at the nucleus for the nth §
state. Note that the deuteron has charge Z = 1 and thatm, is the
usual u-d reduced mass formed from m and m,. In the energy
denominator wy = Ey — Ej is the energy difference between
the Nth intermediate (excited) state (|N)) of the deuteron
and its ground state (|0)), while g?/2 m, is the kinetic energy
difference in the atom of the intermediate state and the ground
state (which has none to leading order in «). Two factors of
—4ma pen(q)/g? arise from the Fourier transform of the static
Coulomb interaction between muon and deuteron, while p.(q)
is the Fourier transform of the deuteron’s charge operator
in configuration space: pch(q) = f d*x exp(iq - X) pch(X). The
usual phase space factor of 1/(27) accompanies d*¢, and with
that inclusion all numerical factors in Eq. (1) are accounted
for.

Moving the Fourier exponentials from the two factors of
pen(q) in Eq. (1) directly into the q integral produces a much
more tractable form:

AES = s, 0P Y [ @ [ &

N#£0
X (0] pch(MIN KN | pecn(x)[0) Inr(z),  (28)

where z = x — y. All of the coupling between the atomic and
nuclear physics is now contained in the structure function

(@ 1 /d3q ez A2 [ dg sin(qz)
)= — —_— S = — — =,
NR 7 P oyt ol @R

(2b)

where we have defined A = \/2m, wy. Changing integration
variables to ¢ = At and defining 8 = Az then produces a
simple result,

1 [drsing) 1
K@) = 1o /O R I

The dimensionless integral Jxgr(8) in Eq. (3) diverges at small
t. However, the small-# limit of sin(Bt) contains a factor
of B that cancels an identical term in the prefactor of the
integral. This term in the expansion is then independent of
nuclear coordinates and thus incapable of exciting the nucleus.
It therefore does not contribute to nuclear polarization and
we ignore it. The second term in the expansion of sin () is
proportional to B and is finite. This is the dominant term. The
next term in the expansion would be proportional to 87, but is
linearly divergent, implying the existence of a * term. Thus
we have Jxr(B) ~ aB> + bB* + ¢B° + - - -. Equation (3) will
be the template for calculating most of the corrections that we
require.

The simplest way to calculate Jygr(B) is to differentiate it
twice and use identity 3.725.1 of Ref. [11],

*dt sin(Bt) w

Fin(B) = — /0 e e L

PHYSICAL REVIEW C 88, 034003 (2013)

Straightforward integration then produces

g 2
JNR(,B):E(E —1+8-87/2)
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which agrees with the power series deduced above and
generates

T 5 2
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After some manipulation we find our primary result

47
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These three terms with their proper dependence on the atomic
reduced mass generate the bulk of the polarization corrections
[5]. We will use the scales in the problem to show below that
each succeeding term in this series is roughly 1/4 (or less) of
the preceding one. Since higher-order terms in the expansion
become more and more sensitive to higher energies and the
effect of relativity, not every term in Eq. (6) indicated by dots
should be reproduced in the exact expression that we develop
in Appendix A.

One additional small term of relativistic origin is easily
derived using a simple modification of the above approach. We
sketch the derivation performed above Eq. (14') in Ref. [7],
where more details can be found. In Eq. (1) we replace the
muon energy difference (q?/2m,) in the energy denominator
by the Dirac muon energy difference (« - q + fm,) — m, fora
muon with reduced mass, m,. This is the Breit approximation
that generates a large tractable class of polarization corrections,
and is discussed in detail in Ref. [12] and in the Breit
approximation subsection at the end of our Appendix A.
While the reduced-mass prescription isn’t quite correct, such
corrections are not significant in the very small terms, and in
this we follow Ref. [5]. Rationalizing the energy denominator
and using (@) =0 and (B) = 1 simply redefines A to be
A = 2m,ony(1 — wy/2m,) in Egs. (3) and (5). This is also
identical to the result from the Breit-approximation term in
Eq. (A23). One finds that the leading term in Eq. (6) (i.e., ~z%)
is multiplied by an approximate factor of (1 — wy /4m,). The
second term in this factor is the leading-order correction due
to relativity in the u-d atom.

In order to develop tractable final expressions we manipu-
late the z" factors in Eq. (6) term-by-term, before collecting
terms and writing the results. Squaring z gives z> = x? + y? —
2x -y, and we note that the x*> and y? terms when inserted
in Eq. (2a) do not contribute because one integral always

034003-3



J. L. FRIAR

becomes the total charge operator, which cannot excite the
deuteron. The remaining term generates two dipole operators
since D = [ d*xxpen(X).

The third term can be expanded in a similar fashion, and the
results written as irreducible tensors in x and y. This produces
> 407 0¥ + 130x2y2 4x -y (y* + x?), where we have
dropped the x* and y* terms for the same reason we dropped
the x? and y? terms above. We see that the z* term produces a
quadrupole excitation term (Q®? is the quadrupole tensor), a
monopole excitation term, and a retarded electric dipole term,
respectively.

The remaining term (~z3) is somewhat controversial, and is
difficult to calculate per se. Simple expansions of |x — y |" for
odd values of n are not possible. These are the terms that lead
to Zemach moments [13,14]. The relevant portion of Eq. (6) is

/ d’x / d’y [ 0|pch(y)|N><N|pch<x>|0>] x—yP. (7)
N#£0

Two significant features of this quantity are (1) if one ignores
the summation and replaces the states |N) by |0), the usual
third Zemach moment results; (2) since there are no energy
factors inside the summation one can immediately use closure
(ZN#O INXN| =1 —10X0|) to rewrite Eq. (7) as

f & / &y (0] pen(¥)Pen(0)10)
— (01 (WI0) Ol oen (IO — ¥, ®)

The subtracted term when integrated is the usual
third Zemach moment of the deuteron: (r3)f’2‘§ =
[ @x [ &y(0lpen(y)10)0] pen()|0)|x — yI*.  Using closure

we can thus replace our inelastic Zemach moment by the

AEpol———a 2| (0)* Z
N#£0
4m? N m?
- N|D|0)* - - =
3 (NVIDIOY - (NI010) = =2
N#£0

N0

where we have introduced the monopole operator 7 [defined
in Eq. (B5c)], the quadrupole operator Q% [defined in
Eq. (B5d)], and the retarded dipole operator O [defined in
Eq. (B5e)]. Because these multipoles arise from the charge op-
erator (rather than the current operator) we denote them by CO,
C2, and Cl1, respectively. Equation (11) is in complete agree-
ment with Ref. [5] except for the (0] |x — y|*|0)c, term, which
vanishes with the point-nucleon assumption of that work. One
additional small term resulting from magnetic spin-flip exci-
tation and derived in Appendix A will be included in the next
section. Our result for this term also agrees with Ref. [5]. We
note that the first and second terms above were first derived in
Ref. [7], while the final four terms were first derived in Ref. [5].
Our results here completely agree with the latter work in the

|
[(N|D]0)[> — = Z
NyéO
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difference between a simple correlation function and an
elastic Zemach moment.

This is more relevant than just an independent technique
for evaluating the inelastic Zemach moment. An elastic
contribution to the Lamb shift exists in the form [14]

AES = <Za> |64 (0)| ( (r >f’;§) ©)
which is equal and opposite to the second term in Eq. (8) [when
inserted in Eq. (6)] and exactly cancels it. This cancellation
was originally demonstrated in Ref. [15] for e-d atoms,
but holds equally well for u-d atoms [5]. The sum of the
elastic and inelastic Zemach terms is therefore a deuteron
charge correlation function that is considerably simpler and
significantly smaller than either Zemach term. We will use a
compact notation for that function:

(Ol1x — yP’|0)eh = / d’x / d?y (0] pen(y) pen(X)|0) [x — y/°.
(10)

This quantity is especially simple if the protons and neutrons
are pointlike. Then all of the charge in the deuteron resides
at a single point (on the deuteron’s single proton) and x — y
vanishes, as does the correlation function. In the point-nucleon
limit the sum of the elastic and inelastic Zemach terms vanishes
for the deuteron. We note that it does not vanish for the He
case (which has two protons) nor if the nucleons have finite
size, a case that was not treated in Ref. [5] but will be treated
in detail in Appendix B. Because the sum of the inelastic and
elastic terms is simpler to calculate and much smaller than
either term, we follow Ref. [5] and advocate using the sum.

The sum of the six largest nuclear polarization contributions
(five of which are nonrelativistic in origin) plus the elastic
Zemach contribution is therefore given by

| (NID|0)* + —(OIIX—yl 10)ch

5 X120y . A

N#0

point-nucleon limit. Six additional smaller terms developed in
Appendix A will be estimated in the subsection Gauge sum
rules of Appendix B and will be shown to be quite small.

We note in Eq. (5) that the sizes of the various terms in
our expansion are determined by the dimensionless parameter
B = /2m,c* wy z/hc, where we have reintroduced i and ¢ in
the form ic = 197.327 MeV fm. We infer from the sum rules
derived in Appendix B that the deuteron binding energy of
Ep =2.225MeV sets the energy scale for wy for the low-lying
transitions that we require. Then using m,c?> = 100.02 MeV
and z ~ R; ~ 2 fm (the deuteron radius) produces the estimate
B ~ 1/4. Note that the parameter m,c’> Ry/hc ~ 1 does
not help convergence, and the useful expansion parameter
is therefore wy/m,c? ~ 1/20. This guarantees fairly rapid
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convergence of the series, which is further helped by the
factorial-type convergence of the exponential.

Nuclear current matrix elements are characterized by
expansions in Q /My, where Q is a typical momentum in the
deuteron and equals k ~ 46 MeV in zero-range approximation
(i.e., the virtual momentum in the tail of the deuteron wave
function, which is discussed in detail in the next section).
Current terms are thus reduced by (k/My)* ~ 1/400 com-
pared to typical charge terms. This makes almost all such
terms negligible. The same argument applies to relativistic
corrections in the deuteron, which are discussed at the very
end of Appendix B.

III. ZERO-RANGE APPROXIMATION

The zero-range approximation was developed in 1935 by
Bethe and Peierls [6] in order to circumvent the almost
complete lack of knowledge of the nuclear force at that time.
It was known that the nuclear force had a range Ry ~ 1
fm, and that the deuteron was rather weakly bound. Weak
binding means that the tail of the deuteron wave function
extends well beyond that force. Outside the force the s-wave
deuteron wave function is given by Agexp(—k r)//4mr.
The amplitude is determined by Ay = 0.8845(8) fm~'/2 [16],
the experimental deuteron s-wave asymptotic normalization
constant, while its extent is determined by the parameter
kK = 2Eg = 45.7022MeV (or0.231 61 fm™! after dividing
by %ic). This expression is determined by twice the n- p reduced
mass, 2u = 938.918 MeV, and the deuteron binding energy,
Ep =2.224575(9) MeV [16]. The k parameter corresponds
to a deuteron length scale of approximately 4.3 fm, which is
well outside the nuclear force. The dimensionless parameter
k Ry ~ 1/4 is therefore reasonably small and typically occurs
as squared, cubed, and higher powers [17] compared to a
leading-order term ~1. Another parameter that can occur is
k/My ~ 1/20, where My is the average nucleon mass that
will be taken equal to 2u. These are all comfortably small
parameters.
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The essence of the zero-range approximation is to assume
that the asymptotic form of the s-wave deuteron wave function
holds everywhere. Matrix elements generated by integration
then typically scale like 1/«", with higher powers more
desirable due to the smallness of x compared to other energy
scales. The deuteron electric polarizability and the deuteron
mean-square charge radius in leading-order zero-range ap-
proximation scale like K]—S and Kl—; respectively, and have errors
of roughly 3/4% [18-20] and 2% [21], respectively. The
leading fractional corrections for both of these quantities are of
order (k Ry)?>. For these observables the corrections are small
and the zero-range approximation clearly works very well [9].
Our leading-order nuclear polarization correction scales like
K%, and we therefore expect results accurate to within 1%-2%.
This has implications for the ultimate accuracy of polarization
corrections, which we will discuss in Sec. IV.

We have chosen to ignore small corrections to the nuclear
physics, and concentrate here on the global properties of
the zero-range approximation and their implications. We
ignore the following: (1) the effect of the proton-neutron mass
difference, which increases the square of the dipole operator by
~0.1% [22]; (2) meson-exchange-current contributions to the
tiny magnetic sum rule, which are expected to be ~15% [23]
of the magnetic contribution, or ~0.1% of the dominant term;
(3) meson-exchange (i.e., potential-dependent) contributions
to the deuteron charge operator, which are of relativistic
order [24] and thus should be ~0.1%-0.2% of the dominant
term; (4) all other relativistic corrections to the nuclear physics,
which are also expected to be ~0.1%-0.2% [18,19]; and
(5) phase shifts in all but s waves. The corrections (4) will be
discussed in some detail at the end of Appendix B, but will
not be implemented in the numerical results. Potential models
automatically include (5), but typically do not incorporate
(1)—(4).

In this section we will combine our previously derived po-
larization corrections (expressed in terms of energy-weighted
sum rules) with the zero-range approximation evaluation of
those sum rules in Appendix B. Our numerical results are listed

TABLE I. Contributions in meV to the 2P-2S p-d Lamb shift from the sum of the 25 polarization corrections and the 2 elastic Zemach
term. Except for nucleon-finite-size contributions (labeled f.s. and listed last) all nuclear polarization terms are labeled by their multipole (all
are charge multipoles, CL, except for the magnetic dipole, M1). The equation number for that contribution is listed next, and ZRA labels the
zero-range approximation results of this work. The numerical results of Ref. [5] are next, followed by their absolute difference and percentage
difference. The running sum of contributions for the zero-range results and those of Ref. [5] are given last. Blank “f.s.” entries result because
Ref. [5] assumed point nucleons, which eliminates the nucleon-finite-size contributions. The last entry sums the CO, retarded C1, and C2

multipoles listed in entries 3—5, which arose as a single term in Eq. (6).

Multipole Equation ZRA Reference [5] Difference % Sum-0 Sum- [5]
Leading C1 (13) 1.925 1.910 0.015 0.8 1.925 1.910
Subleading C1 (14) —0.037 —0.035 —0.002 7.0 1.888 1.875
COo (16) —0.042 —0.045 0.003 —7.6 1.846 1.830
Retarded C1 17 0.137 0.151 —-0.014 —-94 1.983 1.981
C2 (18) —0.061 —0.066 0.005 -7.9 1.922 1.915
M1 (19) —0.011 —0.016 0.005 —-34.0 1.912 1.899
(r3)(”2’; f.s. (15) 0.030 1.942

pn correl. f.s. (15) —0.023 1.920

Retarded Cl1 f.s. 17 0.021 1.941

CO+ret-C1 4+ C2 0.034 0.040 —0.006 —14.0
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in Table I and compared with the “exact” numerical results of
Ref. [5], which used the Argonne V18 potential model [25]
to calculate nuclear matrix elements. Note that attractive
(negative) contributions to the 2§ energy will increase the
2 P-2S Lamb shift and thus are positive entries in the table and
in the individual entries A Ep listed below.

The energy scale for deuteron polarization corrections in
the 28 state is set by the prefactor in Eq. (11) evaluated for
Z=1landn=2:

_ 4730 (m,c?)?

Itey | = 0088636 meV fm >
n C

4
?”azm(onz
(12)

We note that all masses in this problem are known to sufficient
accuracy that they do not impact the overall uncertainty. In
addition each contribution will be written as the prefactor in
Eq. (12) times everything else. We will also insert factors of /
and c to produce results in accordance with SI units, and also
equate 24 to My. Errors and uncertainties should be judged
on the scale of 1% of the largest term or about 0.020 meV,
which is ~5¢,,.

The leading-order result for the 2 P-2S polarization correc-
tion from the first term in Eq. (11) plus Eq. (B16a) arises from
the C1 multipole, which is driven by the unretarded dipole
operator obtained from ,och(x):

1 4730 (m,c? 4/2m, Myc? A%
AES) = e " . (3)
3n’(hic) 35nk*h

The quantity A% has an uncertainty of 0.2%, which dominates
Eq. (13). This is typical of all zero-range calculations. The
first entry in Table I shows that our zero-range result (despite
its incredibly simple form) differs by only 0.8% from the
numerical calculation in Ref. [5] of the same quantity using
the AV 18 potential model. The 1/« behavior is the reason for
the accuracy, and the implications of this will be discussed in
Sec. IV.

The next entry in Eq. (11) plus Eq. (B16b) form the
subleading-order C1 term that arises as a relativistic correction
in the atom,

4z3 5 , 2\3 AZ n
AESC! = —[ o) ][ S } (14)
3ni(hc) Smk2\/2m, Myc?

and is the second item in Table I. Note the 1 //c2 behavior,
which accounts for the lesser accuracy. Given the small size
of the term, however, that inaccuracy is not significant.

The next entry in Eq. (11) results from adding the elastic
Zemach moment contribution to the inelastic Zemach-like
contribution. The inelastic term has mixed multipolarity and
would be quite difficult to calculate. However, when the
corresponding elastic partis added [as discussed below Eq. (7)]
the summed result is a simple matrix element, is much easier
to calculate, is less model dependent [see Eq. (B12)], and is
much smaller. The review by Borie [26] lists a contribution
from the deuteron elastic Zemach moment of 0.433 meV. In
the limit of point nucleons this would be exactly canceled
by the inelastic contribution. For extended nucleons there are
two contributions that largely cancel and sum to 0.008 meV.
The first is from the proton’s third Zemach moment (seventh

PHYSICAL REVIEW C 88, 034003 (2013)

entry in Table I), while the second arises from the Zemach
moment due to the overlapping proton and neutron charge
distributions. While the latter term is model dependent, over
80% of its contribution (eighth entry in Table I) arises from a
model-independent operator [see discussion above Eq. (B12)].
These two finite-size contributions are obtained in zero-range
approximation by combining the third term in Eq. (11) with
Egs. (B12)-(B14):

s 4235 (m, 3 [mec(r’) 3m,crA}
AEp, = 37 2 - 2
3n (hc) 47 D
6m cAA 77
T 10InQe/B)+ 5+ )| (1)

The first term in the bracket arises from the proton Zemach
moment, the second term is from the model-independent part
of the pn overlap contribution, and the third term is the small
model-dependent part of the pn contribution that depends
on the model parameter 8 >> « that specifies the size of the
nucleons. Numerical values for B, A, and (r*){) are given
below Eq. (B11).

Our next three entries arose as a single z* term in Eq. (6), but
were split into the separate contributions of three multipoles
in Eq. (11): CO, retarded C1, and C2, which we will discuss in
that order.

We combine the fifth term in Eq. (11) with Eq. (B27) to
obtain the monopole (i.e., CO) result, which is also the third
entry in Table I:

473 (m,c?)?
AEgo(i T T R3(h02
3n3(hc)
A? m c?
[6nhsx4 3T (@*Gs +2abGs + b Gs)]

(16)

One significant feature of the CO sum rule is that it involves
excitation of 3S; continuum waves, which have a large
scattering length (a@, ~ 5.4 fm) that significantly modifies their
asymptotic form. The modifications necessary to treat this are
thoroughly discussed in Appendix B. In practical terms the
effect of incorporating g, is to lower the CO result by 17%.
The constants @ and b, and the functions G,, (which depend
only on y = kay,) are defined below Eq. (B23). We note that
the quantity in parentheses in Eq. (16) involving the G,, equals
106/315 for y = 0.

The retarded CI1 result can be obtained by combining
the fourth term in Eq. (11) with Egs. (B16b), (B18), and
(B19). It consists of two terms in Eq. (17): the point-nucleon
contribution and the contribution from the finite size of the
neutron and proton,

AEF-Cl _ 4730’ (m,c?)? 16A% m3c?
pol 3n3(fic)? 105774\ 2M y

4Z’% S(m 6‘2)3
[ 3n3(hc)? i|

845 ( ] a7
15;171/(2 2MN ’
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The point-nucleon result is listed on the first line of Eq. (17)
and the fourth line of Table I, while the nucleon finite-size
contribution is listed on the second line of Eq. (17) and the ninth
line of Table I. Numerical values of the nucleon radii are listed
below Eq. (B11). Note that the sum rule required for the last
line of Eq. (17) [see Eq. (B19)] is the same one needed for
Eq. (14). We can infer that sum rule from the numerical results
of Ref. [5]. That more accurate value lowers the zero-range
result in line 9 of Table I from 0.021 to 0.020 meV.

The quadrupole or C2 contribution is obtained by combin-
ing the last term in Eq. (11) with Eq. (B21),
AEC? _|:4Z3a5(m,c2)3i| |: 64A%

pol 3n3(hc)? 9457 hct
and is listed on line 5 of Table I.

The last three contributions (items 3-5 in Table 1) are
separately not negligible, although there is substantial cancel-
lation and a relatively small net result. This cancellation is not
accidental for pointlike nucleons. Sum rules with 1/2-integer
energy weightings are more difficult to manipulate than those
with integer weightings that dominate the electronic atom case.
A z* sum rule with a linear energy weighting (wy rather than
/oy in this case) is shown in Eq. (B36) to vanish in the
zero-range approximation. Therefore our closely related sum
rule (differing only by ,/wy rather than wy) can be expected
to be small in all realistic calculations due to cancellations.
This has implications for uncertainties that will be discussed
in the next section.

Our final contribution arises from the magnetic dipole (viz.,
M1) interaction between the muon’s current and the nuclear

current, and is obtained by combining Egs. (A5), (A19), (A20),
and (B34):

302
mic
2My

], (18)

Ml
AENM = -

473 (m,c?)?
3n3(hc)?

y |: AL 2 n?
7+/2m, M3, c®

where y = «xa;. The 1Sy scattering length, a,, is discussed
above Eq. (B22) and the function G, is defined below
Eq. (B23). This term involves only s-waves and requires spe-
cial treatment because |y| is so large. The sum rule for y = 0
is actually logarithmically divergent. However, if we take the
log-divergent number to be ~1, the quantity in parentheses
above is lowered by roughly 10%. This change is small because
the limit for very large |y| of the expression in the large
parentheses in Eq. (19) is 1. The numerical result for this
magnetic contribution is listed in line 7 of Table 1. The huge
factor of MISV/ ? in the denominator is partially compensated by
the factor of M%, the square of the nucleon isovector magnetic
moment (i, = by — b = 4.706py [27]).

A variety of other contributions from the charge, current,
and seagull structure functions can be estimated and are much
smaller than the M1 term calculated above and in Table I.
They are therefore negligible on the scale of the 0.016 meV
uncertainty estimate of Ref. [5], and small on the scale of the
€, ~0.004 meV uncertainty in the p1- p experiment. The forms
of these small terms are listed in the subsection Gauge sum

(1 = yY*Gi(1 — y%)}, (19)
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rules of Appendix B. The slow asymptotic behavior in wy
of the current structure function introduces some uncertainty,
however, which is discussed in the next section.

IV. DISCUSSION AND CONCLUSIONS

Several pertinent remarks can be made based on Table I.
The first is that only one of the small contributions is as large
as 7% of the dominant term, and the rest are much smaller.
The three largest corrections comprise the canceling group of
three multipoles, whose sum is listed in the bottommost entry.
These cancellations occur at roughly the same level in both the
results of Ref. [5] and in zero-range approximation, and in all
likelihood occur for all realistic potential models (in addition
to the AV 18 model used by Ref. [5]). If this behavior holds for
the set of modern potential models with realistic pion-range
forces and different short-range behaviors, then estimates of
the uncertainty in these multipoles should be set by the size of
their sum and not by any individual element.

The smaller of the zero-range contributions in Table I all
deviate more from those of Ref. [5] than does the dominant
term. The reason is that these sum rules involve higher powers
of wy and will be more sensitive to details of the interior part
of the wave functions because of oscillations in the continuum
wave functions. The dominant zero-range contribution is larger
than the potential-model result, which should be expected for
sum rules that saturate at very low energies (N.B., the zero-
range wave functions do not satisfy the finiteness boundary
condition at the origin). Four of the five smaller contributions
are smaller in magnitude, however. The tiny M1 contribution is
particularly problematic, and this zero-range approximation is
not very accurate. Note, however, that because of the rapid de-
crease of the size of the secondary contributions their absolute
errors are not large and are of order €,,. Due to cancellations the
running sums for the six point-nucleon terms of our zero-range
approximation (1.912 meV) and the full results of Ref. [5]
(1.899 meV) are within the stated uncertainty (0.016 meV) of
the latter work. This is somewhat remarkable given the mini-
mal amount of physics needed for the zero-range calculation.

The uncertainty in each finite-size contribution should also
be no larger than €,. The proton Zemach term is measured and
the uncertainty is less than 5%. Most of the p-n correlation
term is model independent. The retarded C1 finite-size term
depends on accurately (enough) measured nucleon sizes and
on the same dipole sum rule that determines the subleading C1
contribution in line 2 of Table I.

Based on how well our zero-range approximation tracks
the AV18 calculation, we believe that the uncertainty in each
smaller contribution is likely not significantly larger than €.
This should be checked by performing calculations with more
potential models that have quality fits to the scattering data,
and thus agree with experimental values for Eg and Ag (an
absolutely essential requirement). In this regard we note that
the AV 18 potential model [25] has Ag = 0.8850 fm~!/2, which
is slightly larger than the value of 0.8845 fm~!/2 that we used
and would increase our dominant term by 0.002 meV, or €,,/2.
Had we used this value with the zero-range approximation our
dominant-term discrepancy with Ref. [5] would have increased
to 0.9%.
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It therefore seems likely that the uncertainty in the theoret-
ical calculation of the set of polarization corrections discussed
here is set by the uncertainty in the dominant term, where
the zero-range and AV 18 results differ by slightly less than
1%. A most informative test of this assumption would be
to use effective field theory along the lines of Ref. [19], in
which interactions in the p waves and relativistic corrections to
the nuclear physics were systematically incorporated into the
deuteron electric polarizability. The sum rules for the deuteron
electric polarizability and the dominant u-d polarizability term
are very similar (differing only by a factor of /w).

We emphasize that the only substantive difference between
our results in Table I and those of Ref. [5] are the small
0.029 meV nucleon finite-size contributions. These are easily
incorporated, although a better estimate than ours is both
warranted and possible.

Reference [5] also calculated the Za and (Za)? Coulomb
corrections to the polarizability, finding contributions to both
the 25 and 2P levels. The corrections of order (Z«)? and for
the 2 P levels in order Zo are new. The 2S-state Z« correction
contains a constant term and a very large term proportional
to In (2m,Z%a*/wy), both terms contained in a sum over
dipole excitations weighted by 1/wy. These contributions
had been previously calculated in Ref. [7]. The logarithmic
term is dominant and both calculations agree on its form, but
the constant term for the 2§ state in Ref. [7] differs and is
presumably in error.

We also note that there is a non-negligible contribution
to the w-p [28-32] and u-d [5] polarizability corrections from
the intrinsic electromagnetic polarizabilities of the proton. In
the deuteron this should be supplemented by the intrinsic
polarizability contributions of the neutron. The essential
equality of the electromagnetic polarizabilities of the neutron
and proton [27] suggests that the neutron contribution is of
comparable size to that of the proton.

One potential problem must be resolved before any at-
tempt is made to shrink the uncertainty in the polarization
corrections. It was recently pointed out [33,34] that there
is considerable high-energy strength in the electric dipole
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(i.e., E1) part of the current structure function. This strength
would lead to non-negligible higher-order energy-weighted
dipole sum rules (corresponding to energy weightings of
a);v/z” with n > 0), and would indicate that some expansions
in wy/m do not converge very rapidly. These sum rules are
divergent in zero-range approximation, and estimates of size
are therefore problematic. Numerically integrating the slowly
converging part of the El structure function in zero-range
approximation gives an attractive contribution of 0.024 meV
or roughly 6€,, which is commensurate with the estimates
of Refs. [33,34]. Much of the strength results from nuclear
energies above 200 MeV. Whether this problem exists in other
partial waves is unknown. A discussion of this convergence
problem and asymptotic properties in wy is provided in the
subsection Asymptotic properties in Appendix A.
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APPENDIX A: NUCLEAR STRUCTURE FUNCTIONS

In this Appendix we derive the general structure functions
that subsume the nonrelativistic one derived in Egs. (2) and (5)
in the main text, at least for the lower-order terms. The general
structure functions do not incorporate recoil or reduced-mass
effects, and m below refers simply to the lepton mass.

1. Exact structure functions

The energy shift due to nuclear polarization for the nth
hydrogenic S state in order o is most conveniently calculated
by performing the contour integral over the time component
of the virtual momentum g* (i.e., go) in the loops of Fig. 1
in Coulomb gauge. This was implemented in Ref. [35] and
leads to

4

EG*[(E + wy)* — m?]

3 2
AEp = —8a’m|, (0)]? / dq [Z {<2E + on)| (N | pen(@I0)]

N#0

(29 + wn)

n qz 2F + wy
4m? | Eq*[(E + wy)? —m?]  4m2q3(q + wn)

where ¢> = ¢%, E = /g2 +m?2, and wy = Ey — E, is the
energy of excitation (relative to the ground state) of the Nth
nuclear state (which by assumption cannot be the ground state).
Unlike the charge terms both the current and seagull terms have
infrared divergences, which cancel due to gauge invariance.
The nuclear physics is defined in terms of three nuclear
operators: the nuclear charge operator that was introduced in

Bit(@ (1 1
2)|<N|JL<q>|0>|2}+ SqTm? (;‘E)] (A1)

Sec. II,
pen(Q) = / d’xe' " pen(x), (A2)
the nuclear current operator
J() = f d*xe' % J(x), (A3)

034003-8



NUCLEAR POLARIZATION CORRECTIONS TO p- ...

and the inelastic part of the nuclear seagull (two-photon)
operator,

Bii(q) = f d3x / Pyt TV Bi(x, y). (A4)

We have used “L” to signify transverse, or contraction with
respect to (8 — ¢'¢/). That is, J? = J'J/ (8" — §'g7). This
means that there is no longitudinal contribution from the
current and seagull in Coulomb gauge. Gauge invariance
requires the longitudinal term to cancel the nonstatic part of the
interaction between charges. This greatly simplifies the result
since the charges then interact via a static Coulomb force.
Gauge invariance of the underlying inelastic nuclear Compton
amplitude also restricts BY to only the “inelastic” part, Bij
(discussed in some detail in Appendix B of Ref. [8]).

It is important to note that the partitioning of the nuclear
Compton amplitude into “inelastic” contributions and seagull
contributions is largely arbitrary. It depends entirely on what
degrees of freedom in the problem are chosen to be active and
what are frozen, which means they are not treated explicitly.
One typically freezes higher-energy degrees of freedom,
such as nucleon-antinucleon pairs and intranuclear pions.
The frozen “pair” degrees of freedom have an energy scale
~2My and generate the usual e?A%/2My seagull term in the
nonrelativistic Schrodinger equation, since the Dirac equation
with electromagnetic interactions has no seagulls at all. The
best example of this is the neutron electric polarizability, which
can be treated in several different ways [10], all of which lead
to the same answer if calculated consistently. In a similar
fashion freezing the pion degrees of freedom leads to nuclear
potentials, meson-exchange currents, and seagull terms. If one
starts with a gauge-invariant formalism a consistent treatment
will result in one. A gauge-invariant definition of observables
will not change, but contributions to those observables can
shift between inelastic and seagull terms [10] depending on
what degrees of freedom are frozen.

We proceed along the lines of Sec. I and perform the
q integral using the definitions in Eqgs. (A2)-(A4). The
exponentials in those equations can be collected into the form
e'9% where z = x — y. Since the Lamb shift does not depend
on the deuteron’s azimuthal quantum numbers, the resulting
integration must lead to scalar functions of z for the charge
contribution, and simple tensors for the transverse current
and seagull terms. The integration is much more complicated
than the NR derivation of Sec. II, but leads to results that are
generically similar in form:

AEpy = —8a’m|¢, (0)[? / d’x f d*y

x [Z<0|pch(y>|N><N|pch<x>|0>1N<z>

N#0

+ ) O WINXN Y 10) 87 Iy (2) +2'2 Ty (2)
N#£0

1 . y S
+ 5B (x, y)(8Y K (2) + z’z’K(Z)):| - (AS)

2 m
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All of our effort here will be devoted to obtaining the
polarization structure functions Iy(z), Jy(z), Jy(z), K (z), and
K (z). After developing general forms we will perform ap-
propriate tractable expansions. Although a similar calculation
was performed in Ref. [8] for the e-d atom, that approach
must be modified because the electron mass was smaller than
any wy, which clearly does not hold for the muon mass. This
mismatch in energy scales in polarization corrections means
that the low-mass electron is driven into a relativistic regime.
The much heavier muon is largely nonrelativistic, and the
required expansions are therefore quite different.

We begin with the dominant term, /y(z), which determines
the interaction between charges and is the most difficult to
obtain. All other integrals can be obtained from Iy (z):

1 [*dq(2E oy + o} ) sin(gz)

In(z) = oz
vz Jo

@ E[(E + wy)* — m?]
1 (% dgsin(gz) [ q° ]
= 1—
wnz Jo q°E (wy + E)? — m?
_ [Io(z) — II(Z)]‘ (A6)
WNZ

We added and subtracted ¢? in the parentheses in the top
line, making the first part equal to the bracketed term in
the denominator. This conveniently splits the integral into a
nominally infrared-divergent integral Iy(z) that is independent
of the state |N) plus a complicated but well behaved part,
I,(z). As we found in Sec. II, nominally divergent terms that
are constants cannot excite the nucleus and can be discarded.
Two derivatives of Iy(z) yield a tractable integral, and two
integrals yield the final form

1 B
Iz)=—=—— [ dB'(B— B) Ko,

A7
o ), (AT)

where § = mz and K(z) is the usual modified Bessel function
of order zero.
We can perform a partial fractions expansion on the bracket

inIl,
I )_/OO dq sin(qz) 1
A qE (wy + E)* —m?

which allows us to rewrite Iy (z) in a much more useful form

In(§;2) — In(E';2)
2mowyz ’

] . (A8)

InG2) = (A9)
where we have defined & = wy +m and &' = wy — m to-
gether with
* dgq sin(qz)
qE(E +&)
The denominator in the integral in Eq. (A10) cannot vanish,
but functions can smoothly change form at §&’/m = 0 and 1
(i.e., wy/m = 1 and 2). The trick used in Appendix A of
Ref. [8] to evaluate the integral works for all £, but only for
&’ > 0, which was adequate for the e-d atom but not for our
wu-d atom case. For the case involving &’ < 0 we note that a
redefinition of parameters allows a trick similar to Eq. (A13)
of Ref. [8] to be used. The calculation is long and tedious, and
we simply quote the results.

InG;2) =§Io(Z)+/O (A10)
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We define parameters w = wy/m > 0, u?> = £2/m* — 1 =
2w+ w?>0, 0% =E%m>—1 ==2w+ w? (>0forw > 2),
and v'2 = —pu/? = 2w — w? (>0 for w < 2). We then obtain
from Ref. [8]

sin(uB) sinh ™' ()
m2p2

InE:B) = [1 —cos(up)] +

T
2m2p2

& r ,
T ), dp Ko(B')

2
x (COS[M(ﬁ -1+ %(ﬁ = ﬁ’)2> . (Al

Note that the function Ip in Eq. (A10) has become the final
subtraction term in the integral in Eq. (A11). This compact
expression composed of three terms can be expanded in powers
of B to provide tractable forms for computation. Taking into
account the 1/z factor in Eq. (A9) we note that the first term
above generates only odd powers of z in Iy(z), while the
remaining two terms generate only even powers (including
logarithms that begin with z*). All Zemach-like terms (odd
powers of z) therefore arise only from the first term. The
leading power in that expansion does not involve the parameter
w and will cancel between the two Iy functions in Eq. (A9),
leaving Zemach-like terms of order Z3, 70, etc. The integral
(i.e., third) term generates a leading-order z* power that
contains a In 8 factor. The second (~ sin uf) term generates
the smallest power of z (viz., 2 =x4+ y2 — 2x - y), which
produces the dominant dipole contribution in Eq. (A2), as
shown in detail below Eq. (6) in Sec. II.

We note that for our problem the parameter w = wy/m is
typically very small because the deuteron binding energy sets
the scale for the important range of excitation energies, and
therefore 2 is small. Expanding Iy (&; B) to order (uf8)° we
find

2 232
- o —TZ up
InG:p) = 1 (1— B +)
ZSinh—l 202 4 n4
+ Py KB B
mp 6 120

LB - BTy (A12)
—— n —_— — DR .
20 60

which is relatively simple.

The remaining term depends on &', and there are three
energy regimes. For wy > 2m one simply substitutes p for u
and &’ for £ in Egs. (A11) and (A12). This corresponds to the
electronic atom case and does not interest us here. The regime
that does interests us is 0 < wy < m, where v'? is positive and
leads to

InE'B) = #[1 — cosh(v'B)]

n sinh(v/8)[r — sin™'(v")]

mzu/z

gor
I /0 4B Ko(B)

m3v’2

12
X (Cosh[v’(ﬂ - pN—-1- v?(ﬂ - ﬁ/)2>. (A13)
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Most of the change in form between (All) and (A13) is
trivial because v'? = —u’2. With decreasing w the parameter
i becomes imaginary; this interchanges the roles of the
trigonometric and hyperbolic functions and p'? is replaced
by v'2. We note that in the third regime (m < wy < 2m) we
simply replace [ — sin~'(v")] by sin~!(v").

Expanding Iy (£’; B) in Eq. (A13) to order (v'8)° we find

2 12 2
vy = =% (1+" s +)

4 12

z[m — sinfl(v’)] v/2ﬂ2 v/4ﬂ4

Rl S
+ my’ ( + 6 + 120 +

E'm*v'?7’ 137

R 1 ) P T I
LT I U

(Al4)

Completing Eq. (A9) and dropping a constant term that cannot
excite the nucleus produces

oy Pa wd wdm?? mPrta
In@) = -1~ =
12601\1 12&)1\/ 24 2400)1\/ 2400)1\/
fon(l 2 —137/60
+sz[n(ﬁ/)+7/ / ]’ (A15)
40
where a, = pwsinh™!'(u) — v/ sin~ (V') and a; =

w?sinh~' () + v/ 3sin"!(v'). Equation (A15) is correct
to order (z*), but an expansion of w and V' in terms of
the small parameter w = wy/m ~ 1/20 is warranted in
order to obtain tractable expressions. It is easy to show that
both a, and a4 are even functions of w and we therefore
need only the leading terms. We find that a, = 2w?/3,
az = 8w?, v/w=J2/w(l —w/4—w?/32+---), and
V3w = 2+/2w, which produces our final result

- 772 [2m wyN 772 w'm [oy
I =2 ——- | —|1—— i
12m\ wy 4m 24 60 2m

_ Zoy | Zoyln(B/) +y —57/60]
18 m2 40

(A16)

We note that the three terms in the top line containing a factor
of w were derived by Ref. [5] and the first term also by
Ref. [7], while the first term in the second line was also found
by Ref. [33]. The top line contains the nonrelativistic terms
developed in our Eq. (6) plus the relativistic correction derived
below that equation. The two remaining terms proportional to
wy are of marginal size and similar to terms from the currents
and seagull. They will be considered together in Appendix B.
Because the coefficients of the z> terms are crucial and change
form in each regime of w, we verified that these coefficients
were equal to those obtained by numerically integrating the
part of Eq. (A6) corresponding to that z> term.

Exact current and seagull structure functions Jy (z), Jy(2),
K(z), and K(z) can be obtained from our previous results
using the tricks in Ref. [8]. Because the scales in the current
and seagull terms are intrinsically small, there is no need to
display exact results, and leading terms in an expansion suffice.
The functions K (z), and K (z) were displayed in Eqs. (A23)
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and (A24) of Ref. [8]:

K = —5ly +1n(8/2) = 31/301 + 0D, (Al7)
and

~ Im@rx/m) (o 1

= DO . <K+480>. (AI8)

Note the infrared cutoff, A.

The current structure functions Jy(z) and Jy(z) can be
directly obtained using the trick discussed just below Eq. (A18)
of Ref. [8]. We simply quote the results:

/3 wpN wpN

— m
Iv@) = ——— m| 2| +1), (A19
VO =550 2m T 20m? (n [ZwN] + ) (A19)

and
- 20-2)
12m3\ oy 4m
oy [1+In(3)]

18m*

Note the infrared cutoff, A.

The sum rules based on Jy(z) and Jy(z) will be of two
types. The terms involving Jy(z) have two powers of z and
correspond to M1, EO, retarded E1, and E2 excitations. They
are all small except for the M1 case, where the square of
the nucleon isovector magnetic moment is a factor of more
than 20. We will evaluate that case in Appendix B. The
second type involves the terms in Jy that are independent
of z. In that case Siegert’s theorem [8] can be used in the
form (N| fd3x J(x)|0) = iwn (N|DJ|0), which produces two
additional powers of wy . This generates sum rules with powers
of wy that are >3/2, which are divergent in zero-range
approximation. These terms, moreover, have strength at large
nuclear energies, and they are discussed together in the the
subsection Asymptotic properties below. All sum rules with a
single power of wy have special properties and will be treated
together in the subsection Gauge sum rules in Appendix B.

In(2) =

+ —22%Jy().  (A20)

6 a)Nm2

2. Breit approximation

The exact charge structure function Iy(z) is given in
Eq. (A6) by
2E + wy

1()—1/md—qsin( )[
VEO=2 ) @ Y E(E + on)? — ml]

and results from integrating the gy variable in the charge-
interaction parts of Figs. 1(a) and 1(b). The square bracket is
the sum of the two diagrams, which can be reseparated into
their two components, 1(a) and 1(b), respectively, as

2F + wy
E[(E + wy)* —m?]
1 E+m E—m
~ 2mE |:E+wN—m B E+wN+m:|'
The first term is from Fig. 1(a) and has an energy denominator
that is simply the difference in energies of the intermediate

state (E + wy) and the ground state (m) of the coupled lepton-
nucleus system. The second term from Fig. 1(b) does not

} . (A21)

(A22)
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have this form, because it reflects lepton “pair” intermediate
states. The energies of the lepton-plus-nucleus intermediate
and ground states in the denominator have the same signs.
This means that an interpretation is not possible in terms of
a conventional Hamiltonian that is the sum of two parts for a
system composed of two parts.

In 1929 Breit [36] constructed a tractable Hamiltonian for
two interacting relativistic electrons by summing their Dirac
components together with a Coulomb potential between them.
Although this Breit equation is not an exact representation of
the physics, it has nevertheless proven very useful. One way
to derive the Breit result is to modify the boundary conditions
[12] for two interacting systems. One can equivalently change
the sign of wy in the second term in Eq. (A22). We will
do this by adding the sign-changed term to the first term to
generate the Breit term (labeled BR), and then subtracting the
same sign-changed term from the second term to form a non-
Breit correction term (labeled NB). The resulting expression
is still exact, but neglecting the NB term results in the Breit
approximation.

This manipulation then produces two terms, Breit plus non-
Breit:

2F + oy B A2 1
EWE +oy?—m?]  [\moy /) q* + 1?2 |5

[ e
mE ) (E +m)* — w? NB’

(A23)

where A'2 = 2mawy(l — wy/2m) was introduced below
Eq. (6). Note that A’2/m? = v'?, which we introduced above
Eq. (All). We see that this exact division of our charge
structure function, /y(z), produces one term that is a trivial
modification of our very simple nonrelativistic result plus a
complicated correction term that has at least one power of wy .
The Breit term clearly becomes problematic as wy — 2m,
and Ref. [12] contains a discussion of some of the diseases
associated with this approximation.

3. Asymptotic properties

We have implicitly assumed that our sum rules saturate at
low excitation energies. Ref. [33] has nevertheless identified a
part of the transverse E1 (i.e., unretarded dipole) polarization
correction that has strength at very high nuclear excitation
energies. The dipole parts of the unretarded charge structure
function are those proportional to z> in an expansion of
In(2), while the corresponding parts of the transverse structure
function are the z-independent parts of Jy(z) and K(2).
Collecting terms we find that the complete unretarded dipole
contribution is given by

4
AEp = ——|$u(O)F ) _ [(NID[0)[?
N#£0

1
X ;[2b(w) + (w?b(w) — w(l + In(wy /1))
+ win(m/21)], (A24)
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where w = wy/m and the dipole charge function b(w) is
defined as

gy lusinh™ () — w'sinh '] (w > 2),

b(w) = 5 [usinh™ (1) + v'sin~! ()] Qzwz1,
3y Lusinh™" () +v'(r —sin ™' )] (1 > w).

(A25)

The parameters u, ', and v’ were defined above Eq. (A11). In
Eq. (A24) the first term in the square bracket is the charge
contribution, the second term (in large parentheses) is the
transverse current contribution, while the remaining term is
the seagull contribution.

Note that the infrared cutoff (1) in Eq. (A24) cancels, and
that the final two transverse terms sum to —w(1 + In 2w)).
In addition we see a transverse current term [~w?b(w)]
that is potentially more sensitive to high excitation energies
than is the charge term. The tripartite definition of b(w) in
Eq. (A25) creates a complication, however, in determining this
sensitivity. Our expansions of the dipole structure function
above and in the main text were based entirely on the form
of b(w) for w < 1 or wy < m, = 100 MeV, and not on the
highest-energy form corresponding to w > 2. The reason for
this was the assumption that low excitation energies saturate
the sum rules. Indeed, the factor of v'7 in the bottom line of
Eq. (A25) is entirely responsible for all of the half-integral
energy sum rules that we developed in Eq. (11). The sinh™!
and sin~! terms play no role in those sum rule terms.
We therefore can assume either that low-energy excitations
saturate Eq. (A24) and expand the w < 1 form of b(w) to
check for high-energy sensitivity, or we can perform a true
asymptotic expansion using the w > 2 form. Neither choice is
entirely representative, so we will do both.

For w < 1 the bracketed term in Eq. (A24) (including the
prefactor of 1/1) can be expanded as a series in w,

2 w  w? 2w
—(1l - )+ —
w 4 32 3

3
n [,/ w? _ wd+1n@w) +711n (2w)):| + o).  (A26)

The first bracket contains the charge contribution, while the
second bracket contains the transverse terms. The terms with
powers of w that are <1 were also obtained in a similar manner
by Ref. [33]. Terms with powers larger than this diverge
in zero-range approximation. Because of Siegert’s theorem
the current terms are weighted more heavily towards higher
energies.

A very different result is obtained if one expands the w > 2
form for large w
+ o0 /w?).

b(w) — (A27)

1 + InQCw)
w
This guarantees that the charge and transverse contributions
both behave asymptotically ~1/w, but a cancellation of large
terms is required for the transverse result. The current spectral
function therefore has the potential to be sensitive to high
virtual excitation energies, unlike the charge spectral function.
This can be checked for the El excitations by numerically
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integrating Eq. (A24), as was done in Ref. [33]. In zero-range
approximation we find that the sum rules with powers of w
that are <1 in the charge spectral function largely saturate at
energies less than 100 MeV. Moreover, their sum agrees well
with the numerically integrated one. There is no problem with
the behavior of the charge spectral function.

The transverse spectral function, however, presents a
problem. Because of cancellations caused by the logarithm
the w-linear term is determined largely by virtual excitation
energies larger than 200 MeV. This contribution can in
principle be calculated using the closure trick introduced in
Eq. (B35), and this should provide adequate accuracy for what
is a rather small term. The w? b(w) term in Eq. (A24), however,
provided none of the contributions to our final result, but
integrated numerically contributes an attractive 0.024 meV to
the polarization correction in zero-range approximation, half
of which comes from energies above 200 MeV.

This is a fairly serious problem because most potential
models were not designed to be accurate at those energies.
Moreover, it raises questions about the convergence of our
procedure. Whether this problem exists for other transverse
multipoles is unknown. Whether it is more or less severe
when higher multipoles are summed is also unknown. This is
a problem that needs to be resolved if polarization corrections
with sub-1% uncertainties are ever to be obtained.

APPENDIX B: ZERO-RANGE APPROXIMATION

1. Introduction

In 1935 Bethe and Peierls [6] developed the zero-range
approximation for the deuteron, which circumvented the
almost complete lack of knowledge at that time about detailed
properties of the force between the proton and neutron. It was
known that the nuclear force had a short range (Ry ~ 1 fm)
compared to the spatial extent of the weakly bound deuteron
(Ep ~ 2.2 MeV). They assumed that the range of the force
could be neglected in many applications, and that only
knowledge of the wave function of the deuteron outside the
nuclear potential was required for calculating many deuteron
properties. This method has proven extremely useful in studies
of deuteron photodisintegration [6], polarization corrections
in the e-d Lamb shift [21,37] and hyperfine splittings [38,39],
the deuteron electric polarizabilities [18], and the deuteron
charge radius [21]. Its primary utility is that it can give a
very simple and rather accurate estimate of some deuteron
observables, and these estimates can be systematically im-
proved by incorporating more physics [17]. There is a very
substantial overlap between the zero-range approximation and
some effective-field-theory treatments [19,20] of the deuteron.

We will develop the simplest versions of this approxima-
tion (see Refs. [17,40] for improvement methods), and will
use natural units (& = ¢ = 1). Only nonrelativistic dynamics
will be considered until the final section of this appendix.
Relativistic corrections were considered in Ref. [18], and for
the electric polarizability are expected to be <0.1%. We use the
conventional definition of r as the distance between the proton
and neutron. Then the nonrelativistic Schrodinger equation for
a bound state can be easily solved for the dominant s wave in
the absence of a potential or in the region outside a short-range
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potential,
AS e
/T

where Ag = 0.8845(8) fm~'/?> [16] is the experimental
deuteron s-wave asymptotic normalization constant, and k =
V2rER =45.7022 MeV is the deuteron ground-state virtual
momentum (corresponding to 0.231 61 fm~! after dividing by
hc). The latter quantity is determined by twice the n- p reduced
mass, 21 = 938.918 MeV, and the deuteron binding energy,
Ep = 2.224575(9) MeV [16]. Since 2u is very close to My
(the average nucleon mass), the small dimensionless quantity
k /My = 0.05 is a relevant (and small) expansion parameter.

The wave function in Eq. (B1) is clearly incomplete for
r < Ry and does not satisfy the finiteness boundary condition
at the origin. We can produce one estimate of this error by
computing the normalization

Ys(r) =

r > Ry, B1)

A2 1
Yslps) = == = ———, (B2)
2k 1 —xpy
which follows from the definition A% = lf,fpd, where the

deuteron effective range is p; = 1.765(4) fm [16]. The
“normalization” of |yg|? therefore equals 1.69 rather than 1,
which is an overestimate of nearly 70%. Of what quantitative
use is a technique that is subject to such a large error?
The key ingredient in the zero-range approximation is the
smallness of x compared to other relevant deuteron energy
scales, and this comparison improves for decreasing deuteron
binding or for matrix elements containing more powers of r.
In addition many corrections to the zero-range approximation
scale as (k Ry ~ 1/4)" for n > 2, and larger n substantially
improves the accuracy of the zero-range approximation.
Equation (B2) is the worst case, and does not impact practical
calculations.

2. Ground-state radial matrix elements

Matrix elements of positive powers of r suppress the
incorrect interior part of ¥g for » < Ry, while enhancing the
correct exterior part. The error of the approximation therefore
will dramatically decrease in such cases. Positive powers of
r will lead to matrix elements that depend on higher inverse
powers of k, with the highest inverse powers being the most
accurate. In addition the angular momentum barrier in more
complicated observables that involve virtual excitations to
non-s states will also suppress the interior part of the deuteron
wave function and lead to higher inverse powers of «. The
deuteron electric polarizability and the deuteron mean-square

charge radius in zero-range approximation scale like K% and

Kl—}, respectively, and have errors of roughly 3/4% [18,19] and
2% [21], respectively. We will see below that the leading
term in the p-d polarization correction scales like 714 and
has an error of slightly less than 1%. These accuracies are
sufficient to be quite useful, and the simplicity and relative
accuracy of the zero-range results can lead to considerable
insight about the importance of details of the nuclear force in
a given calculation. We will see that the zero-range ex-

pansion is given in terms of simple observables, which are
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common features of all quantitatively accurate nuclear force
models.

The lack of an angular momentum barrier makes the s-wave
virtual-excitation case special, because the interior region of
the wave function becomes relatively more important. These
cases therefore merit closer examination. The total charge
operator is superconserved and cannot cause transitions, so
we will ignore matrix elements of this operator between the
deuteron and its 35| excited states. All other charge matrix
elements involve powers of r, and they can and will be treated
in zero-range approximation. Ground-state matrix elements of
constants will be treated exactly, yielding just those constants.
This leaves only magnetic (viz., spin-flip M1) excitations
as possible special cases, since they do not involve powers
of r. These contributions will nevertheless be estimated in
zero-range approximation, because they are quite small and
great accuracy is not required.

a. Charge operator multipoles

The ground-state matrix element of r” in zero-range
approximation is given by

2

<O|rn|0)zr = (rn>zr — A%/ drrne—zxr _ sh

: = ®

This is typically not an observable, however. The nuclear
charge operator in nonrelativistic impulse approximation (no
meson currents and no spin-orbit charge density, both of which
are corrections of relativistic order) is given by

A
pen(®) =y pillx —xil)
i=1
A
= pipp(X = xi)) + Aipa(IX = X;]).  (B4)

1

In this expression g;(|x — x;|) is the charge density at the point
x of nucleon i expressed in terms of its position X; relative to the
nuclear CM. This is further broken down into separate proton
and neutron contributions, each with its respective isospin
projection operator (viz., p; = # and 71; = #) and
respective charge density [viz., p,(y) and p,(y)]. We note that
pp(¥) is normalized to 1, while p,(y) is normalized to 0. For
the deuteron we ignore the small mass difference of the proton
and neutron and use X; = r/2 and X, = —r/2.

Because the lepton in a hydrogenic atom carries small
momentum compared to real or virtual momentum scales in
nuclei, electromagnetic excitation of the lowest unretarded nu-
clear multipoles will dominate. We will require the following
multipole charge operators:

A
/d3xpch(x) = Zﬁi =Z,

i=1

(B5a)

where Z is the number of protons in a nucleus with A nucleons
and N neutrons. Note that we have chosen to define nuclear
charges in multiples of the fundamental charge, |e|. The dipole
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operator is then given by

D= / P xxpan(x)

. 0! r (rz(l)—rz(2)>
=Y =3 G 5 (P2),
= P 2 2

(B5b)

where the arrow points to the deuteron result. The mean-square
radius operator is

A
= [ dartpao = Y pixt + 20, + N2,
i=1
(B5c)
where (r?), = [d’yy*p,(y) and (r?), = [ d*yy*p,(y) are
the mean- square charge radii of the proton and neutron,
respectively. The quadrupole operator is given by

0% = /d3x(x°‘xﬂ —x%8% /3) pen(x)

A
- Z pi (x:?‘xf9 —x78% /3).
i=1

The final charge operator that we require is the retarded dipole
operator

(B5d)

0= fd3xxx2pch(x)

T 5 7.(0)
= Z |:p,'X,'Xi2 + 5 2l Xi((r2>p - <”2>n):|

. 5
pixix; + §D(<r2>p —(r*)n)

(B5e)

where we have used Eq. (B5b). Thus the mean-square radii
of the proton and neutron play a role in the mean-square-
radius and retarded-dipole operators, but not in the dominant
(unretarded) dipole operator, or in the quadrupole operator.

The mean-square charge radius of the deuteron [21] in
zero-range approximation is obtained by combining Eqgs. (B3)
and (B5c),

2
= —; +(r?) ) + (), (B6)
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and is accurate to within about 2% [21]. Note that we have used
correctly normalized wave functions to evaluate the nucleon
charge-radius terms.

3. Charge correlation functions

In Sec. I we demonstrated that the sum of the (third)
elastic and inelastic Zemach moments is a relatively simple
correlation function given by

(Ol1x — y*|0)en = / d’x / d°y (01 pen(¥)Pen(®)[0)1x — y .
(B7)

We will use Eq. (B4) to expand the product of charge operators
for a general nucleus, and then restrict ourselves to the deuteron
case. Because the charge operators at a point x are functions of
the distance from that point to the coordinate of nucleon i, we
change integration variables, X — x 4 X;. This removes the
coordinate x; from pqh(X), and we similarly transform pch(y).
Defining x;; = x; — X; we can then write

/ & / & o Pl — ¥

/d3 /dSyZ |X—Y+Xz;|

i,j=1
X [Pipp(y) + i oI 0p(x) + 71 0u(x)].  (BY)

The proton and neutron projectors p; and #i; are true projection
operators in the sense that p? = p; and A7 = #;,, that p;A; = 0,
and also that these projectors commute for i # j. Using these
properties we split the sum into i = j and i # j parts and
obtain

/ d>x / d>ypen(¥)pan(X)|x — yI*

= Z(r)3 + N(r 3)&")
fd3 /d3 Z [Dipp(¥) + 11i pa(¥)]
i#j=1
X [P pp(x) + A o)X — y + x5, (B9)

where (r3)(2) and (r )(2) are the usual third Zemach moments
for protons and neutrons, respectively. Although these mo-
ments vanish for pointlike nucleons, the muon’s Coulomb
force can interact with different parts of the charge distribution
of an extended nucleon, which results in a Zemach moment.

The i # j term above can be reexpressed in terms of
familiar densities. Changing variables by x — x+y and
performing the y integral leads to

/d3 /d3 Z [Di£p(¥) + i oaONILPj pp(x) + 12 pa(O]IX — ¥ + X5

i#j=1

i#j=1

Z /d3x|x+x,j| (PPl (xX) + Aty pl3y(x) + 2piftj ) (X)) —> 2/d3x|x+ rlp (o (¥) = 2C7"(r),

(B10)

034003-14



NUCLEAR POLARIZATION CORRECTIONS TO p- ...

where pf3) (x) = [ d’yp,(Ix + y))pa(y) is the Zemach charge
density [14] for overlapping proton and neutron distributions,
etc., and the arrow indicates the result for the deuteron case. In
the deuteron both nucleons cannot be protons (or neutrons) and
the corresponding terms vanish, although they do not vanish for
He. The correlation function C?"(r) results when the muon’s
charge interacts with overlapping proton and neutron charge
distributions whose centers are separated by a distance r. We
finally find for the deuteron

(Ol1x — yIP[0), = () + (7)) + 2(01CP"(m)]0).  (B11)

We will use the value (r)(f) = 2.71(13) fm® [41], and will
ignore the very small neutron Zemach moment. The remaining
two terms in Eq. (B11) are rather small and largely cancel.

The proton Zemach moment is known experimentally. The
remaining term in Eq. (B11) requires a model in order to
construct CP"(r), although its leading and most important
term for large r is model independent. The required effort
is substantial and tedious, but fortunately has already been
performed in Appendix A of Ref. [38] for reasonable (but
certainly improvable) models of the proton and neutron form
factors. In that work we chose a dipole form factor for the
proton, which has a single length parameter and generates
an exponential charge distribution: p,(x) = exp(— Bx)B3/8m.
For the neutron we chose a modified Galster form factor
[42] that produces a similar form with the same length pa-
rameter: p,(x) = AB° exp(—pBx)(3 — Bx)/32m. This density
has a vanishing volume integral, generates a form factor
that rises with slope A, and therefore has a mean-square
radius of —6A (the conventional negative sign reflects a
rising rather than falling form factor as momentum transfer
increases). We use the values 8 = 4.12 fm~' that corresponds
to (r2))/* = v/12/B = 0.841 fm [1], and A = 0.01935(37)
fm? that corresponds to (r?), = —0.1161(22) fm? [27]. We can
then immediately calculate another quantity that we require:
(r*), — (r*), = 0.8232(23) fm>.

Reference [38] calculated the quantities p(5) (x) [called ppg
in its Eq. (A5)] and C?"(r) [called C}; in its Eq. (A10)].
An important feature of the latter is the behavior of the
leading term for large Br: CP"(r) - —12Ar+ vanishing
terms. Equation (D11b) of Ref. [14] displays the behavior
of [x +r]? required for constructing C”*(r) in our Eq. (B10).
It demonstrates that for large r the coefficient of r is twice the
mean-square radius of p()(x) (viz., —121) and is determined
entirely by the slope of the neutron form factor (viz., the
measured quantity A). It thus is a model-independent operator.

In order to be as specific as possible we rewrite Eq. (B11)
and separate C”"(r) into the model-independent part (—12Ar)
and a model-dependent part that we call g(r):

Ol1x — yPP10)4, = ()& — 242(01r10)) + 2(0[g(r)|0),
(B12)
where the two terms in parentheses are dominant and nucleon-
model independent. Equation (B3) can be used to estimate the
second term,
_ 6rAS
k2’

—242(0]7[0),r = (B13)
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while the model-dependent term can be similarly estimated,

_ 240A% 77
200150100 = =53 <101n(2/c/,3)+ﬁ+-~->, (B14)

and depends only weakly on «. The model parameter § is
roughly 20 times «, which explains the dominance of the
model-independent term over the model-dependent one.

4. Energy-weighted sum rules

The remaining operators are transition operators that
connect the deuteron ground state to either plane-wave excited
states or phase-shifted free waves that are parameterized by
asymptotic scattering properties such as s-wave scattering
lengths (denoted a below). For s waves the parameter ka
determines the importance of the asymptotic modification.
Various energy weightings of the squared matrix elements
are then summed. In the simplest form the excited states
are |N) = |k) = ¥, wy = (k% + «?)/2u is the difference
in energy between the Nth final state, Ey = kz/Z/L, and
the ground state, Ey = —k?/21 = —Ep. The corresponding
phase space is d3k/(271)3 [ie, > u =fd3k/(271)3]. The
quantity u is the n-p reduced mass.

a. Dipole sum rules

None of the operators in Egs. (B5) involve spin, and
transitions lead only to spin-triplet states. We thus only
require isospin matrix elements between the isoscalar deuteron
(s wave) and isovector negative-parity excited states (viz., p
wave) or isoscalar positive-parity excited states (viz., s wave
or d wave). The isospin matrix element of the large-bracketed
isovector operator in Eq. (B5b) between the isospin-0 ground
state and any isospin-1 excited state is 1, leaving only the factor
of r/2 to treat. This produces

(NID|0);r = (K[r/2]|0)
e} . —Kr A
Lo
/0 2 r 4
—ik4mAg
(K + K22

(B15)

Using this result any energy-weighted dipole sum rule can
be constructed in zero-range approximation provided that
p>-3/2,

2
=% |(N[D]0)|

p P
N @y

:471A§/ 3 KQu)?
@) K2+ 2

-[rtaemllei) — e[S
~ L4v/aT @+ p) JLCE, 2mi3EY? 135 ]

(B16a)

where Ep = k?/2pu = 2.2 MeV sets the energy scale for
these sum rules. The arrow points to the p = 1/2 case that
determines the leading-order polarization correction. We also
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require the p = —1/2 case

2 1/2
e
2rk 5
The vanishing of p waves at the origin necessarily enhances
the quality of dipole sum rules in zero-range approximation.
The deuteron electric polarizability is given by ap =
20SP /3 = ajuA% /32«3, and is approximately 3/4% too large
compared to potential models [17,18]. Corrections from p-
wave scattering volumes are O(1 /Kz), while d-wave correc-
tions and short-range s-wave corrections are both O (1/«) [17].
The overlap of the unretarded and retarded dipole matrix
elements is the most important correction to the usual dipole
sum rules [7]. From Eq. (B5e) we calculate

(B16b)

(N10p|0)s = (K|rr?/8|0)

= /OOdSre_“"r |:rin| |:e_” _AS :|
0 8 ro NAw

— k4 Ag(52 — k?)
- & +S;<2)4 . (B17)

Combining terms we form the retarded E1 sum rule for
p>—5/2

) (NID]0)}; - (N1O0[0)zr

p

ASEN =
p wh

N
4w AZ2p)P / 5, K2(5k% — k%)
(27.[)3 (kz +K2)6+p

_ [15F(5/2 +p)2+ p)i||: A% }
B 4/7T(6 + p) KE

2ried |21 ]
where the last result holds for p = —1/2, which we require.

We can combine Eqs. (B5e), (B16) and (B18) to yield the sum
rules

>

P
Wy

(B18)

5
= ASEI + §SPD(<r2)p - <r2>n)’
N
(B19)

which contain a contribution from finite nucleon size. We

require p = —1/2.

b. Quadrupole sum rules

Quadrupole excitations are generated by

(N1Q?10), = (K|(r*rP — 1?8 /3)/4|0),,
/OO Pre-ikr rerf — rzﬁo’ﬁ/?)
= re -
0 4

8 [e—Kr AS i|
ro 4w
—2A7 Ag(k* kP — k259B /3)

= EEYSE . (B20)
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The corresponding quadrupole sum rules are given for
p > —5/2by

50 Z [(N1Q“P10) | _ 84mAG /d3 k* (2P
r ~ wh, 3 (2n)3 (k2 + K2)0+p
_[5062+m70 A5 ], AYEST[ 64
VaT(6+ p) [LKOEY 2K 189 |’
(B21)
where the last result holds for p = —1/2, which we require.

5. Sum rules involving s-wave transitions

Because total charge is a superconserved quantity, it does
not generate transitions, and therefore only the first term
in the mean-square-radius operator in Eq. (B5c) generates
the leading monopole excitations. In the deuteron case this
means 3§, — 3§; transitions. Magnetic interactions in nuclei
are dominated by spin-flip transitions, and in the deuteron
case this means 3§; — 'S, transitions. At very low energies
the scattering length determines the form of both the scat-
tered wave function and the scattering amplitude. Both the
triplet scattering length, a, = 5.4194(20) fm [16], and the
singlet scattering length, a; = —23.748(10) fm [43], are very
large and could significantly impact zero-range calculations.
The technique for treating these cases was developed in
Refs. [39,40] and we closely follow that treatment.

The 'S, state is a “virtual” state, characterized by a pole
on the imaginary axis in the lower half of the analytic k plane
atk, = i, where the singlet scattering length ay is large and
negative. This pole is very close to the origin at an energy

E, = Ko 74 keV on the second sheet of the complex
My

energy plane. The 3S; state on the other hand is characterized
by the deuteron bound-state pole at k = ix, which greatly
affects that scattering length. Reference [40] astutely observes
that orthogonality of the zero-range bound and zero-energy
38 scattering wave functions requires that a, = 1/k = 4.3 fm,
which is comparable to the experimental value but roughly
20% too low.

The asymptotic form of the wave function for both s-wave
excited states (denoted generically by §*) is given by basic
principles as [39,40]

R () sin(kr)+ is (Se”"

r) = ' sin

s* kr kr
sin(kr) a e

- - , (B22)
kr 1+ ika r

where we have used k cot § = —1/a to arrive at the final form.
This is an approximation that ignores the effective-range and
higher corrections and is valid only at very low energies.

a. Monopole sum rules

The 35, — 35, monopole excitations can now be calculated
using the first term in the mean-square-radius operator in
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Eq. (B5c¢):
(N172(0), = (3S1]r?/410)s

- [l [T 7]
B 0 ro am
B VT A3k — k> + (ka,)(3k? — k?)]

(k2 4+ k2)3(1 — ikay)
_ VT Asla(c? + k?) + bi?)
(2 4+ k23 —ikay)

: (B23)

where @ = 3ka; — 1 and b = 4(1 — ka,). This leads to the
energy-weighted sum rules for p > —7/2:

2 [(N17210) |
Sy = Z W’
N N
_ mAjew?
2m)3
y / d3ka2(k2 + k22 + 2abk*(k* + k2) + b«
(kz +K2)6+p(1 —|—k2a2)

_[48 a’l 2abl b1 B24
= m [@“lyyp +2abls, ), + DIy p], (B24)

where we have used identity 3./97.5 of Ref. [11] to define

00 X2
f) = /o D o + 225
AT~ 1/2)
4T+ D)

in terms of y = ka, and a Gauss hypergeometric function.

As a practical matter we require only p = —1/2, or
a=17/2,9/2,11/2. Writing « = 1/2 + m, we therefore re-
quire m = 3,4,5 and we shall see below that we also need
m = 1 for magnetic sum rules. This leads to

Y TTURL,3/2,a+ 11 —y%)  (B25)

2m=1(m — 1) )
Lijpam(y) = WZFI(L 3/2,3/2+m;1 —y7)
= Gu(1 — %), (B26)

where G,,(z) is defined in Eq. (C10). In Appendix C we
develop useful representations of , Fi(1, 3/2,3/2 4+ m; z) for
z < 1 and integer m > 1 in terms of logarithms and powers of
z[viz., G, (z)]. This leads to a simplified form for the particular
variant of Eq. (B24) that we require:

ST, = B27
172 2micd ®27)
Equations (C6), (C8), and (C10) can be used to evaluate the
three G,,. Equation (C13) can be used to show that the small
square bracket in Eq. (B27) equals 106/315 for vanishing a;
and y (witha — —1 and b — 4).

. A2EL? _ _
’ [ 5B ][a2G3+2abG4+b2G5],

b. Magnetic sum rules

Deuteron magnetic properties can be treated analogously,
and we again closely follow the treatment in Refs. [39,40].
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The nuclear magnetic-moment operator is given by

—Z( (’)"(’)+”’L(’))+umc, B28)

where o (i) is the (Pauli) spin operator of nucleon i, L(i) is
the orbital angular momentum of nucleon i, py e is the
contribution of meson-exchange (primarily pion-exchange)
currents, and the spin-magnetization current of nucleon i is
determined by

() = wppi + pafi. (B29)

The isoscalar and isovector combinations of the proton and
neutron magnetic moments are very different in size: u, =
Wp+ pp =0.8798 - and uy, = u, — wp, = 4.7059 - - - . The
large isovector magnetic moment (corresponding to a 3§; —
1Sy transition) completely dominates, and we will ignore for
now the isoscalar combination (corresponding to a 3§; — 35,
transition). We note that the orbital contribution vanishes for
an s-wave deuteron, and we also ignore the meson-exchange
contribution because it has the same range as nuclear potentials
(although it enhances by roughly 15% [8,23]).

The spin and isospin matrix elements are easily performed
for a 3§, — 1S, transition and we find

Moy 3 s e Ag
&Ry (- )[ }
2M NZY

Using Eq. (B22) for R} (r) and performing the integral we
obtain

('So[4210).r (B30)

_ mARl( —ka,)?
MK+ k)2 (1 + ka2’

2
(S0 ££10) (B31)
and note that the very large scattering length causes the matrix
element to decrease very rapidly [24] for E = M_N 2 |Ey|.
Magnetic sum rules analogous to Eq. (B16) can be defined

for p > —3/2:

1S0|1£10).: |
S;‘=Z|( o | ‘|
N “N

~ w A (1 — kay)? p)?
N M%(2m)3 (k2 + k)27 (1 + K2a?)
_ ARud(1 - ka,’2u)” /°° . x?
22 M3, 0 (14 x2)>7 (1 + x2y?)
ASui(1 — y)?
= Ol ) , B32
27k EDM? 24p(Y) (B32)

where y = «xa, and we have used Eq. (B25). Convergence for
y = Orequires p > —1/2.

The deuteron magnetic susceptibility corresponds to
Ba = 2aS)'/3 (i.e., p = 1), and we find using 20 = My

aAZp3(lyl +1/3)(y — 1)?
1663 My (1 + |y|)3

where the integral /3 is straightforward to evaluate using partial
fractions. This agrees with Ref. [39] if we use A% — 2K
(i.e., |¥s|* is normalized to 1).

Ba = ; (B33)
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Our magnetic polarizability sum rule corresponds to p =
—1/2 or m = 1 in the notation of Eq. (B26),

AS/J’U

S = MW[(l—y)Gl(l I (B34)

and is only interesting to us because of the very large value
of 2.

The isoscalar contribution to the magnetic polarizability
sum rule in zero-range approximation is obtained formally
by replacing p? by the much smaller 22 in Eq. (B32), and
replacing a; in y by the spin-triplet scattering length a, =
5.4194(20) fm [16]. This should vanish for the contributions
from the spin and orbital angular momentum to the magnetic
moment operator because exact radial wave functions of the
ground state and excited states are orthogonal. Unfortunately
that orthogonality of the radial wave functions in zero-range
approximation obtains only for y = 1 or @, = 1/« [40], and
is therefore only approximate for the physical value of a,
corresponding to y = 1.2552. The resultis nevertheless greatly
suppressed and will be ignored.

6. Gauge sum rules

We collect here six higher-order terms that were not treated
above, two each from the charge, current, and seagull parts.
We first examine terms that involve sum rules with powers
of wy/m less than 3/2. This criterion omits terms that are
suppressed by at least a factor of (wy /m)* ~ 1/400, provided
that the sum rules saturate at low excitation energies. With
increasing powers of @y, matrix elements become more and
more sensitive to the deuteron’s short-range behavior, and also
saturate at higher and higher energies. They eventually diverge
in zero-range approximation because the deuteron wave
function diverges at short range. Logarithmically divergent
terms can still be roughly estimated using a cutoff.

Sum rules linear in wy are crucial for maintaining the
gauge invariance of the underlying nuclear Compton amplitude
in Fig. 1. This is discussed in some detail in Appendix B
of Ref. [8]. They can be evaluated using a trick involving
commutators and closure. For n > 2 we define a sum rule

5¢ = 3 [ ' [ @ 0lpaININ s 0l0jwxix — y1

N=£0

; / &x / &y (Ol pen(¥). [H. pen(OT0)[x — 1"
(B35)

that is equivalent to a single matrix element of a double
commutator with the Hamiltonian, H. The zero-range ap-
proximation ignores the potential part of H and only the
kinetic energy part contributes. In reality the potential terms
can enhance the n =2 sum rule by a factor approaching
2 [23], although the enhancement is less for the weakly bound
deuteron [33]. Performing the commutators for point-like
nucleons without the potential produces

nn—+1) n
Sy = —— rrve /d3 /d3ylx yI"?

X (0] ch(¥)pen(x)[0) = 0 (B36)
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in the deuteron for n > 2 and Szc = —3/2My for n = 2. The
vanishing point-nucleon result obtains because the charge must
reside on the single proton and thus x — y = 0. This explains
the substantial cancellations that occur in the final term in
Eq. (6) when expanded in partial waves (even though the sum
rule involves a factor of ,/wy rather than wy). Equation (B36)
also causes the final term in Eq. (A16) to vanish.

The constant (i.e., z-independent) terms in Jy and K and
the 72wy term in Eq. (A16) combine to produce a linear-in-
wy term that is quite small (~—0.001 meV) in zero-range
approximation because of cancellations between the terms.
Note that we use only the inelastic part of the seagull in order
to cancel the infrared divergences, as discussed in Ref. [8].
The terms in Jy and Jy that are quadratic in z (except for the
M1 term) are logarithmically divergent, but can be estimated
using a cutoff. They scale like the prefactor in Eq. (12) times
Aé /T \/%MISV/ % times a number on the order of one. Taking
that number to be one, we find a contribution slightly less than
0.001 meV. The final contribution is from the terms in K and
K that are quadratic in z. If we replace 8 in the logarithm by an
average value, B, we find a result that scales like the prefactor
times A%m /1287 My« times a number on the order of 1. The
result is —0.002 meV. All of these contributions are small, and
have no effect on the results in Table 1.

7. Relativistic corrections in deuteron

Given the suppression of subdominant terms in Table I,
it should be sufficient to treat relativistic corrections only
in the dominant unretarded-dipole term. This contribution is
determined by the sum rule in Eq. (B16a), which requires only
the dipole operator and the energy difference of excited and
ground states.

Relativistic corrections to the deuteron dipole operator are
thoroughly treated in Ref. [24]. The electromagnetic spin-orbit
interaction that generates fine-structure splitting in atoms is the
most obvious source, but its dipole operator is spin dependent
and cannot interfere with the usual spin-independent dipole
operator. Potential-dependent dipole operators are outside the
domain of the zero-range approximation. This leaves only the
usual dipole operator to treat in this work. We note that one tiny
correction not incorporated into our treatment is quite trivial
and indeed is classical. The dipole moment is the distance
from the deuteron’s CM to the center of the proton. Because
the neutron’s mass, m,, is slightly greater than the proton’s
mass, m, (by ~1.3 MeV), the dipole operator is given by
(m”'i”mp)r and is very slightly larger (~0.1%) than the r/2 that
we use [22].

Given the dipole operator our relativistic dipole sum rule re-
quires only the appropriate expression for energy differences.
In the absence of any potential the CM Hamiltonian for two
equal-mass nucleons is given by 2+v/'p> + M3. Plane waves
are eigenfunctions of this Hamiltonian, as are bound-state
wave functions of the generic form: exp (—«,r)/r (for r # 0).
Although these wave functions are also eigenfunctions for the
non-interacting non-relativistic Hamiltonian, in the latter case
the binding parameter « should be labeled «,,,. If Eg > 0 is
the experimentally determined deuteron binding energy, then
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relativistic kinematics requires that

Ep =2My — 2,/ —k2 + M3,

rather than the non-relativistic version

EB = K,%r/MN'

(B37a)

(B37b)

The two parameters satisfy the relationship

2
K=« I—KLV2 .
AMy,

Since relativistic corrections in the zero-range approximation
are expected on dimensional grounds to be multiples of
2./ M%, it is clearly necessary to distinguish between «, and
knr inthe results. Although we haven’tlabeled the k used in this
work, we note that the AV18 potential model uses Eq. (B37b)
to determine « [25,44] and thus we have chosen to use «,, in
order to make detailed comparisons with Ref. [5].

We can now easily construct the relativistic version of S,l,)
in Eq. (B16a) by using

(B38)

a)N=2\/k2+M,2V—2\/—K,2+M2,

with «, in the dipole matrix elements and using the usual phase
space integral for summing over the excited states. Note that
we can convert wy into non-relativistic form by multiplying it

by \/ k2 + M3 + \/ —k2 4+ M3, which approximately equals
2My + (k* — k?)/2My. Expanding to leading order in 1/ M3
we find for p > —1/2
Z [(NID]0)|*> 4w A52My)?

wh T @m)der

(B39)

Dyl
SI’
N

WP EIENT,
(k2 + K2)4+p

[ 3r(3/2+ p) ][AgMﬂ - pQ2—p) K2
4/mT@+ p) [ kT ( 2(1 +2p>M_§>

N A2MPT 8 143 K2
2mict |35 16 M2 )’

where the arrow points to the p = 1/2 result that we require.
The relativistic correction is a tiny factor of 0.0004 or an
additional and negligible 0.001 meV. Note that the deuteron’s
very weak binding is responsible for this tiny size. Intranuclear
momenta on the scale of the pion mass (m, ~ 3k) that are
common in heavier nuclei would generate corrections an order
of magnitude larger.

We can also determine the correction to the previously
calculated [18,19] deuteron electric polarizability, which is
proportional to the p = 1 version of the sum rule above. This
scales like A%(1 + k2/6M3)/k?. Reference [19] expressed all
of their results in terms of «,,, and used A% = 2K /(1 —
KnrPa)- Ignoring the factor containing p,; and using Eq. (B38)
to convert k,, to k, changes their correction of (2/3)[/(3, / MI%,]
to (1/6)[x? /va], which agrees with our result above. This
does not agree, however, with the result in Ref. [18] (except for
the scales involved). In that work we computed the relativistic
form of the Green’s function, and found a singular term, while

(B40)
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stating that “in keeping with the zero-range approximation we
ignore this term.” The missing singular term can be computed
and unfortunately accounts exactly for the difference between
Refs. [18] and [19] (and the present work). Dropping the
singular term may have been “in keeping with the zero-range
approximation,” but it led to an incorrect result. The result
above and in Ref. [19] is correct.

We noted above that the AV18 potential model was tuned
to ky,,, in common with most potentials. Two versions of
the Nijmegen potential models, labeled “rel”, are tuned to
Eq. (B37a) and thus implicitly use «, in the deuteron. The
electric polarizabilities for these models are indeed higher than
the corresponding nonrelativistic versions by the appropriate
amounts, as listed in Table I of Ref. [45].

APPENDIX C: HYPERGEOMETRIC FUNCTIONS

The Gauss hypergeometric function ,Fi(1,3/2,3/2+
m;z) for z < 1 and integer m > 1 can be determined from
the function , F|(1, 3/2, 3/2; z) by using the identities /5.1/.8
and /5.2 .4 of Ref. [46]:

1
2Fl(17 3/25 3/2’2) =
1-z
where for now we assume that z is positive, and

am @m + D2
— [V, F,3/2,324mi ) = —— 5
do [z LFi(1,3/2,3/2 +m;z) (1= 2)

(ChH

(C2)

Equation (C2) can be integrated m times on [0,z < 1] to
produce with the aid of identity 4.631 of Ref. [11]
2F1(1,3/2,3/2 +m;z)
2m + D! /Z (z —x)y""1x1/2
- (m — 1)!2mzl/2+m 0 (1=x)
2m + D /' (1 — x)m—1x1/2
=— | dx——mMmMm
(m—1n12m J, (1 —2zx)
where the latter is a standard integral representation of this
»F1. The apparent singularity in the integrand at x = 1 can

be removed for m > 1 by subtracting and adding (z — 1)"~!
from (z — x)"~! in the numerator of the integrand:

; (C3)

172

/‘dx[((z—xy"“—<z—1)’”“)+(z—1)”1“] Sl
0 (1 —x)

(C4)

The last term in the square brackets multiplies an elementary
integral (let x = y?), which is also the complete result for
m=1,

z K12
/ dx — 2 VZIL() — 11, (C5)
0

(1—x)

where the function L(z) is given for both positive and negative
zby

1 1+yz
L _ ﬁzlﬂ‘?ﬁ, 0<z<1, c6
@=12F 1T (C6)
7= tan W=2), z<0,
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We have made the obvious extension of L(z) for negative z in
accordance with the power series of the original , | function
and those in Eq. (C6).

Expanding the remaining quantity in the numerator of
Eq. (C4) as a series in x and performing the integral term-
by-term leads to

CCmA4 DI — 1!
- 2m—lZm [ (m _ ]), [L(Z) - 1] + Pm(Z)iI’ (C7)

where P, (z) is a finite series in z of length m — 1 given by

m—2 (—l)k k Zmflfl
P'"(Z)zkg(;(k—i—l)!(m—Z—k)! ;2k—21+3
m—2
— Z(_l)lzm—l—l
=0
y mf[ (—l)j
S GHIHDIm—2— = DI2j +3)

(&)

For ease of use in Appendix A we rewrite Eq. (C7) in the form

) 2m+ H!!
2F1(1,3/2, 3/2+m,z)= me(Z), (C9)
where
— 1)m-! — 1!
Gul(2) = [%[L(z) — 1+ (mz—m)Pm(z)}. (C10)

This result [together with Egs. (B25) and (B26)] was verified
numerically.
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For completeness we note that for m > 1 we have

2m +1
2F1(1,3/2,3/24+m; 1) = ——, (C11)
2m — 1)
or equivalently
2m—2
Pm 1) = s Cl12
M Cm—D(m—-1) ( )
and thus
22, — 2)!
G,(1)= ——. C13
M 2m — H!! ( )

Values of the energy-weighted sum rule (B27) for vanishing
a; require G,,(1) = (2/15, 8/105, 16/315) for m = (3,4, 5),
respectively.

Evaluating Eq. (C8) for m = 1—5 leads to

z z 772

P = O, P(z) = ) P = - Aan 0’

1(2) »2(2) 3 3(2) G + 30

7z 2722 197

Piz) = — — = 4 2 Cl4

4(2) 8 15 + 210 (C14)

z 1772 477 1874

Ps(z) = —— -

5@ == 360 " 820 T 7560°

all of which satisfy Eq. (C12) form > 1.

Our large s-wave scattering lengths generate fairly large
values of |y| and y?, and therefore asymptotic expansions
of G, (1 —y?) for large negative 1 — y? are useful. Using
Eq. (C9) and identity 15.3.7 of Ref. [46] we find for large y*
(m — Dm-1 T

2 2 _ 2
Yy Gu(l—y)— am— Dl 2] + O(1/y").
(C15)

Direct expansion of Eq. (C10) using Eq. (C14) leads to the
same result.
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