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Angle-dependent gap state in asymmetric nuclear matter
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We propose an axisymmetric angle-dependent gap (ADG) state with the broken rotational symmetry in
isospin-asymmetric nuclear matter. In this state, the deformed Fermi spheres of neutrons and protons increase the
pairing probabilities along the axis of symmetry breaking near the average Fermi surface. We find that the state
possesses lower free energy and larger gap value than the angle-averaged gap state at large isospin asymmetries.
These properties are mainly caused by the coupling of different mj components of the pairing gap. Furthermore,
we find the transition from the ADG state to the normal state is of second order and the ADG state vanishes at
the critical isospin asymmetry αc where the angle-averaged gap vanishes.
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I. INTRODUCTION

The neutron-proton (n-p) pairing properties play an impor-
tant role in the description of superfluidity of finite nuclei with
N � Z [1,2] and symmetric nuclear matter [3–5]. In general,
the n-p pair correlations are considered in different dominant
partial-wave channels, depending on the relevant density and
temperature. For weakly isospin-asymmetric systems, the
isospin singlet attractive 3S1-3D1 (3SD1) channel dominates
the pairing interaction at relatively low densities around the
nuclear saturation density owing to the tensor component of the
nuclear force [3,6–10], and the 3D2 channel dominates at high
densities well above the saturation density [11,12]. In neutron-
star matter, the n-p pair correlations are strongly suppressed
by the isospin asymmetry. However, the dilute nuclear matter
at subsaturation densities in supernovas and hot proto-neutron
stars can support 3SD1 channel pairing [8,13–15].

Because n-p pair correlations depend crucially on the
overlap between the neutron and the proton Fermi surfaces,
the pairing gap is suppressed rapidly as the system is driven
out of the isospin-symmetric state. At zero temperature, a small
isospin asymmetry is enough to prevent the formation of the
Cooper pairs between neutrons and protons with momenta

−→
k

and −−→
k around their average Fermi surface where the con-

tribution to superfluidity is dominant. Near zero temperature,
thermal excitations can reduce the suppression by smearing
out the two Fermi surfaces; however, it is ineffective when the
separation between the two Fermi surfaces is large compared
to the temperature. In isospin-asymmetric nuclear matter, the
FFLO state (proposed in the study of superconductors in
a strong spin-exchange field by Fulde, Ferrell, Larkin and
Ovchinnikov [16,17]) state and the DFS (deformed Fermi
surfaces) [18] state have been studied in Refs. [19,20]. In a
FFLO state, the shift of the two Fermi spheres with respect
to each other, resulting form the collective motion of the
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Cooper pairs with a finite momentum, enhances the overlap
between the neutron and proton Fermi surfaces. The overlap
regions then provide the kinematical phase space for n-p
pairing phenomena to occur. In a DFS state, the deformation
of the neutron and proton Fermi surfaces may increase the
phase-space overlap between the two Fermi surfaces. In both
of these kinds of possible superfluid states the quasiparticle ex-
citation spectra are no longer isotropic, because the anisotropic
overlapping configurations could increase the pairing energy.
However, the usually adopted angle-averaging procedure in
the previous calculations [7,19], which has been proved to
be a quite good approximation in symmetry nuclear matter
[21], considers the gap as an isotopic gap by ignoring the
angle dependence. As the true ground state corresponds to
the anisotropic overlapping configuration, the angle-averaging
procedure may be an insufficient approximation in isospin-
asymmetric nuclear matter.

In this paper we consider an axisymmetric angle-dependent
gap (ADG) state and give a general and systematic comparison
between the ADG state and the angle-averaged gap (AAG)
state in isospin-asymmetric nuclear matter. The paper is orga-
nized as follows. In Sec. II we briefly review the formalism for
the isotropic AAG state and derive the ADG equations from the
Gorkov equations. The numerical solutions of these equations
are shown and discussed in Sec. III, where we compare the
AAG state with the ADG state at finite temperature. Finally, a
summary and a conclusion are given in Sec. IV.

II. FORMALISM

For isospin-asymmetric nuclear matter, the isospin singlet
3SD1 pairing channel dominates the attractive pairing force at
low densities. In this case, we can consider the 3SD1 channel
only; the gap function is thus expanded according to

�σ1,σ2 (k) =
∑
l,mj

�
mj

l (k)
[
G

mj

l (k̂)
]
σ1,σ2

, (1)
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with the elements of the spin-angle matrices,

[
G

mj

l (k̂)
]
σ1,σ2

≡ 〈
1
2σ1,

1
2σ2

∣∣1σ1 + σ2
〉

×〈1σ1 + σ2, lml|1mj 〉Yml

l (k̂), (2)

where mj and ml are the projections of the total angular mo-
mentum j = 1 and the orbit angular momentum l = 0, 2 of the
pair, respectively. The Y

ml

l (k̂) denotes the spherical harmonic
with k̂ ≡ k/k. The anomalous density matrix follows the same
expansion. Moreover, the time-reversal invariance implies that

�σ1,σ2 (k) = (−1)1+σ1+σ2�∗
−σ1,−σ2

(k). (3)

Namely, the pairing gap matrix �(k) in spin space possesses
the property

�(k)�†(k) = ID2(k); (4)

i.e., the gap function has the structure of a “unitary triplet”
state [21]. I is the identity matrix and D(k) is a scalar quantity
in spin space.

Once the the isospin singlet 3SD1 channel has been
selected, the pairing gap is an isoscalar and the isospin indices
can be dropped off. The proton/neutron propagators follow
from the solution of the Gorkov equations and can be present
in the form (h̄ = 1)

G(p/n)
σ,σ

′ (k, ωm) = −δσ,σ
′

iωm + ξk ∓ δεk

(iωm + E+
k )(iωm − E−

k )
. (5)

The neutron-proton anomalous propagator matrix in spin space
has the form

F†(k, ωm) = − �†(k)

(iωm + E+
k )(iωm − E−

k )
, (6)

where ωm are the Matsubara frequencies, the upper sign in
G(p/n)

σ,σ
′ corresponds to protons, and the lower sign corresponds

to neutrons. The quasiparticle excitation spectra are deter-
mined by finding the poles of the propagators in Gorkov
equations,

E±
k =

√
ξ 2

k + 1

2
Tr(��†) ± 1

2

√
[Tr(��†)]2 − 4 det(��†)

± δεk, (7)

where

ξk ≡ 1
2

(
ε

p
k + εn

k

)
, δεk ≡ 1

2

(
ε

p
k − εn

k

)
,

and ε
(n,p)
k are the single-particle energies of neutrons and pro-

tons. Using the “unitary” property in Eq. (4), the quasiparticle
spectra are simplified to

E±
k =

√
ξ 2

k + D2(k) ± δεk, (8)

which are separated into two branches owing to the isospin
asymmetry.

In the present “unitary triplet” case, the gap equation at
finite temperature can be written in the standard form,

�σ1,σ2 (k) = −
∑

k′

∑
σ1

′,σ2
′
〈kσ1,−kσ2|V |k′σ1

′,−k′σ2
′〉

× �σ1
′,σ2

′(k′)

2
√

ξ 2
k′ + D2(k′)

[1 − f (E+
k′ ) − f (E−

k′ )], (9)

where f (E) = [1 + exp(βE)]−1 is the Fermi distribution at
finite temperature and V is the interaction in the 3SD1 channel.
β−1 = kBT , where kB is the Boltzmann constant and T is the
temperature. Substituting the expansion Eq. (1) into Eqs. (9)
and (4), one gets a set of coupled equations for the quantities
�

mj

l (k),

�
mj

l (k) = −1

π

∫ ∞

0
dk′k′2 ∑

l′=0,2

il
′−lV l′l

λ (k′, k)
∑
l′′μ

�
μ
l′′ (k

′)

×
∫

d�k′Tr
[
G

mj ∗
l′ (k̂′)Gμ

l′′ (k̂
′)
]

× 1 − f (E+
k′ ) − f (E−

k′ )√
ξ 2

k′ + D2(k′)
, (10)

with

D2(k) = 1

2
Tr(��†)

=
∑

ll′=0,2

∑
mj mj ′

�
mj ∗
l (k)�

mj ′
l′ (k)Tr

[
G

mj †
l (k̂)G

mj ′
l′ (k̂)

]
,

(11)

where

V l′l
λ (k′, k) ≡〈k′|V l′l

λ |k〉 =
∫ ∞

0
r2drjl′ (k

′r)V l′l
λ (r)jl(kr), (12)

is the matrix elements of the NN interaction in different partial
wave (λ = T , S, l, l′) channels. Here λ corresponds to the
coupled 3SD1 channel. Following from Eq. (5), we can get
the densities of neutrons and protons,

ρ(p/n) =
∑
k,σ

n(p/n)
σ (k), (13)

with the distributions

n(p/n)
σ (k) =

{
1

2

(
1 + ξk√

ξ 2
k + D2(k)

)
f (E±

k )

+ 1

2

(
1 − ξk√

ξ 2
k + D2(k)

)
[1 − f (E∓

k )]

}
. (14)

Summation over frequencies in Eq. (6) leads to the density
matrix of the particles in the condensate,

ν(k) = �(k)

2
√

ξ 2
k + D2(k)

[1 − f (E+
k ) − f (E−

k )]. (15)

It is essential that the coupled Eqs. (10) and (13) should be
solved self-consistently.
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The six components �
mj

l (k) of �(k) are strongly cou-
pled owing to the angle-dependent energy denominator√

ξ 2
k + D2(k) in Eqs. (10) and (13). The equations are

thus complicated to be solved accurately, and approximation
has been employed. Before introducing the angle-averaging
procedure and ADG, we need to substitute �

mj

l (k) with real
variables. From Eq. (3) we can find the relation

�
mj ∗
l (k) = −(−1)mj �

−mj

l (k). (16)

Therefore, we have four independent components �0
0(k),

�1
0(k), �0

2(k), and �1
2(k) for 3SD1 channel, and we can

describe �
mj

l (k) as

�0
0(k) = iδ0(k), �1

0(k) = δ1(k) + in1(k),
(17)

�0
2(k) = iδ2(k), �1

2(k) = δ3(k) + in3(k),

where the six independent variables δ0(k), δ1(k), n1(k), δ2(k),
δ3(k), and n3(k) are real quantities. Inserting Eq. (17) into
Eq. (11), we get

D2(k) = 1

32π

{
4δ2

0(k) − 4
√

2δ0(k)δ2(k)[3 cos2 θ − 1] + 2δ2
2(k)[3 cos2 θ − 1] + 8

[
δ2

1(k) + n2
1(k)

] + 8
[
δ2

3(k) + n2
3(k)

]
+ 6

[
δ2

3(k) + n2
3(k)

]
sin2 θ + 4

√
2n1(k)n3(k)[3 cos2 θ − 1] + 4

√
2δ1(k)δ3(k)[3 cos2 θ − 1]

+ 12[2δ0(k)n3(k) + 2δ2(k)n1(k) −
√

2δ2(k)n3(k)] cos θ sin θ cos ϕ

+ 12[2δ1(k)δ2(k) + 2δ0(k)δ3(k) −
√

2δ2(k)δ3(k)] cos θ sin θ sin ϕ

+ 6
[
n2

3(k) − δ2
3(k) + 2

√
2δ1(k)δ3(k) − 2

√
2n1(k)n3(k)

]
sin2 θ cos 2ϕ

+ 12[δ3(k)n3(k) −
√

2δ1(k)n3(k) −
√

2δ3(k)n1(k)] sin2 θ sin 2ϕ
}
. (18)

A. The angle-averaging procedure

Supposing the angle dependence of the energy denominator√
ξ 2

k + D2(k) can be neglected, the gap equations are simpli-

fied by substituting D2(k) with its angular average value,

D2(k) → d2(k)

= 1

4π

∫
d�kD

2(k)

= 1

8π

[
2δ2

1(k) + δ2
0(k) + 2n2

1(k) + 2δ2
3(k)

+ δ2
2(k) + 2n2

3(k)
]
. (19)

Thereby, the energy denominator and the quasiparticle spectra
are isotropic. Noting the properties of G

mj

l (k̂),∫
d�kTr

[
G

mj ∗
l (k̂)G

mj ′ ∗
l
′ (k̂)

] = δll′δmj mj ′ , (20)

the different mj components �
mj

l (k) with the same l become
uncoupled and all equal to each other. It follows that

δ1(k) = n1(k) =
√

1

2
δ0(k), δ3(k) = n3(k) =

√
1

2
δ2(k),

(21)

and

d2(k) = 3

8π

[
δ2

0(k) + δ2
2(k)

]
. (22)

Taking the normalization

�0(k) =
√

3

8π
δ0(k), �2(k) = −

√
3

8π
δ2(k), (23)

the set of equations in Eq. (10) reduces to two coupled
equations for the 3S1 and 3D1 gap components �0(k) and

�2(k), respectively. They read(
�0

�2

)
(k) = −1

π

∫
dk′k′2

(
V 00 V 02

V 20 V 22

)
(k, k′)

× 1 − f (E+
k′ ) − f (E−

k′ )√
ξ 2

k′ + D2(k′)

(
�0

�2

)
(k′), (24)

where V 00, V 02, V 20, V 22 are given in Eq. (12) with l, l′ = 0, 2
and

E±
k =

√
ξ 2

k + D2(k) ± δεk,
(25)

D2(k) ≡ d2(k) = �2
0(k) + �2

2(k).

Equations (13), (24), and (25) compose the AAG equations
and should be solved simultaneously for isospin-asymmetric
nuclear matter. The quasiparticle spectra here are isotropic
and the gapless excitation exists at large asymmetry [|δεkF

| �
D(kF )] near zero temperature.

B. The angle-dependent gap

As pointed out in the Sec. I, the angle dependence of
quasiparticle spectra owing to D2(k) may increase the phase-
space overlap of neutron and proton near their average Fermi
surface. We consider an axisymmetric D2(k) solution which
corresponds to an axisymmetric deformation of the neutron
and proton Fermi spheres. From the expression in Eq. (18),
the axisymmetric solutions are restricted by

2δ0(k)n3(k) + 2δ2(k)n1(k) −
√

2δ2(k)n3(k) = 0,

2δ1(k)δ2(k) + 2δ0(k)δ3(k) −
√

2δ2(k)δ3(k) = 0,
(26)

n2
3(k) − δ2

3(k) + 2
√

2δ1(k)δ3(k) − 2
√

2n1(k)n3(k) = 0,

δ3(k)n3(k) −
√

2δ1(k)n3(k) −
√

2δ3(k)n1(k) = 0.
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There exists only one nontrivial solution,

δ1(k) = n1(k) = δ3(k) = n3(k) = 0, (27)

which corresponds to the mj = 0 gap components of �
mj

l (k).
In this case

D2(k) → D2(k, θ ) = 1

8π

[
δ2

0(k) −
√

2δ0(k)δ2(k)(3 cos2 θ − 1)

+ δ2
2(k)

3 cos2 θ + 1

2

]
. (28)

Using the normalization

�0(k) =
√

1

8π
δ0(k), �2(k) = −

√
1

8π
δ2(k), (29)

one gets the ADG equations(
�0

�2

)
(k) = −1

π

∫
dk′k′2

(
V 00 V 02

V 20 V 22

)
(k, k′)

×
∫

d�k′
1 − f (E+

k′ ) − f (E−
k′ )√

ξ 2
k′ + D2(k′, θ )

(
f(θ ) g(θ )
g(θ ) h(θ )

)

×
(

�0

�2

)
(k′), (30)

with the following axisymmetric quantities:

D2(k, θ ) = �2
0(k) +

√
2�0(k)�2(k)[3 cos2 θ − 1]

+�2
2(k)

[
3 cos2 θ + 1

2

]
,

(31)
E±

k =
√

ξ 2
k + D2(k, θ ) ± δεk.

The angle matrix ( f(θ) g(θ)
g(θ) h(θ) ) comes from the coupling among

the different mj components of �(k). The matrix elements are

f(θ ) = Tr
[
G0∗

0 (k̂′)G0
0(k̂′)

] = 1

4π
,

g(θ ) = −Tr
[
G0∗

0 (k̂′)G0
2(k̂′)

] =
√

2

8π
(3 cos2 θ − 1), (32)

h(θ ) = Tr
[
G0∗

2 (k̂′)G0
2(k̂′)

] = 1

8π
(3 cos2 θ + 1).

As a first inspection, when applying following the substitu-
tion [both in the gap equations (30) and the expression of E±

k

in Eq. (31)],

3 cos2 θ

8π
→ 1

8π
, (33)

which has been used as the angle-averaging procedure for
3PF2 superfluidity in Ref. [22], Eq. (30) reduces to the form of
AAG Eq. (24). At zero temperature, the pairing is suppressed
by the gapless excitation near the average Fermi surface in
the AAG state. However, pairing can exist in the interval
(0, θ1)

⋃
(π, π − θ1) of θ near the average Fermi surface in

the ADG state, where

cos2 θ1 = δμ2 − �2
0(kF ) + √

2�0(kF )�2(kF ) − �2
2(kF )/2

3
√

2�0(kF )�2(kF ) + 3�2
2(kF )/2

,

and δμ is the difference between the neutron and proton
chemical potentials. This mechanism is consistent with that of
the FFLO state. Furthermore, the influences from the coupling
of different mj components are partially taken into account

via the angle matrix ( f(θ) g(θ)
g(θ) h(θ) ) in the ADG state.

C. Thermodynamics

For isospin-asymmetric nuclear matter at a fixed temper-
ature and given neutron and proton densities, the essential
quantity to describe the thermodynamics of the system is the
free energy defined as

F|ρ,β = U − β−1S, (34)

where U is the internal energy and S is the entropy. In the
mean-field approximation, the entropy of the superfluid state
is

S = −2kB

∑
k

{f (E+
k ) ln f (E+

k ) + f̄ (E+
k ) ln f̄ (E+

k )

+ f (E−
k ) ln f (E−

k ) + f̄ (E−
k ) ln f̄ (E−

k )}, (35)

where f̄ (E±
k ) = 1 − f (E±

k ). The internal energy of the super-
fluid state reads

U =
∑
σk

[
ε

(n)
k n(n)

σ (k) + ε
(p)
k n(p)

σ (k)
]

+
∑
k,k′

∑
σ1,σ2,σ1

′,σ2
′
〈kσ1,−kσ2|V |k′σ1

′,−k′σ2
′〉ν†

σ2,σ1
(k)

× νσ1
′,σ2

′(k′). (36)

The first term in Eq. (36) includes the kinetic energy of the
quasiparticles, which is a functional of the pairing gap. In the
normal state it reduces to the kinetic energy of the neutrons
and protons. The second term includes the BCS mean-field
interaction among the particles in the condensate and can be
eliminated in terms of the gap equation (9) (shown in the
Appendix). Finally, the internal energy is written as

U =
∑
σk

[
ε

(n)
k n(n)

σ (k) + ε
(p)
k n(p)

σ (k)
]

−
∑

k

D2(k)√
ξ 2

k + D2(k)
[1 − f (E+

k ) − f (E−
k )]. (37)

A thermodynamically stable state minimizes the difference of
the free energies between the superconducting and normal
states, δF = FS − FN [the free energy in the normal state
follows from Eqs. (35) and (37) when � → 0].

III. RESULTS

The numerical calculations here focus on the effects of
the angle dependence of the quasiparticle spectra and the
emergence of the ADG phase in isospin-asymmetric nuclear
matter. To simplify the calculations, several assumptions have
been adopted. First, the pairing interaction is approximated
by the bare interaction; i.e., the effects of the screening of
the pairing interaction are ignored. Second, we adopt the free
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single-particle (s.p.) spectrum, which may affect the density of
the states at the Fermi surface. Previous calculations [23,24]
show that using a more realistic s.p. spectrum obtained from
the BHF approach (the BHF spectrum) may reduce the 3SD1

channel pairing gap as compared with the free spectrum.
As for the pairing interaction, the screening potential (i.e.,
the higher-order contribution in the pairing interaction) for
the 3S1 pairing channel in nuclear matter under different
approximations has been discussed in Refs. [25]. It has
been shown that the screening potential is repulsive at low
densities in the one-bubble approximation, whereas it is
slightly attractive in the full RPA (suitably renormalized to
cure the low-density mechanical instability of nuclear matter
[25,26]). Up to now, the screening effect on the pairing gap
remains an open problem. Finally, we ignore the isospin triplet
states, which is valid when the pairing in the isospin singlet
channel is much larger than that in the isospin triplet channel.
However, the argument could be questionable when the first
two approximations are abandoned. In the present calculations,
the net density is fixed at the empirical saturation density of
nuclear matter ρ = ρ0 = 0.17 fm−3, except for Fig. 7, and the
Argonne V18 potential is adopted as the pairing interaction.

Figure 1 shows the AAGs and ADGs �0(kF ) and �2(kF )
in the 3SD1 partial-wave channel as a function of isospin
asymmetry α, defined as α = (ρn − ρp)/ρ. The temperatures
are set in the low-temperature regime β−1 = 0.5, 1.0, 2.0, and
3.0 MeV (the critical temperature β−1

c where the superfluid
vanishes is about 7.5 MeV for isospin-symmetric case). At
temperature β−1 = 0.5 MeV, the value of �0(kF ) in the ADG
state becomes larger than that of the AAG state for α � 0.07,
and the difference of �0(kF ) between the ADG and AAG states
reaches 22 percent at α = 0.23. With increasing temperature,
the difference of �0(kF ) between the two kinds of states
decreases rapidly. The critical isospin asymmetries αc at which

FIG. 1. (Color online) The upper and lower curves in the figures
are related to the values of �0(kF ) and �2(kF ) vs isospin asymmetry
α. The blue solid and red dashed lines correspond to the ADG and
AAG, respectively.

FIG. 2. (Color online) The curves marked with symbols 3S1 and
3D1 are related to the gap functions �0(k) and �2(k) in Eqs. (24) and
(30), respectively. The blue solid and red dashed lines correspond to
the ADG and AAG, respectively.

the gaps vanish are the same in the two states, and their values
are 0.267, 0.275, 0.30, and 0.315 for the temperatures 0.5,
1.0, 2.0, and 3.0 MeV, respectively. It implies that the thermal
excitation can promote pairing in large isospin-asymmetry
nuclear matter in the low-temperature regime.

To have an entire inspection of the difference between the
pairing gaps of the ADG state and the AAG state, we exhibit
the gap functions in Fig. 2. At temperature β−1 = 0.5 MeV, the
gap functions of the two different kinds of states are almost
the same except for a little difference of �0(k) near the zero
momentum for the asymmetry α = 0.02 [in Fig. 2(a)]. When
the system becomes more asymmetric, the difference gets
larger [in Fig. 2(b)]. However, the curves of the ADG coincide
with these of the AAG for β−1 = 3.0 MeV with α = 0.16 [in
Fig. 2(d)]. That implies that the angle-averaging procedure is
a satisfactory approximation for asymmetric nuclear matter at
high temperatures.

A larger gap value in ADG state may result in a larger
pairing energy in the condensate [second term in Eqs. (36)
and (37)], which has important influence on the free energy of
the superconducting state. Thus, we calculate the free-energy
difference δF between the normal and the superconducting
states. The results are shown in Fig. 3, where the parameters
are set the same as those in Fig. 1. At temperature β−1 = 0.5
MeV, δF in the ADG state gets smaller than that of the AAG
state when α � 0.06, especially, the former is about 35% lower
than the latter in the regime α > 0.17. We can conclude that
the ADG state is more favored than the AAG state for large
asymmetry at low temperature, because the angle dependence
of the pairing gap enhances the pairing energy and has little
effect on the kinetic energy. However, the thermal excitation
can reduce the effects of angle dependence of the pairing gap
[comparing Fig. 3(a) with Fig. 3(d)]. It is also shown in Fig. 3
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FIG. 3. (Color online) The difference of the free energy between
the superconducting and the normal states as a function of the isospin
asymmetry α for different temperatures. The blue solid and red dashed
lines correspond to the ADG and AAG, respectively.

that the values of δF tend to zero gently when α → αc at
different temperatures.

One straightforward way to understand the effects of angle
dependence of the pairing gap is to investigate the normal
and superconducting occupation probabilities [obtained from
Eqs. (14) and (15)] near the average Fermi surface (related
to the average chemical potential of neutron and proton).
The results are depicted in Fig. 4, where the spin summation
has been carried out. In this figure, the neutron/proton and

FIG. 4. (Color online) The higher and lower curves in the top two
panels are related to the neutron and proton occupation probabilities,
respectively. The curves in the bottom two panels are the pairing
probabilities. The blue solid and red dashed lines correspond to the
ADG and AAG, respectively.

pairing particle occupation probabilities at the average Fermi
surface for a fixed asymmetry α = 0.16 at temperature β−1 =
0.5 MeV has been compared with those at 3.0 MeV. In
isospin-asymmetric nuclear matter, the large splitting between
the neutron and the proton occupation probabilities prevents
the pairing around the average Fermi surface in the angle-
averaging procedure. However, in the ADG state, the splitting
is reduced by the angle dependence of the pairing gap in partial
area around the average Fermi surface, i.e., in the regime
θ ⊂ (0, π

5 ) ∪ ( 4π
5 , π ), as shown in Fig. 4(a). In Fig. 4(c), as

compared with the AAG, although the pairing in the ADG
state is almost fully suppressed in the regime θ ⊂ (π

5 , 4π
5 ) in

the ADG state, it is obviously enhanced at θ smaller than
π
5 and greater than 4π

5 .
Substituting the expression of D2(k) in Eq. (31) into

Eq. (14), we can find that the Fermi spheres of neutrons and
protons are no longer isotropic in the ADG state. Because
we assume an axisymmetric quasiparticle spectrum in the
ADG state, the rotational symmetry is spontaneously broken
[in terms of group theory, the O(3) symmetry breaks down
to O(2)] and there exists one favored direction. The neutron
Fermi sphere possesses an oblate deformation perpendicular
to the favored direction, whereas the proton Fermi sphere has
a prolate deformation along the favored direction. The two
different deformations enhance the correlation between neu-
trons and protons near their average Fermi surface. However,
at high temperature the neutron/proton occupation probability
in the ADG becomes almost isotropic, as shown in Fig. 4(b),
namely, the thermal excitation reduces the angle dependence
of quasiparticle spectra. In this case, the deformation of the
neutron/proton Fermi sphere fails to increase the phase-space
overlap of neutron and proton near their average Fermi
surface effectively. Thus, the results of the ADG state are
nearly the same as that of the AAG state; i.e., the angle-
averaging procedure becomes an adequate approximation at
high temperatures β−1 � 3 MeV.

Figure 5 displays the entropy (β−1S) as a function of
isospin asymmetry α for different temperatures β−1 = 0.5,
1.0, 2.0, and 3.0 MeV. The entropy in the superconducting
state is smaller than that in the normal state near α = 0 and
gets larger than that in the normal state at sufficiently large
asymmetry. However, around the transition point αc from the
superconducting state to the normal state, the entropies of
the superconducting states (both of the ADG state and the
AAG state) approach the value of the normal state, i.e., the
latent heats Q = β−1(Ss − Sn) → 0 when α → αc. Hence,
the transitions are of second order. At temperature β−1 =
0.5 MeV, the entropy in the ADG state is nearly a linear
function of the isospin asymmetry when 0.02 < α < 0.22.
With increasing temperature, the linear property of the entropy
curve disappears and the difference between the ADG state and
the AAG state gets smaller.

Comparing the gap equations (30) for the ADG state with
Eq. (24) for the AAG state, two differences appear in the ADG
state, i.e., the angle-dependent quasiparticle spectrum and the
angle matrix ( f(θ) g(θ)

g(θ) h(θ) ). The first leads to the deformation of
the neutron/proton Fermi sphere, and the second corresponds
to the coupling among different mj gap components. Actually,
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FIG. 5. (Color online) The entropy (scaled by β−1) as a function
of the isospin asymmetry α for different temperature. The blue solid,
red dashed, and black dash-dotted lines correspond to the ADG, AAG,
and normal state, respectively.

the angle matrix modifies the strength of V l′l
λ (k′, k) in different

directions in momentum space. We replace the angle matrix
with 1

4π
( 1 0

0 1 ) to inspect the influence of the angle matrix. The
results are shown in Fig. 6 for asymmetry α = 0.16 in panels
(b), (c), (d) and the temperature is set to be β−1 = 0.5 MeV.

FIG. 6. (Color online) �0(kF ) and �2(kF ) as a function of isospin
asymmetry α for the ADG, AAG, and “approximation in ADG” are
shown in panel (a). Panel (b) exhibits the gap functions for the three
cases. The normal and superconducting occupation probabilities at
the average Fermi surface for the three case are shown in panels (c) and
(d), respectively. The blue solid, red dashed, and green dash-dotted
lines correspond to the ADG, AAG, and the “approximation in ADG,”
respectively. The temperature is set to be β−1 = 0.5 MeV, and the
isospin asymmetry α = 0.16 in (b), (c), (d).

FIG. 7. (Color online) The difference of the free energy between
the superconducting and normal states as a function of the isospin
symmetry α for different densities at a fixed temperature β−1 = 0.5
MeV. The blue solid and red dashed lines correspond to the ADG and
AAG, respectively.

The dash-doted lines denoted by “approximation in ADG”
are obtained by replacing the angle matrix with 1

4π
( 1 0

0 1 ).
Figures 6(c) and 6(d) exhibit the neutron/proton and pairing
particle occupation probabilities at the average Fermi surface,
respectively. The curves of ADG and “approximation in ADG”
are nearly the same in Figs. 6(c) and 6(d). Whereas the gap
functions in Fig. 6(b) show that the curves of “approximation
in ADG” behave closer to those of the AAG state than those of
the ADG state. Figure 6(a) displays the �0(kF ) and �2(kF ) vs
isospin asymmetry α. The gaps of “approximation in ADG”
turn out to be smaller than both the gaps in the ADG state
and the AAG state when α > 0.07. Moreover, the curves
of “approximation in ADG” are much closer to that of the
AAG state. All these results indicate that the influence of
the angle matrix is much more important than that of the
angle dependence of the quasiparticle spectrum. Furthermore,
the coupling from different mj gap components may
strengthen the pairing interaction for large isospin asymmetry
at low temperatures.

To discuss the effect of angle dependence of the pairing gap
for different densities, we show the free-energy difference δF
between the superconducting and normal states at temperature
β−1 = 0.5 MeV vs isospin asymmetry α in Fig. 7. The
densities are set to be ρ = 0.05, 0.1, 1.5ρ0, and 2ρ0 for panels
(a), (b), (c), and (d), respectively. At the density ρ = 0.05 [in
Fig. 7(a)], the two curves of δF for the ADG and AAG states
are very close to each other, indicating the effect of angle
dependence of the pairing gap is quite small at low densities.
When the density increases, the difference of δF for the ADG
and AAG states increases rapidly, implying that the angle
dependence of the pairing gap is more important at higher
densities. As the Fermi energy EF ∝ ρ

2
3 , the value of �

EF
is

thus small at high densities. In this case, the summations over
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k′ in the gap equation (9) concentrate near the average Fermi
surface (i.e., the contribution to superfluidity from the Cooper
pairs around the average Fermi surface is dominant). A little
separation of the neutron and proton Fermi surfaces δμ may
suppress the superfluidity strongly. In the ADG configuration,
the angle dependence can reduce the suppression. However,
at low densities, the value of �

EF
gets large. Thus, the

contribution to superfluidity from the Cooper pairs near the
average Fermi surface is no longer as important as that at
high densities. Because the angle dependence mainly increases
the pairing probability around the average Fermi surface,
the effect of the angle dependence becomes weak at low
densities.

IV. SUMMARY AND OUTLOOK

The fermionic condensation in asymmetric nuclear matter
leads to superconducting states which spontaneously break
the spatial symmetries (such as FFLO and DFS states). The
quasiparticle spectrum behaves as an isotropic one and the
angle dependence of the pairing gap should be reconsidered. In
this work we propose an axisymmetric ADG state in which the
isotropic symmetry is broken in isospin-asymmetric nuclear
matter and compare with the AAG state. It is shown the
ADG state is more favored than the AAG state for large
asymmetry at low temperature, and the differences of both
the gap values and the free energies between the two kinds of
states get small with increasing temperature. At temperature
β−1 = 0.5 MeV with density ρ0, the maximal differences of
�0(kF ) and δF between the ADG state and AAG state are
about 22% and 35%, respectively. The differences get larger
at higher densities for β−1 = 0.5 MeV. In the ADG state,
the neutron and proton deformed Fermi spheres increase the
pairing probability along the axis of symmetry breaking near
their average Fermi surface. The effect of the coupling among
different mj gap components is also investigated in this work
and we find that the coupling dominates the main contribution
to the mechanism of the ADG state.

The ADG state vanishes at the critical value αc, where the
AAG vanishes. The phase transition from the ADG state to the
normal state is of the second order. When temperature goes
up, αc rises and the effect of angle dependence of pairing gap
becomes weak. In a certain region of α the latent heat has an

anomalous negative sign, which is consistent with the result
in Ref. [7]. However, this does not affect the stability of the
ADG state, because its energy budget is dominated by the
pair-condensation energy.

In the ADG state, the symmetry is broken spontaneously. It
is different from that in the FFLO state, where the symmetry
is broken by the collective motion of the Cooper pairs
(the translation and rotational symmetries are both broken).
The translation symmetry is maintained in the ADG state.
The deformation of the neutron/proton Fermi sphere in the
ADG state is similar to the DFS configuration; however, the
mechanisms are different. In the DFS state the symmetry
breaking corresponds to the deformed Fermi surface, while
in the ADG state the symmetry breaking results from the
angle dependence of the pairing gap. As is well known, the
continuous symmetry breaking leads to collective excitations
with vanishing minimal frequency (Goldstone’s theorem).
The breaking of rotational symmetry, which corresponds to
the anisotropic D2(k) in the ADG state, may imply new col-
lective bosonic modes in asymmetric nuclear matter. However,
the true ground state could be a combination of the ADG state
and the FFLO state. We should consider the ADG state with
the Cooper pair momentum together, and this is in progress.
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APPENDIX

We present here the main steps of the elimination of the
second term in Eq. (36) by using the gap equation (9). The
elements of the density matrix of the particles in condensate
are

νσ1,σ2 (k) = �σ1,σ2 (k)

2
√

ξ 2
k + D2(k)

[1 − f (E+
k ) − f (E−

k )]. (A1)

The second term of Eq.(36) is written as

∑
k,k′

∑
σ1,σ2,σ1

′,σ2
′
〈kσ1,−kσ2|V |k′σ1

′,−k′σ2
′〉ν†

σ2,σ1
(k)νσ1

′,σ2
′(k′)

=
∑
k,k′

∑
σ1,σ2,σ1

′,σ2
′
〈kσ1,−kσ2|V |k′σ1

′,−k′σ2
′〉 �†

σ2,σ1
(k)

2
√

ξ 2
k + D2(k)

[1 − f (E+
k ) − f (E−

k )]
�σ1

′,σ2
′(k′)

2
√

ξ 2
k′ + D2(k′)

[1 − f (E+
k′ ) − f (E−

k′ )]

=
∑

k,σ1,σ2

�†
σ2,σ1

(k)

2
√

ξ 2
k + D2(k)

[1 − f (E+
k ) − f (E−

k )]
∑

k′,σ1
′,σ2

′
〈kσ1,−kσ2|V |k′σ1

′,−k′σ2
′〉 �σ1

′,σ2
′(k′)

2
√

ξ 2
k′ + D2(k′)

[1 − f (E+
k′ ) − f (E−

k′ )].

(A2)
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Noting that the second summation over k′, σ1
′, σ2

′ is −�σ2,σ1 [using the gap equation (9)], thus,

∑
k,k′

∑
σ1,σ2,σ1

′,σ2
′
〈kσ1,−kσ2|V |k′σ1

′,−k′σ2
′〉ν†

σ2,σ1
(k)νσ1

′,σ2
′(k′) = −

∑
k,σ1,σ2

�†
σ2,σ1

(k)�σ1,σ2 (k)

2
√

ξ 2
k + D2(k)

[1 − f (E+
k ) − f (E−

k )]

= −
∑

k

Tr[�(k)�†(k)]

2
√

ξ 2
k + D2(k)

[1 − f (E+
k ) − f (E−

k )]. (A3)

Using the “unitary” property Eq.(4),

U =
∑
σk

[
ε

(n)
k n(n)

σ (k) + ε
(p)
k n(p)

σ (k)
] +

∑
k,k′

∑
σ1,σ2,σ1

′,σ2
′
〈kσ1,−kσ2|V |k′σ1

′,−k′σ2
′〉ν†

σ2,σ1
(k)νσ1

′,σ2
′(k′)

=
∑
σk

[
ε

(n)
k n(n)

σ (k) + ε
(p)
k n(p)

σ (k)
] −

∑
k

2D2(k)

2
√

ξ 2
k + D2(k)

[1 − f (E+
k ) − f (E−

k )]

=
∑
σk

[
ε

(n)
k n(n)

σ (k) + ε
(p)
k n(p)

σ (k)
] −

∑
k

D2(k)√
ξ 2

k + D2(k)
[1 − f (E+

k ) − f (E−
k )]. (A4)
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[3] Th. Alm, B. L. Friman, G. Röpke, and H. Schulz, Nucl. Phys. A
551, 45 (1993).

[4] M. Baldo, U. Lombardo, and P. Schuck, Phys. Rev. C 52, 975
(1995).

[5] E. Garrido, P. Sarriguren, E. Moya de Guerra, and P. Schuck,
Phys. Rev. C 60, 064312 (1999).

[6] A. Sedrakian, Th. Alm, and U. Lombardo, Phys. Rev. C 55,
R582 (1997).

[7] A. Sedrakian and U. Lombardo, Phys. Rev. Lett. 84, 602
(2000).

[8] U. Lombardo, P. Nozieres, P. Schuck, H. J. Schulze, and
A. Sedrakian, Phys. Rev. C. 64, 064314 (2001).

[9] Ø. Elgaroy, L. Engvik, M. Hjorth-Jensen, and E. Osnes, Phys.
Rev. C. 57, R1069 (1998).

[10] A. I. Akhiezer, A. A. Isayev, S. V. Peletminsky, and A. A.
Yatsenko, Phys. Rev. C. 63, 021304 (2001).
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